第一篇:切线长定理
切线长定理
教学目标
1.理解切线长的概念,掌握切线长定理;
2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.
教学重点:
切线长定理是教学重点
教学难点:
切线长定理的灵活运用是教学难点
教学过程设计:
(一)观察、猜想、证明,形成定理
1、切线长的概念.
如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.
引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察
利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.
3、猜想
引导学生直观判断,猜想图中PA是否等于PB. PA=PB.
4、证明猜想,形成定理.
猜想是否正确。需要证明.
组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.
想一想:根据图形,你还可以得到什么结论?
∠OPA=∠OPB(如图)等.
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
5、归纳:
把前面所学的切线的5条性质与切线长定理一起归纳切线的性质
6、切线长定理的基本图形研究
如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C
(1)写出图中所有的垂直关系;
(2)写出图中所有的全等三角形;
(3)写出图中所有的相似三角形;
(4)写出图中所有的等腰三角形.
说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.
(二)应用、归纳、反思
例
1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.
求证:AC∥OP.
分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.
证法一.如图.连结AB.
PA,PB分别切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC为⊙O直径
∴AC⊥AB
∴AC∥OP(学生板书)
证法二.连结AB,交OP于D
PA,PB分别切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位线
∴AC∥OP
第二篇:切线长定理教案
《切线长定理》教案
学习目标
1.理解切线长的概念,掌握切线长定理;
2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.
教学重点:
切线长定理
教学难点:
切线长定理的灵活运用
教学过程:
(一)1、切线长的概念.
如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.
引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察
利用PPT来展示P 的位置的变化,观察图形的特征和各量之间的关系.
3、猜想
引导学生直观判断,猜想图中PA是否等于PB. PA=PB.
4、证明猜想,形成定理.
猜想是否正确。需要证明.
组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.
想一想:根据图形,你还可以得到什么结论?
∠OPA=∠OPB(如图),连接AB,有AD=BD等.
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
5、归纳:
把前面所学的切线的5条性质与切线长定理一起归纳切线的性质
6、切线长定理的基本图形研究(小组合作交流)
如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AB于C
要求:就你所知晓的几何知识,写出你认为正确的结论,小组交流,看哪个小组的结论最多,用最简短的话语证明你的结论是正确的。
说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.
(二)应用、归纳、反思
分析:(1)中可以看出∠AFB是⊙O的圆周角,因此只要求出其对应的弧所对的圆心角的度数就可以了,于是连接OA,OB,运用切线的性质,有OA⊥PA,OB⊥PB。由四边形的内角和解决问题。
(2)添加的切线要与今天我们学习的切线长定理的基本图形结合起来,找出基本图形,运用定理,就可以解决周长,同时知道OC,OD是相应的角平分线,那么∠COD的度数出来了。
学生组织解题过程,在草稿纸上完成。
反思:教师引导学生分析过程,激发学生的学习兴趣,培养学生善于观察图形,从中找出相应知识点,从而实现新旧知识衔接的能力.
提高练习:
如图,在⊿ABC中,∠C=900, AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,求⊙O的半径。
方法
(一)分析:从已知条件和图形中我们能很快地找出切线长定理的基本图形来。要求:同学们在图中标出相等关系的线段,注意构成等量关系的因素是什么。设⊙O与AB相切于F,与AC相切于E,⊙O的半径为r。连接OE,OF,由AC=8,AB=10,AP=2
有CP=BC,从而∠BPC=450,OP=2r,由勾股定理知道:BP=62,所以OB=622r 由切线长定理知道:AF=AE=2+r,所以BF=10-(2+r)=8-r
在直角三角形OBF中有(622r)2=r2+(8-r)
2解得r=1 方法
(二)分析:从另外一个角度看问题:用三角形的面积可以重新构建数量关系,建立等式。
要求:注意本方法中的辅助线的添加。
设⊙O与AB相切于F,与AC相切于E,⊙O的半径为r。连接OE,OF,OA。
⊿ABP的面积=⊿AOP的面积+⊿ABO的面积
111有OEAPABOFAPBC 2221
1即有r(210)62,所以r=1 22反思:在本题的解法中,同学们可以看出,通过不同的分析思路和观察的角度可以明显地得到不同的解法,而且其繁简程度一目了然。然而由于本题综合性较强,学生在学习的过程中被动接受的可能性大,在今后的练习设计中要更加注重难度的梯度和适当的铺垫。
2.课堂训练:
如图:⊙O是以正方形ABCD一边BC为直径的圆,过A作AF与⊙O相切于点E,交CD于F,若AB=4,求S⊿ADF
(三)小结
1、提出问题学生归纳
(1)这节课学习的具体内容;
(2)学习用的数学思想方法;
(3)应注意哪些概念之间的区别?
2、归纳基本图形的结论
3、学习了用代数方法解决几何问题的思想方法.
(四)布置作业
教学反思:
在整节课中对本课的重点学习内容能组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结。尤其是切线长定理的基本图形研究环节学生能充分利用已有的知识和新授内容结合,把切线长定理和圆的对称性紧密接合,体现了本节课知识点的工具性。在例题的选择中注重了角度计算,长度计算和在具体情境中能准确地找出并运用切线长定理来分析问题,解决问题。
在提高题的选择上,我的本意是能在平时教学中让学生接触中考题型,提供一题多解的证明思路,激发学生的学习兴趣,但从学生的接受程度来看,显然是有点偏难了。通过本节课使我充分地认识到:教学不能只从教师的知识水平和以往的教学实践来施行,更应该注重学生的实际知识水平和能力状况。就构建主义的理论而言,学生只有对发生在最近发展区内的教学内容效果是最显著的,如果梯度过大就失去了“脚手架”的作用了。
第三篇:切线长定理教案
导思
《切线长定理的教学设计》
旅顺实验中学
裴俊杰
一,教材说明:
这是人教版九年级几何第三册第七章第十节10《切线长定理》的教学设计。二.教材分析:
直线和圆是生活中最常见的几何图形,它的有关性质被广泛应用,尤其对于切线的性质-----切线长定理,它体现了园的轴对称性,为我们证明线段相等、角相等、弧相等、垂直关系等提供了一个基本图形和理论依据,为解决与圆有关的数量问题打下了铺垫,具有承上启下的作用。三.学生分析:
通过前一段时间的学习,学生对点和圆的位置关系、直线和圆的位置关系以及圆的基本性质有了一个大概的了解,尤其是通过垂径定理、四者关系(圆心角、弧、弦、弦心距)定理、圆周角定理、切线的判定定理、切线的性质定理等定理的学习和应用,学生的各种能力已经得到一定的锻炼。因此,本课定理的证明学生不会感到困难,但定理的应用,尤其是复杂的应用,学生将会感到一定的困难。四.设计理念
课改的重要任务之一是改变过去“教师教”为“学生学”。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。因此在本课中,我在教学设计时让学生争做数学学习的主人,引导他们积极参与教学活动,体会数学规律,提高解决问题的能力。
五.教学目标:
知识目标:1.理解切线长的概念。
2.掌握切线长定理及其应用。
能力目标:培养学生识图能力和逻辑思维能力。
情感目标:激发学生学习兴趣,培养探索精神和创新能力。
德育目标:渗透事物之间相互转化的思想,培养学生良好的学习习惯和严谨的思维品质。
六.重点:切线长定理的应用。
七.难点:切线长定理的灵活应用。八.关键:切线长定理的理解。
九.教学方法:观察、探究、讨论、概括等多种方法。十.教学过程:
(一)复习:
《数学课程标准》中指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,通过对旧知的回忆,明确概念,加深理解。出示问题:
1.直线和圆有几种位置关系,分别是什么?
2.什么交直线与圆相切?
3.切线的性质定理内容是什么?
(二)引入:
数学学习应是教师引导学生通过观察、实践获得知识,形成技能,发展思维,学会学习。一节课若引入得当,有利于激发学生的学习兴趣,获得积极的情感体验。,采取直接设疑式引入,让学生动手作图。出示题目:已知:⊙O外一点P 问:过点P向⊙O作切线能做几条?
通过前面的复习,学生很容易作出。
(三)新授:
1.教师首先定义切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段长,叫做这点到圆的切线长(板书)。
2.结合引例赋予数值出示练习: 已知⊙O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P有⊙O的两条切线,求这两条切线的夹角及切线长。
学生独立思考,寻求解决问题的方法。通过此题,不仅加深了学生对切线长概念的理解,而且通过本题继续追问“两条切线长有什么关系?”(相等),再把数值撤掉,问“结论还成立吗?”,从而引导学生通过观察、猜想、验证,独立思考再小组讨论形式加以证明,得出切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角(板书)。
3.出示练习:如图,PA、PB是⊙O的两条切线,A、B是切点。直线OP交⊙O于点D、E,交AB于C。
(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形。(3)还可以得出那些结论?
对于这个题目,我引导学生积极思考,大胆思维,与学生一起探究新知识,及时总结、归纳出切线长定理,体现了圆的轴对称性,为我们证明线段相等、角相等、弧相等、垂直关系等提供了一个基本图形和理论依据,从而使学生思想层次飞跃一个新的台阶。
4.出示例1:
已知:如图,P是⊙O外一点,PA、PB 是⊙O的两条切线,A、B是切点,BC是直径。
求证:AC∥OP
分析:利用切线长定理及等腰三角形的性质即可证明,也可利用学过的其他知识进行证明。帮助学生分析不同证法的优劣,一题多证(板书)。学生独立思考,寻求解决问题的方法,然后教师再引导学生对不同解法进行讨论、评价、探索解决问题的新途径。5.出示例2 :圆的外切四边形的两组对边的和相等
分析:引导学生分析命题的题设和结论,帮助学生写出已知、求证、画出图形。然后由学生独立思考,分析证明的思路,并完成证明过程,若有困难再讨论。
出示变式问题:圆外切平行四边形是__________ 圆外切矩形是___________ 通过变式问题加深对例2的理解与应用。
6.出示练习,已知:在△ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F,求:AF、BD和CE的长。
分析:此题目的在于加强学生对切线长定理应用、计算,列方程组,然后求解,对学生渗透方程的思想。
7.总结归纳,拓展提高。
本课小结采取学生总结,教师点拨方法完成。这样不仅使学生在知识上有所提高,也能对所学知识有一个全面认识。
8.布置作业:
1.书131页3、4题
2.寻找生活中切线长定理应用的实例,并编题、解题。
设计这一环节的目的是巩固、加深课堂所学知识,使学生能理解、掌握和运用切线长定理。十一.信息与反馈:
本节课在设计上能从学生已有知识出发,引导学生主动的探索新知识,形成良好的学习氛围,学习效果非常的好。
但是本节课让我感到遗憾的一点是,切线长定理能否从学生比较熟悉的实际事例引入,这样更能激发学生的学习主动性,提高学习趣。
第四篇:切线长定理
《切线长定理》评课稿
舒 兰 十 二
曹雪松
中
李艳萍老师的《切线长定理》这一课体现了“阳光课堂” 的理念。所谓“阳光课堂”,它的核心理念是“积极向上、优质高效、和谐愉悦、整体提升”; “阳光课堂”的内涵:培养学生高尚健全的思想品格,自信乐观的人生态度,积极进取的阳光心态;提高学生自主学习、自我管理的能力,以达到知识与方法的优质高效;营造和谐愉悦的课堂氛围,创设轻松快乐的学习环境;整体提升学生的综合素养和教师的专业品质,全面推进教育内涵的发展。李艳萍老师此次的阳光教学行动,采用“问题导学”的教学模式,即学前准备——自主学习——合作探究——归纳提升——达标测评。
一、课前学案的充分“预设”与课堂的自由“生成”相呼应。本节课中李老师课前以学案的形式预设问题:分别让学生画圆的一条切线,两条切线,三条切线、四条切线。以开放的形式为学生创造广泛的思考空间,同时赋予学生充分的思考时间。优秀的学生可以画出多种位置的切线发展他们思维的广泛性,学困生也可以在复习切线判定的基础上顺利完成,激发他们研究的兴趣。这样,不仅节省了课上时间,也兼顾到所有学生的发展,为课堂自由“生成”切线长的概念做好了铺垫。由于,课前学生亲自动手画出圆的切线,不仅增强了学生直观体验,更易于学生体会并发现切线和切线长的区别,完成基础目标的教学。
二、充分体现新课标中自主学习、合作探究的精神。
新课标中积极倡导自主、合作、探究的学习方式。以激发学生的学习兴趣、好奇心和求知欲。本节课中设置了三个探究问题主线: 问题一:观察从圆外一点画出圆的两条切线的图形,小组交流讨论你的发现和结论,加以验证,并向大家展示你的成果。此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性。学生在总结出切线长定理的同时,又通过观察图形发现了圆心和这一点的连线为圆的对称轴,利用对称性还可的到更多的边等、角等、弧等的结论。然后,通过动态演示强化切线长定理这一核心知识。可以看出设置探究性的问题,可以树立学生已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知转化为已知,把复杂问题化为简单问题,把一般问题转化为特殊问题的思考方法。本环节教师通过学生探究、学生讲解、学生总结、归纳总结得出本节课的核心知识“切线长定理”,又通过动态演示强化核心知识。最后通过习题、生活中的实例让学生应用核心知识,树立学生的应用意识。这样多种形式、多种角度强化核心知识,更易学生接受。这一环节结束后,教师再次创设问题二:观察圆的三条切线组成
三角形的图形,此环节让学生根据题设和已有的切线长定理,经过观察推理学生水到渠成的得出三角形的内切圆的相关概念。问题二的引入自然流畅,层层递进不仅符合学生认知规律,也激发了学生进一步研究的兴趣,达成本节课知识目标的教学。最后,通过在三角形铁皮上裁下一个最大的圆的实际问题的探究,帮助学生从实际中发现数学问题,运用所学知识解决实际问题,提高他们数学的应用意识和解决问题的能力。前两个问题的研究使本节课的探究达到高潮,为了给学生形成完整的知识体系,教师又引入了问题三:观察圆的四条切线形成四边形的图形。学生通过在图形中识别切线长定理的基本图形,总结的出圆外切四边形的性质,学生再次应用本节核心知识发现新的结论。这样教学,教师不只是让学生“见到树木,也看到了他们所在的森林”。三个问题的探究都是让学生根据题设和已有的知识,经过观察、推理得出结论,这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。总之,教师只有在课堂教学中巧设问题,就可激发学生的自主学习的兴趣,让学生主动参与到问题探究活动中,交流分享、质疑解惑,让他们体会合作探究的乐趣。每个环节都经历了生本对话、生生对话、师生对话、归纳提升。体现阳光课堂理念,课堂上学生活动是“明线”,教师的教学是“暗线”,体现“学生主体”教学观。
三、运用多媒体教学,增强学生的直观感觉,增大教学容量。本节课教师采用多媒体辅助教学,尤其是动态演示,使学生一目了然,不仅给学生以直观的印象,同时也扩大了课堂的容量,使学生获得更多的信息。
四、归纳提升环节即谈收获又谈疑惑,即整合知识,又给学生留下思考的空间。例如学生提出:
1、筷子问题中的切线长定理。
2、过圆外一点用尺规做圆的切线的方法。
3、圆外切五边形的性质。
课堂教学不仅是传授知识的主阵地,同时培养学生思维,进行学生思维外延。
几点建议:
一、精心设计课堂语言,评价学生要及时到位。
评价的目的是全面考察学生的学习状况,激励学生的学习热情,促进学生的全面发展,评价也是教师反思和改进教学的有利手段。对学生数学学习的评价,既要关注学生知识与技能的理解和掌握,更要关注他们情感与态度的形成和发展,对于学生回答问题不完整的地方或出错的地方,教师可采用“你们的看法和他相同吗?”“好像不完整谁还有补充?”“大家比较谁的说法更有理?发表你的见解”等形式激发学生相互质疑解疑。这样既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。评价的手段和形式应多样化,要将过程评价与结果评价相结合,定性与定量相结合,充分关注学生的个性差异,发挥评价的激励作用,保护学生的自尊心和自信心。例如学生到黑板上做题出错了,当别人给他改对之后,教师可以让做错的同学给大家一些经验提醒;也可以在课堂小结环节教师总结知识后,让学生通过说出自己错误的体验升华本节知识。例如,在课堂练习时,如果有学生独立说出答案,并说出理由,是否会更好的帮助老师发现学生个性问题,兼顾全体学生的发展。总之,数学教师的功底,关键在于能否抓住学生回答问题的点滴,对学生进行指导。引导学生在他原有的认知的基础上提高一个层次,这样的教学才是真正的数学教学。这是我们所有数学教师在平时教学中要体会的。
二、备课认真,但更要重视细节。
1、板书切线长定义时“切线长:从圆外一点到切点之间的线段的长度。”不太严谨。应该写为“切线长定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段得长度叫做切线长。”
2、教师课堂语言“告诉我你的思想?”是否换成“告诉我你的想法?”更合适些。这也提示我们数学教师需要锤炼课堂语言。
第五篇:切线长定理说课稿
切线长定理说课稿
24.2 第3课时)
教者:张鹏波
班级:九年级(1)班(直线与圆的位置关系
切线长定理说课稿
一、说教材
1、本节内容、地位和作用:本课是人教版新课标实验教科书八下第十九章是直线与圆位置关系中的第三课时,是直线与圆位置关系中重点内容,是在学习了切线的性质和判定的基础之上,继续对切线的性质的研究,是在垂径定理之后对圆的对称性又一次的认识。体现了图形的认识、图形的变换、图形的证明的有机结合。在习题和内切圆的计算中体现了把复杂问题转化为简单问题后解决问题,从而滲透转化思想和方程思想,提高应用意识。
切线长定理的探究,通过设计先翻折图形再思考的环节加入了实践操作活动,使学生提高探究的兴趣,应用了“实验几何——论证几何”的探究方法,并初步建立了由动手操作抽象出数学条件进而解决问题的意识。让学生的思维能够经历一个从模糊到清晰,从具体到抽象,从直觉到逻辑的过程,再由直观、粗糙向严格、精确的追求过程中,使学生体验数学发展的过程。它也是为证明线段,角相等,弧相等,垂直关系等提供了理论依据。
2、教学目标:
知识与技能:(1)掌握切线长定理,并会利用它进行有关的计算和证明。
(2)了解三解形的内切圆和三角形内心的概念,及内心的性质。
过程与方法:在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,采取动手实践、在师的引导下探索的学习方式来教学。
情感态度价值观:(1)通过对例题的分析,培养学生数形结合的思想。(2)通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度。
3、教学重点、难点: 重点:掌握切线长定理 难点:切线长定理的灵活应用。
二、说教法、学法:
1、教学方法:根据本节课的教学目标、教材内容以及初三学生基本形成逻辑思维的能力,在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;从自己的实践中获取知识,并通过讨论来加深对知识的理解.2、学法指导: 新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本节课主要采取动手实践、在师的引导下探索的学习方式,通过让学生猜想、论证、应用,建构起自己的知识结构,使学生成为学习的主人.三、教具:圆规、三角板、多媒体。
四、教学过程:
第一个环节:复习引入。复习旧知识引导学生回答,为切线长定理引入埋下伏笔;并通过猜想激发学生的学习兴趣。
第二个环节:探究新知。探究一首先让学生利用图形的轴对称性得出答案,其次及时引入切线长定义并让学生说明与切线的区别与联系;再次由师引导学生归纳切线长定理,并用数学语言表述后证明,目的是让学生透彻理解定义与定理;最后通过思考题拓展切线长定理,为证明线段,角相等,弧相等,垂直关系等提供了理论依据;对基本图形的深刻研究和认识是学习几何的关键,它是灵活应用知识的基础,所以很有必要设计这一活动。探究二提出问题:一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?先由师引导学生探究截圆的做法,其次师及时引入三角形内切圆及三角形内心的定义;后由学生归纳三角形内心的性质。
第三个环节:范例讲解。由师引导学生从条件想,由切线长定理可得AF=AE,BF=BD,CE=CD,若设AF=X,则可求未知量。分析题意后由学生说明解答过程。
第四个环节:课堂练习。两个练习题都有两位,第一位简单,第二位稍难,为了关注学生的差异,分层次练习,使每位同学都能感受到有所收获。
第五个环节:课堂小结。采取提问的形式由学生来小结本节的内容。第六个环节:布置作业。作业题型全面但量稍多,为了巩固所学知识。第七个环节:教学反思。在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、自主探索、合作交流发现.学生在实验交流过程中动脑、动口、动手,培养良好的数学思维品质,充分感受到数学创造的乐趣,但遗憾的是课没有按时讲完,问题可能就出在推定理时过细浪费了时间,或者可能把三角形的内切圆那知识点再用一课时讲,这样也能使学生有时间巩固切线长定理,且能按时完成教学任务。