首页 > 精品范文库 > 15号文库
抽屉原理及其应用
编辑:琴心剑胆 识别码:24-251479 15号文库 发布时间: 2023-03-30 06:40:18 来源:网络

第一篇:抽屉原理及其应用

抽屉原理及其应用

张 志 修

摘要:抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。

关键词:代数 几何 染色 存在性

引言

抽屉原理最早是由德国数学家狄利克雷发现的,因此也叫狄利克雷重叠原则。抽屉原理是一条重要的理论。运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。

抽屉原理的内容

第一抽屉原理:

原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的nkk1,这不可能。

原理2 把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有m1个或多于m1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉

至多放进mn个物体,与题设不符,故不可能。

原理3 把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。.原理1 2 3都是第一抽屉原理的表述 第二抽屉原理:

把mn﹣1个物体放入n个抽屉中,其中必有一个抽屉中至多有mn﹣1个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

一、应用抽屉原理解决代数问题

抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题,它易于接受,在数学问题中有重要的作用。

1、整除问题常用剩余类作为抽屉。把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用0,„,2,1,m﹣1表示。

例1:对于任意的五个自然数,证明其中必有3个数的和能被3整除。

证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:

0,1,2

①若这五个自然数除以3后所得余数分别分布在这3个抽屉中

(即抽屉中分别为含有余数为0,1,2,的数),我们从这三个抽屉中各取1个(如1到5中取3,4,5),其和34512 必能被3整除。

②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数。

③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除。

2、还有的以集合造抽屉

例2:从1、2、3、4„„、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

分析与解答:在这12个自然数中,差是7的自然数有以下5对:12,5 11,4 10,3 9,2 8,1。另外,还有2个不能配对的数是6 7。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为12,5 11,4 10,3

9,2 8,1 6 7,显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7。

二、应用抽屉原理解决几何问题

利用分割图形的方法构造抽屉

本方法主要用于解决点在几何图形中的位置分布和性质问题,通常我们把一个几何图形分割成几部分,然后把每一部分当做一个“抽屉”,每个抽屉里放入相应的元素。

例3:已知边长1为的等边三角形内有5个点,则至少有两个点

距离不大于1/2。

证明:用两边中点的连线将边长为1的等边三角形分成 四个边长为1/2的等边三角形,若规定边DE、EF、FD上的 点属于三角形DEF,则三角形ABC内的所有点被分为 4个全等的小等边三角形,由抽屉原理,三角形内的任意5个点至少有2个点属于同一小等边三角形,由“三角形内(包括边界)任意两点间的距离不大于其最大边长”知这两个点距离不大于1/2。

抽屉原理与中学数学的关系,常用抽屉原理的最值的思路解中学数学题。

例4:用柯西不等式及二元均值不等式证明了如下三角不等式: 在△ABC中,有sin2Asin2Bsin2C.证明:由抽屉原理知sinA,sinB,sinC中必有两个不大于或不小于3294,不妨设sinA33,sinB22或sinA33,sinB22则[sin2A(323)][sin2B()2]0,故 2243sin2Asin2Bsin2Asin2B

34于是

43sin2Asin2Bsin2Csin2Asin2Bsin2C

344cos(AB)cos(AB)23]sin2C =[32413(1cosC)21cos2C 34219(cosC)2 3249 4

三、应用抽屉原理解决染色问题

染色问题是数学中的重要内容之一,也是深受广大师生喜爱的的题目类型之一。染色问题是借用图论的思想心提高解决问题的能力,所涉及的各科数学知识都不是很难,但染色法解数学问题技巧性非常强,而且解题的途径都比较独特,难度往往在于寻求解决问题的关键所在或最佳方法.

平面染色问题为点染色或线染色问题。通常是根据各个物体所存在的状态,将它们的状态看作抽屉原理中的“抽屉”和“元素”,从而来解决问题的。

(1)点染色问题

例5:将平面上每点都任意地染上黑白两色之一。求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色。

证明:在这个平面上作一个边长为1的正三角形。如果A、B、C这三点同色,则结论成立,故不妨设A和B异色。以线段AB为底边,作一个腰长为2的等腰ABD。由于点A和B异色,故无论D为何色,总有一腰的两个端点异色。不妨设点A和D异色。设AD的中点为E,则AE=ED=1。不妨设点A和E为白色,点D为黑色。

以AE为一边,在直线AD两侧各作一个等边三角形:AEF与AEG。若点F和G中有一个是白点,则导致一个边长为1的等边三角形的三个顶点都是白点;否则,边长为3的等边DFG的三个顶点同为黑点。

(2)边染色问题

例6:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。

四、应用抽屉原理解决实际问题

在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

例7:黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的2双筷子(每双筷子两根的颜色应一样),问至少要取材多少根才能保证达到要求?

解:这道题并不是品种单一,不能够容易地找到抽屉和苹果,由于有三种颜色的筷子,而且又混杂在一起,为了确保取出的筷子中有2双不同颜色的筷子,可以分两步进行。第一步先确保取出的筷子中

有1双同色的;第二步再从余下的筷子中取出若干根保证第二双筷子同色。首先,要确保取出的筷子中至少有1双是同色的,我们把黑色、白色、黄色三种颜色看作3个抽屉,把筷子当作苹果,根据抽屉原则,只需取出4根筷子即可。其次,再考虑从余下的20根筷子中取多少根筷子才能确保又有1双同色筷子,我们从最不利的情况出发,假设第一次取出的4根筷子中,有2根黑色,1根白色,1根黄色。这样,余下的20根筷子,有6根黑色的,7根白色的,7根黄色的,因此,只要再取出7根筷子,必有1根是白色或黄色的,能与第一次取出的1根白色筷子或黄色筷子配对,从而保证有2双筷子颜色不同,总之,在最不利的情况下,只要取出4711根筷子,就能保证达到目的。

例8:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n﹣1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n﹣2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、„、n﹣2,还是后一种状态1、2、3、„、n-1,握手次数都只有n﹣1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。运用抽屉原理,制造抽屉是运用原则的一大关键。首先要确定分类对象(即“物体”),再从分类对象中找出分类规则(即“抽屉”).根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。一般来说,“抽屉”的个数应比“物体”的个数少,最后运用抽屉原理。解决问题,抽屉原理是一个利器。我们在解题的过程中可以迅速代入,更多要思考怎样用抽屉原理让问题清晰化,简单化。通过学习,使我的逻辑思维能力得到了提高,扩展了我的知识面,掌握了“抽屉原理”的基本内容,懂得把所学知识运用到生活中去,运用“抽屉原理”解决生活中的许许多多以前不明白的现象。

参考文献:

[1] 殷志平、张德勤著《数学解题转化策略举要》

《中学教学教与学》1996.1 第19页 [2] 宿晓阳著《用抽屉原理巧证一个三角不等式》

《中学数学月刊》2010.6 第45页

[3] 其他参考:http:// http://baike.baidu.com/view/8899.htm http://wenku.baidu.com/view/4527ed3710661ed9ad51f30e.html http://wenku.baidu.com/view/158dd2***92ef78c.html http:///free/20101221/84545509713564.html http://wenku.baidu.com/view/4272e8f9941ea76e58fa0489.html 8

第二篇:抽屉原理及其简单应用

抽屉原理及其应用

摘 要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。关键词: 组合数学;抽屉原理;抽屉构造

1.引言

抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。

2.抽屉原理的基本形式与构造

2.1基本形式

陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。

原理Ⅱ 把m个元素任意放到n(mn)个集合里,则至少有一个集合里至少有k个元素,其中

m , 当n能整除m时,nkm  1 , 当n不能整除m时.n原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。

2.2基本构造

利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。构造抽屉是用抽屉原理解题的关键。有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。3.利用抽屉原理解题的常用方法

3.1利用划分数组构造抽屉

例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。

分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。现在的问题是如何对这12个自然数:1,2 ,„,12 进行分组, 注意到一个自然数, 它要么是奇数, 要么是偶数。若是偶数, 我们总能把它表达为奇数与2k(k1,2,3...)的乘积的形式,这样, 如果允许上述乘积中的因子2k的指数K可以等于零, 则每一个自然数都可表达成“ 奇数2k”(k1,2,3...)的形式, 于是, 把1,2,3„,12个自然数用上述表达式进行表达, 并把式中“奇数” 部分相同的自然数作为一组, 构成一个抽屉。

证明: 把前12个自然数划分为如下六个抽屉:

A1={120,121,122,123} A2={320,321,322} A3={520,521} A4={720} A5={920} A6={1120} 显然, 上述六个抽屉内的任意两个抽屉无公共元素, 且A1+A2+...+A6={1,2,3,...,12}.于是,由抽屉原理得,对于前12个自然数不论以何种方式从其中取出七个数,必定存在两个数同在上述六个抽屉的某一个抽屉内。设x、y是这两个数,因为A4、A5、A6都是单元素集,因此,x、y不可能同在这三个抽屉中的任何一个抽屉内。可见,x、y必同在A1、A2、A3的三个抽屉中的某一个之内,这样x和y两个数中,较大的数必是较小数的整数倍。例2 学校组织1993名学生参观天安门,人民大会堂和历史博物馆,规定每人必须去一处,最多去两处参观。那么至少有多少学生参观的地方完全相同?

分析:我们可以把某学生参观某处记作“1”,没有去参观记作“0”。并用有序数组{a,b,c}表示学生去参观天安门、人民大会堂和历史博物馆的不同情况。因为规定每人必须去一处,最多去两处,所以参观的方式,只有下列六种可能:

{1、1、0} {1、0、1} {0、1、1} {1、0、0} {0、1、0} {0、0、1} 把这六种情况作为六个抽屉,根据抽屉原理,在1993名学生中,至少有(1993)+1=333人参观的地方相同。63.2利用余数构造抽屉

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],„,[m1]表示。在研究与整除有关的问题时,常常用剩余类作为抽屉。

例3 对于任意的五个自然数,证明其中必有3 个数的和能被3 整除。

证明:任何数除以3 所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]

1、若这五个自然数除以3 后所得余数分别分布在这3 个抽屉中(即抽屉中分别为含有余数为0,1,2 的数),我们从这三个抽屉中各取1 个(如1到5中取3,4,5),其和(3+4+5=12)必能被3 整除。

2、若这5 个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3 个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3 个自然数之和是3 的倍数。

3、若这5 个余数分布在其中的一个抽屉中,很显然,必有3 个自然数之和能被3 整除。

3.3利用等分区间构造抽屉

所谓等分区间简单的说即是:如果在长度为1的区间内有多于n个的点,可考虑把区间n等分成n个子区间,这样由抽屉原理可知,一定有两点落在同一子

1区间,它们之间的距离不大于这种构造法常用于处理一些不等式的证明。

n例4 已知11个数x1,x2,,x11,全满足0xi1 ,i=1, 2  ,11,证明必有两个xi,xj(ij)满足xixj1.101.由抽屉原理,10证明:如图1,将实数轴上介于0与1那段(连同端点)等分为10小段(这10个小段也就是10个等分区间,即10个抽屉),每一小段长为

1111个点(数)中至少有+1=2个点落在同一条小线段上,这两点相应的数之差

10的绝对值 1.100

图1 对于给定了一定的长度或区间并要证明不等式的问题,我们常常采用等分区间的构造方法来构造抽屉,正如上面的例子,在等分区间的基础上我们便很方便的构造了抽屉,从而寻找到了证明不等式的一种非常特殊而又简易的方法,与通常的不等式的证明方法(构造函数法,移位相减法)相比,等分区间构造抽屉更简易,更容易被人接受。

3.4利用几何元素构造抽屉

在涉及到一个几何图形内有若干点时,常常是把图形巧妙地分割成适当的部分,然后用分割所得的小图形作抽屉。这种分割一般符合一个“分划”的定义,即抽屉间的元素既互不重复,也无遗漏;但有时根据解题需要,分割也可使得抽屉之间含有公共元素。

例5 如果直径为5的圆内有10个点,求证其中有某两点的距离小于2。分析:把圆等分成9个扇形而构造出9个抽屉,是最先考虑到的,但显然是不行的(虽然有两个点在某一扇形内,但不能确认它们之间的距离小于2)。转而考虑先用一个与已知圆同心,半径为1 的不包含边界的小圆作为一个抽屉,然后把圆环部分等分成八个部分,如图二所示,这样就构成了9个抽屉。

证明:先将圆分成八个全等的扇形,再在中间作一个直径d=1.8的圆(如图2),这就把已知的圆分成了9个区域(抽屉).由抽屉原理,圆内的10个点(球),必有两点落在同一区域内,只须证明每个区域中的两点的距离都小于2.显然,小圆内任两点间的距离小于2,又曲边扇形ABCD中,AB2,AD2,CD2,而任两点距离最大者AC,有

AC =OA2OC22OAOCcos45

=2.520.922.50.92=3.88<2.图2

3.5利用状态制构造抽屉

例6 设有六点,任意三点不共线,四点不共面,如果把这六个点两两用直线联系起来,并把这些直线涂以红色或者蓝色.求证:不论如何涂色,总可以找到三点,做成以它们为顶点的三角形,而这三角形三边涂有相同的颜色。

分析:设已知六点为A1,A2,A3,A4,A5,A6,由于任三点不共线,所以任三点均可作为某三角形的三个顶点。

证明:从六个点中任取一点A1,将A1与其余五点相连得到五条线段,线段如下所示: A1A2,A1A3,A1A4,A1A5,A1A6,这五条线段只有两种颜色即红色或者蓝色,由抽屉原理知,至少有三条涂有同一种颜色。颜色为抽屉,线段为元素,不妨设A1A2,A1A3,A1A4,涂有红色,这时我们考察△A2A3A4

(1)若△A2A3A4中有一条红色边,如A2A3,则△A1A2A3为三边同红的三角形;

(2)若△A2A3A4中无一条红色边,则△A2A3A4就是三边均为蓝色的三角形。4.抽屉原理的应用

4.1抽屉原理在高等数学中的应用

高等数学中一些问题抽象,复杂,解答比较困难,如果一些问题巧妙地运用抽屉原理会收到很好的效果,下列举例介绍抽屉原理在高等数学中的巧妙应用。

例7 设A为n阶方阵,证明:存在1in,使秩(Ai)=秩(Ai1)=秩(Ai2)

证明:因为n阶方阵的秩只能是0,1 , 2,  ,n这n+1个一,由抽屉原理可知,存在k,l满EA0,A,A2,,An,An1,E的个数多于秩的个数,足1k

秩(Ak)= 秩(Al), 但

秩(Ak)秩(Ak1)„秩(Al), 所以

秩(Ak)=秩(Ak1), 利用此式与秩的性质得

秩(ABC)秩(AB)+秩(BC)-秩(B), 这里的A,B,C是任意三个可乘矩阵,用数学归纳法可证

秩(Akm)=秩(Akm1).其中m为非负整数,故命题的结论成立。

4.2抽屉原理在初等数论中的应用

例8(中国剩余定理)令m和n为两个互素的正整数,并令a和b为整数,且0am1以及0bn1,则存在一个正整数x,使得x 除以m 的余数是a,并且x 除以n 的余数为b,即x可以写成xpma的同时又可以写成xqnb的形式,这里p 和q 是整数。

(n1)ma,证明: 为了证明这个结论考虑n 个整数a,ma,2ma,„,这些整数中的每一个除以m都余a.设其中的两个除以n 有相同的余数r. 令这两个数为ima 和jma,其中存在两整数qi和qj,使得imaqinr及jmaqjnr,0ijn1.因此,这两个方程相减可得(ji)m(qjqi)n.于是n是(ji)m的一个因子. 由于n和m没有除1 之外的公因子,因此n是ji的因子. 然而,0ijn1意味着,0jin1,也就是说n 不可能是ji的因子. 该矛盾产生于我们的假设: n个整数a,ma,2ma,...,(n1)ma中有两个除以n会有相同的余数。

因此这n个数中的每一个数除以n 都有不同的余数。

根据抽屉原理,n个数0,1,„,n1 中的每一个作为余数都要出现,特别地,数b也是如此。令p 为整数,满足0pn1,且使数xpma 除以n余数为b. 则对于某个适当的q,有xqnb.

因此,xpma且xqnb,从而x具有所要求的性质。

5.结束语

本文对抽屉原理的常见形式及其应用结合实例做了一些探讨,为数学解题提供了一种简便的方法.应用抽屉原理解题的难点在于如何恰当的构造抽屉,而制造抽屉的办法是灵活多变的, 不能生搬硬套某个模式, 需要灵活运用。

参考文献

[1]陈景林,阎满富.组合数学与图论.北京:中国铁道出版社出版,2000.4-6 [2]曹汝成.组合数学.广州:华南理工大学出版社,2001.170-173 [3]钟颖.关于抽屉原理[J].成都教育学院学报,2003,17(7):75.[4]朱华伟,符开广.抽屉原理[J].数学通讯,2006,19(17):37.[5]忘向东,周士藩等.高等代数常用方法.山西:高校联合出版社,1989.64-66 [6]刘否南.华夏文集.太原:高校联合出版社,1995.88-90 [7]魏鸿增等.抽屉原理在高等数学中的应用.数学通报,1995,2.3-4 [8]严示健.抽屉原则及其它的一些应用.数学通报,1998,4.10-11

The Principle And Application Of The Drawer

Liu Xiaoli Abstract: this article emphatically from the drawer methods of constructing this drawer principle, and introduces the drawer principle and common form, and combined with the discusses the principle in the higher mathematics elementary theory and the application.Keywords: combinatorial mathematics;drawer principle;theory of drawer structure

第三篇:抽屉原理

数学广角——《抽屉原理》练习

1、你所在的班中,至少多少人中,一定有2个人的生日在同一个月?

2、你所在的班中,至少有多少人的生日在同一个月?

3、32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?

4、在街上任意找来50个人,可以确定,这50人中至少有多少个人的属相相同?

5、飞英学校五、六年级共有学生370人,在这些学生中,至少两个人在同一天过生日,为什么?

6、张叔叔参加飞镖比赛,投了5镖,成绩是42环。张叔叔至少有一镖不低于9环。为什么?

7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。

8、有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。

9、有红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?

10、抽屉理有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿几支,才能保证至少有1支蓝铅笔?

加分题:每题20分

1、要拿出25个苹果,最多从几个抽屉中拿,才能保证从其中一个抽屉里至少拿了7个苹果

2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。

4、一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现,从石子堆中任意选出五堆,其中至少有两堆石子数之差是4的倍数,你说他的结论对吗?为什么?

5、从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.

第四篇:抽屉原理

《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】:

人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】:

这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】:

抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。

年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】:

1.知识与能力目标:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

2.过程与方法目标:

经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】:

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】:

多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】:

一、课前游戏,激趣引新。

上课伊始,老师高举3张卡片。(高兴状)

(1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗?

(2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。)

(3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。)

(4)老师背对着学生把卡片抛出验证学生的说法。

(5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊?

〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。

二、操作探究,发现规律。

1.动手摆摆,感性认识。

把4枝铅笔放进3个文具盒中。

(1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。

(2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。

〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中

至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。

2.提出问题,优化摆法。

(1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。)

(2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗?

(3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?

(4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。

〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。

3.步步逼近,理性认识。

(1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么?

把7支铅笔放进6个文具盒里呢?

把8枝笔放进7个盒子里呢?

把20枝笔放进19个盒子里呢?

……

(2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗?

(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。

4.数量积累,发现方法。

7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么?

(1)如果要用一个算式表示,你会吗?

(2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。)

(3)不管怎么飞,一定会出现哪种情况?

(4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”?

(4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。)

(5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。)

根据学生的回答,用算式表示以上各题,并板书。

〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。

5.构建模型,解释原理。

(1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。)

(2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。

(3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

(4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”?

〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。

三、循序渐进,总结规律。

(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么?

A、该如何解决这个问题呢?

B、如何用一个式子表示呢?

C、你又发现了什么?

教师根据学生的回答,继续板书算式。

(2)如果一共有7本书呢?9本书呢?

(3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么?

教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。)

〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。

1、基本类型,说说做做。

(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

2、深化练习,拓展提升。

(1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么?

如果9个人每一个人抽一张呢?

(2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么?

〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。

五、全课小结,课外延伸。

(1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑?

(2)用今天学到的知识向你的家长解释下列现象:

从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?

〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。

板书设计。

抽屉原理

物体数 抽屉数 至少数 =商+1

(铅笔数)(盒子数)

2

3

÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1

〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。

第五篇:抽屉原理

抽屉原理

把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:

第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。

使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。

例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:

(1)有2个数互质;

(2)有2个数的差为50;

(3)有8个数,它们的最大公约数大于1。

证明:(1)将100个数分成50组:

{1,2},{3,4},…,{99,100}。

在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。

(2)将100个数分成50组:

{1,51},{2,52},…,{50,100}。

在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。

(3)将100个数分成5组(一个数可以在不同的组内):

第一组:2的倍数,即{2,4,…,100};

第二组:3的倍数,即{3,6,…,99};

第三组:5的倍数,即{5,10,…,100};

第四组:7的倍数,即{7,14,…,98};

第五组:1和大于7的质数即{1,11,13,…,97}。

第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。

例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。

证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。

例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。

分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。

解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:

(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况

/ 7

就可能出现。

因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。

解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。

注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。

例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?

解:把20~20.1克之间的盘子依重量分成20组:

第1组:从20.000克到20.005克;

第2组:从20.005克到20.010克;

……

第20组:从20.095克到20.100克。

这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。

例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。

解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:

(1,21,41,61,81);

(2,22,42,62,82);

……

(20,40,60,80,100)。

将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。

下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:

/ 7

第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。

例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。

分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。

解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。

例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?

解:不能。

如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},第二组:{A2B2,B3B4,A4A1},第三组:{A3B3,B4B1,A1A2},第四组:{A4B4,B1B2,A2A3}。

无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。

下面我们讨论抽屉原理的一个变形——平均值原理。

我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。

例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。

解:设圆周上各点的值依次是a1,a2,…,a2000,则其和

a1+a2+…+a2000=0+1+2+…+1999=1999000。

下面考虑一切相邻三数组之和:

(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)

=3(a1+a2+…+a2000)

=3×1999000。

这2000组和中必至少有一组和大于或等于

但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。

例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?

解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少房间就打不开,因此90个人就无法按题述的条件住下来。

/ 7

另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。

最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。

例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。

证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。

下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:

(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。

(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。

我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。

再考虑第二行的前四列,这时也有两种可能:

(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。

(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。

下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。

总之,对于各种可能的情况,都能找到一个四角同色的长方形。

例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

解:设每题的三个选择分别为a,b,c。

(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。

另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

所以,所求的最多人数为9人。练习13

1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?

2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个

/ 7

乒乓球盒子里的乒乓球数目相同?

3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?

4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:

(1)有两个数的和为101;

(2)有一个数是另一个数的倍数;

(3)有一个数或若干个数的和是51的倍数。

5.在3×7的方格表中,有11个白格,证明

(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;

(2)只有一个白格的列只有3列。

6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

练习13

1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。

2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球

(1+2+3+4+5+6)×3=63(只)。

把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。

3.34个。

解:把初二学生的身高厘米数作为抽屉,共有抽屉

160-150+1=11(个)。

根据抽屉原理,要保证有4个人身高相同,至少要有初二学生

3×11+1=34(个)。

4.证:(1)将100个数分成50组:

/ 7

{1,100},{2,99},…,{50,51}。

在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。

(2)将100个数分成10组:

{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余数}。

其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。

(3)将选出的51个数排成一列:

a1,a2,a3,…,a51。

考虑下面的51个和:

a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。

若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2,a3,…,a51)中的一个数或若干个数的和。

5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。

(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。

6.能。

解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。

若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。

7.20轮。

解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。

另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。

8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:

(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与

/ 7

A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。

(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。

/ 7

抽屉原理及其应用
TOP