首页 > 精品范文库 > 5号文库
埋弧焊主要缺陷及防止
编辑:紫云轻舞 识别码:14-844379 5号文库 发布时间: 2023-12-22 23:21:00 来源:网络

第一篇:埋弧焊主要缺陷及防止

埋弧焊主要缺陷及防止

埋弧焊时可能产生的主要缺陷,除了由于所用焊接工艺参数不当造成的熔透不足、烧穿、成形不良以外,还有气孔、裂纹、夹渣等。本节主要叙述气孔、裂纹、夹渣这几种缺陷的产生原因及其防止措施。1.气孔

埋弧焊焊缝产生气孔的主要原因及防止措施如下:

1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。防止焊剂吸收水分的最好方法是正确肋储存和保管 6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。

2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。通过调整焊剂的化学成分,改变熔渣的粘度即可解决。4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。电弧磁偏吹会在焊缝中造成气孔。磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。在同一条焊缝的不同部位,磁偏吹的方向也不相同。在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。2 裂纹

通常情况下,埋弧焊接头有可能产生两种类型裂纹,即结晶裂纹和氢致裂纹。前者只限于焊缝金属,后者则可能发生在焊缝金属或热影响区。

1)结晶裂纹钢材焊接时,焊缝中的S、P等杂质在结晶过程中形成低熔点共晶。随着结晶过程的进行,它们逐渐被排挤在晶界,形成了“液态薄膜”。焊缝凝固过程中,由于收缩作用,焊缝金属受拉应力,“液态薄膜”,不能承受拉应力而形成裂纹。可见产生“液态薄膜”和焊缝的拉应力是形成结晶裂纹的两方面原因。

钢材的化学成分对结晶裂纹的形成有重要影响。硫对形成结晶裂纹影响最大,但其影响程度又与钢中其他元素含量有关,如Mn与S 结合成MnS而除硫,从而对S的有害作用起抑制作用。Mn还能改善硫化物的性能、形态及其分布等。因此,为了防止产生结晶裂纹,对焊缝金属中的Mn/S值有一定要求。Mn/S值多大才有利于防止结晶裂纹,还与含碳量有关。图 1 表示C、Mn、S含量与焊缝裂纹倾向的关系。可见含C量愈高,要求Mn/S值也愈高。Si和Ni的存在也会增加S的有害作用。

埋弧焊焊缝的熔合比通常都较大,因而母材金属的杂质含量对结晶裂纹倾向有很大关系。母材杂质较多,或因偏析使局部 C、S含量偏高,Mn/S可能达不到要求。可以通过工艺措施。(如采用直流正接、加粗焊丝以减小电流密度、改变坡口尺寸等)减小熔合比;也可以通过焊接材料调整焊缝金属的成分,如增加含Mn量,降低含C、Si量等。

焊缝形状对于结晶裂纹的形成也有明显影响。窄而深的焊缝会造成对生的结晶面,“液薄膜”将在焊缝中心形成,有利于结晶裂纹的形成。焊接接头形式不同不但刚性不同,并且散热条件与结晶特点也不同,对产生结晶裂纹的影响也不同。图 2 表示不同形式接头对结晶裂纹的影响,图2a、b两种接头抗裂性较高,图2c、d、e、f几种接头抗裂性较差。

图 2 接头形式对结晶裂纹的影响

2)氢致裂纹这种裂纹较多的发生在低合金钢、中合金钢和高碳钢的焊接热影.响区中这可能在焊后立即出现,也可能在焊后几时、几天、甚至更长时间才出现。这种焊后若干时间才出现的裂纹称为延迟裂纹。氢致裂纹是焊接接头含氢量、接头显微组织、接头拘束情况等因素相互作用的结果。在焊接厚度 10mm 以下的工件时,一般很少发现这种裂纹。工件较厚时,焊接接头冷却速度较大,对淬硬倾向大的母材金属,易在接头处产生硬脆的组织。另一方面,焊接时溶解于焊缝金属中的氢,由于冷却过程中溶解度下降,向热影响区扩散。当热影响区的某些区域氢浓度很高而温度继续下降时,一些氢原子开始结合成氢分子,在金属内部造成很大的局部应力,在接头拘束应力作用下产生裂纹。

焊接某些超高强度钢时,这种裂纹也会出现在焊缝金属中。针对氢致裂纹产生的原因,可以从以下几方面采取措施。a.减少氢的来源及其在焊缝金属中的溶解,采用低氢焊剂;焊剂保管中注意防潮,使用前严格烘干;对焊丝、工件焊口附近的锈、油污、水分等焊前必须清理干净。通过焊剂的冶金反应把氢结合成不溶于液态金属的化合物,如高 Mn 高 Si 焊剂可以把 H 结合成 HF 和 OH 两种稳定化合物进入熔渣中,减少氢对生成裂纹的影响。

b.正确的选择焊接工艺参数,降低钢材的淬硬程度并有利于氢的逸出和改善应力状态,必要时可采用预热。

c.采用后热或焊后热处理焊后后热有利于焊缝中的溶解氢顺利的逸出。有些工件焊后需要进行熟处理,一般情况下多采用回火处理。这种热处理的效果一方面可消除焊接残余应力,另一方面使已产生的马氏体高温回火,改善组织。同时接头中的氢可进一步逸出,有利于消除氢致裂纹,改善热影响区的延性。

d.改善接头设计,降低焊接接,头的拘束应力在焊接接头设计上,应尽可能消除引起应力集中的因素,如避免缺口、防止焊缝的分布过分密集等。坡口形状尽量对称为宜,不对称的坡口裂纹敏感性较大。在满足焊缝强度的基本要求下,应尽量减少填充金属的用量。

埋弧焊时,焊接热影响区除了可能产生氢致裂纹外,还可能产生淬硬脆化裂纹、层状撕裂等。3 夹渣

埋弧焊时,焊缝的夹渣除与焊剂的脱渣性能有关外,还与工件的装配情况和焊接工艺有关。对接焊缝装配不良时,易在焊缝底层产生夹渣。焊缝成形对脱渣情况也有明显影响。平而略凸的焊缝比深凹或咬边的焊缝更容易脱渣。双道焊的第一道焊缝,当它与坡口上缘熔合时,脱渣容易,如图 3a 所示;而当焊缝不能与坡口边缘充分熔合时,脱渣困难,如图 3b 所示。在焊接第二道焊缝时易造成夹渣。焊接深坡口时,有较多的小焊道组成的焊缝,夹渣的可能性小;而有较多的大焊道组成的焊缝,夹渣的可能性大。图4 为这两种焊缝对夹渣的影响。

图3 焊道与坡口熔合情况对脱渣的影响

a)脱渣容易 b)脱渣困难

a b

图4 多层焊时焊道大小对脱渣的影响

a)脱渣容易 b)脱渣困难

焊缺陷产生原因和防止方法,见下表。

缺陷 焊 缝 金 属 内 部 裂纹 产生原因 防止(1)焊丝和焊剂匹配(1)焊丝和焊剂正确匹配,母材含碳量高时要 不当(母材中含碳量预热时要预热

高时,熔敷金属中的(2)焊接电流增加,减少焊接速度,母材预热 Mn少)(3)第一层焊道的数目要多(2)熔池金属急剧冷(4)用 G50XUs — 43 组合 却,热影响区的硬化(5)注意施工顺序和方法

(3)多层焊的第一层(6)焊道宽度和深度几乎相当,降低焊接电裂纹由于焊道无法抗流,提高电压 拒收缩 应力而造成(7)进行后热(4)沸腾钢产生硫带

裂纹(热裂纹)(5)不正确焊接施工,接头拘束大

(6)焊道形状不当,焊道高度比焊道宽度大(梨形焊道的收缩产生的裂纹)(7)冷却方法不当

气孔(在熔(1)接头表面有污物(1)接头的研磨、切削、火焰烤、清扫 池内部的气(2)焊剂的吸潮(2)150~300℃lh烘干 孔)(3)不干净焊剂(刷子(3)收集焊剂时用钢丝刷

毛的混入)(1)下坡焊时,焊剂流(1)在焊接相反方向,母材水平放置 入(2)坡口侧面和焊丝之间距离,至少要保证大(2)多层焊时,在靠近于焊丝直径

坡口侧面添加焊丝(3)引弧板厚度及坡口形状,要与母材保持一(3)引弧时产生夹渣样

(附加引弧板时易产生(4)提高电流,保证焊渣充分熔化

夹渣

夹渣)(5)提高电流、焊接速度(4)电流过小,对于多层堆焊,渣没有完全除去

(5)焊丝直径和焊剂选择不当

未熔透(熔(1)电流过小(过大)(1)焊接条件(电流、电压、焊接速度)选适当 化不良)(2)电压过大(过小)(3)焊接速度过大(过(2)平定命适的笋口甲高度 小)(4)坡口面高度不当(3)选定合适焊丝直径和焊剂的种类(5)焊丝直径和焊剂选择当

咬边(1)焊接速度太快(1)减小焊接速度

(2)衬垫不合适(2)使衬垫和母材贴紧

(3)电流、电压不合适(3)调整电流、电压为适当值(4)电极位置不当(平角(4)调整电极位置 焊场合)焊瘤(1)电流过大(1)降低电流

(2)焊接速度过慢(2)加快焊接速度(3)电压太低(3)提高电压

余高过大(1)电流过大(1)降低电流

(2)电压过低(2)提高电压(3)焊接速度太慢(3)提高焊接速度(4)采用衬垫时,所留间(4)加大间隙 隙不足(5)被焊物件置于水平位置(5)被焊物件没有放置水平位置

余高过小(1)电流过小(1)堤高焊接电流

(2)电压过高(2)降低电压(3)焊接速度过快(3)降枉焊接速度

(4)被焊物件未置于水(4)把被焊物件置于水平位置平位置

余高过窄(1)焊剂的散布宽度过(1)焊剂散布费度加大

窄(2)提高电压(2)电压过低(3)降低焊接速度(3)焊接速度过快

焊道表面不(1)焊剂的散布高度过(1)调整散布高度 光滑 大(2)选择适当电流

(2)焊剂粒度选择不当

表面压坑(1)在坡口面有锈、油、(1)清理坡口面

水垢等(2)t50—300℃烘干1h(2)焊剂吸潮(3)调整焊剂堆敷高度(3)焊剂散布高度过大

人字形压痕(1)坡口面有锈、油、水(1)清理坡口面

垢等(2)150~300℃,烘干1h(2)焊剂的吸潮(烧结型)

第二篇:自动埋弧焊质量缺陷原因分析报告

自动埋弧焊质量缺陷原因分析报告

致宁波监理咨询有限公司:

由我公司制作加工的宁波商务楼工程连廊钢结构构件(H型钢梁)经检查发现,角焊缝部位产生气孔及焊缝表面不平整等质量缺陷现象。

经我公司技术部门现场监测,相关责任人员发表意见,综合分析后认为,自动埋弧焊角焊缝产生上述质量缺陷的根本性原因为:

1、焊剂烘干温度不符合要求。根据相关焊接规范要求,自动埋弧焊焊剂烘干温度应达到200℃~250℃,烘干时间为1h~2h。我公司在加工制作该批次钢构件时,未对前批次钢构件用焊剂进行调换,导致该批次钢梁在自动埋弧焊时采用了上批次可能返潮的焊剂(由于近期为梅雨季节,雨水较多,气候潮湿,致使焊剂返潮),焊剂黏结使埋弧未均匀形成,直接导致了气孔的产生。

2、由于时下天气炎热,工人在操作过程中采用大功率电风扇进行降温,电风扇产生的气流吹散部分焊剂,导致自动埋弧焊埋弧深度不一,直接后果为焊缝表面不平整的发生。

3、为了保证连廊钢构件的按时完成,我公司实行24小时工作制。夜班工人在操作过程中为加快进度,根据焊接情况自行调节焊接走丝速度,也是产生焊缝表面不平整的原因之一。

针对本次自动埋弧焊焊缝质量缺陷,我公司领导非常重视,责成相关责任人员到岗到位,决心从源头上消除一切有损质量的客观及主观因素。在此次质量事故发生后,我公司及时分析、及时整改。在采取相关措施后,对同一批次其他钢构件进行检查,发现效果明显,自动埋弧焊角焊缝表面平整、焊缝高度饱满且无气孔。因此,我公司认为上述原因为此次质量事故的主要原因。

本着认真负责的态度,我公司对该批钢构件进行检查返修处理,并进行必须质量的检测,以保证产品质量合格。

对建设单位、监理单位提出的批评及指出的不足,我公司诚恳接受并表示衷心感谢。在以后的钢构件加工生产过程中,举一反三,坚决加强质量管理、人员管理、操作培训等工作,消除一切质量隐患,生产出质量合格的产品,确保宁波商务楼钢结构工程的施工质量。

第三篇:薄板埋弧焊气孔偏多的缺陷分析和预防措施

薄板埋弧焊气孔偏多的缺陷分析和预防措施

一、前言

本公司采用的20g钢板制造锅壳式锅炉炉胆,用埋弧焊焊接其纵环缝,检测时发现焊缝的气孔偏多(尤为环缝),返修率相当高。这在一定程度上影响了产品的制造质量,并增加了制造成本,尤其是多次返修对焊接接头的组织和性能带来不利的影响,因此,寻找气孔产生的原因是必要的,以便在施焊前采取一些相应的有效预防措施,使其能得到一定程度的解决,防患于未然。二.原因与措施

气孔是最常见的一种焊接缺陷。气孔的存在对焊缝强度影响比较大,它使焊缝有效工作面积减少,从而降低抗载荷能力。形成气孔的根本原因是焊缝金属吸收过多的气体,在焊缝冷却时,气体在金属中的溶解度下降,气体以气泡形式逸出,如气体逸出速度小于金属结晶速度,就会在金属内部形成气孔。形成气孔的气体主要是氢、氮和一氧化碳。除由于板薄,焊接热容量小,焊后焊缝冷却速度太快,气体来不及在焊缝固前从焊接熔池中退出而形成气孔的主要原因外,还有以下几方面的原因:

1.焊机的选用不太合理,在一定程度上影响了焊接过程的稳定性。如目前大多数厂家选用的都是MI-1000型焊机,除受交流电性质的影响外,由于功率偏大,当使用其下限电流时,稳定性自然就要差些。最好是选用直流焊机且功率不宜过大(最大电流不要超过600安培)比较合适。2.焊材方面的原因,如焊丝生锈或表面不干净、焊剂质量不合格或使用前未按要求烘培。锅筒材料一般为低碳钢或16Mn类低合金钢,其焊接时一般都运用焊剂431匹配普通低碳钢焊丝或低锰钢焊丝。焊剂431具有良好的工艺性能,但由于焊剂生产厂家很多,焊剂431产品质量相差很大,有时尽管焊剂化学成份合格但色泽很不一致,有的为黄色,有的为深棕色,有的为棕黑色,有的是多种颜色的混合体。焊剂431的不同色泽反映了它在施焊过程中的脱氧还原能力不同。实践证明,焊剂431色泽过深或发黑时,不仅使焊缝外观不美观,而且易产生气孔、表面凹坑、麻点等焊接缺陷。另外,焊丝和焊剂的选用也不太合理,如目前焊丝大都选用Φ1.1和Φ3.2㎜的H08A,焊剂大都选用普通粒度的HJ431。实践证明,焊丝最好选用Φ3.2和Φ2.5㎜的H08MnA,焊剂最好选取用细颗粒的HJ430或HJ431比较合适,这样,不仅能更好的保护焊缝,而且还能改善焊接熔池在高温下的冶金反应能力,有利于减少气孔的产生。

3.对焊前和焊接过程中的工艺准备缺乏更严格的要求。如对焊件、焊丝的清理,焊剂的烘干,焊接装配间隙质量的控制,焊接参数的调控以及焊工操作技能水平的高低等。

4.焊接装配间隙的质量不能满足埋弧焊的要求(主要是环缝)。焊接前害怕烧穿,往往在内焊缝的反面用手弧焊随意的堵焊,这不仅污染了焊接部位,还影响了焊接过程中焊缝的透气性,加剧了气孔的产生,在此种情况下,如果暂还保证不了焊接装配间隙的质量,又非要用埋弧焊焊接的话,最好用手弧焊进行正规的封底焊,不宜用括弧焊随意堵焊,因为这样不仅浪费了焊条和工时,而且焊接质量得不到保证。退一步来讲,还不如干脆用手弧焊焊接或许会好些。5.焊工的操作技能水平不高,不敢使用较大的上限电流焊接。对此类焊缝的焊接,应挑选较高水平的焊工去焊接比较合适,因为在保证不烧穿的情况下,使用较大的上限电流焊接,从而增加了焊接熔池的体积,减小了焊缝的冷却速度,有利于气体在焊接熔池凝固前的逸出,减少了气孔的产生。

三、结论

采用埋弧焊焊接6㎜和8㎜的20g板相对于焊接8㎜以上的板来说要难些,但只要对以上论述的几个方面引起足够的重视,还是可以焊得比较好的,关键是要保证装配间隙的质量,并能使用较大的上限电流进行焊接。

第四篇:埋弧焊产生气孔原因

埋弧焊缝产生气孔的主要原因

埋弧焊缝产生气孔的主要原因是氢,氢气是由焊材、母材带入电弧区的水分所造成的。但是电磁偏吹、母材质量不好等也会造成气孔,应根据实际情况具体分析,采取相应防止措 施。

(1)焊接材料和坡口门不清洁,是造成气孔的最常见的原因。焊剂末烘干或烘干不彻底,焊丝表面、坡口表面及邻近区域有油、锈和水分,都会使熔池中含氢量显著增高而产生气孔。防止氢气孔的方法,是减少氢的来源和创造使氢逸出熔池的条件:

①焊剂(包括焊剂垫用的焊剂):应按规定严格烘干。如果天气潮湿,焊剂从烘箱中取出到使用的时间不能太长,最好能在50度左右温度下保温待用。回收再用的焊剂要避免被水、尘土等污染。

②严格清除焊丝和坡口两侧20毫米范围内的油、锈和水分。焊件要随装随焊,如果沾有水分,要将焊接区域烘烤干燥后焊接。

③焊剂粒度要合适,细粉末和灰分要筛除,使焊剂有一定透气性,利于气体跑出。(2)钢材轧制或热冲压、卷板过程中,形成或脱落的氧化皮,以及定位焊渣壳,碳弧气刨飞渣等夹入焊剂,也会在焊缝中造成气孔。防止措施:

①卷板、弯曲等加工过程中脱落的氧化皮,在装配焊接前要清扫或用压缩空气吹除,防止夹入装配间隙或落入坡口中。

②焊接场地周围要清洁,防止氧化皮、渣壳、碳弧.气刨飞渣混入焊剂。回收复用的焊剂中,这些杂质的含量往往较多,所以要在多次回用的焊剂中掺进新焊剂o(3)焊剂层太薄、焊接电压过高或网路电压波动较大时,电弧可能穿出焊剂层,使熔池金属受外界空气污染而造成气孔;焊剂粒度太粗时,空气会透过焊剂层污染熔池;悬空焊装配间隙超过0.8毫米时,会造成焊缝中的深气孔。防止措施:

①焊剂层厚度要合适使与焊接规范相适应,焊剂粒度不能过粗,以保证焊接过程中不透出连续弧光o

②悬空焊,特别在焊件厚度20毫米以内的悬空焊时,装配间隙不要超过0.8―1毫米o(4)磁偏吹会造成气孔,最容易在用直流焊接薄板时发生,气孔多出现在收尾区域,越近焊缝末端气孔越严重。这种气孔在焊接较厚焊件时也可能遇到。产生气孔的原因是由于电弧发生偏吹的缘故。地线连接位置不当也会造成磁偏吹而产生气孔。防止措施:

①从接地线一端起焊,接地要可靠。焊件的装夹具最好用非导磁材料制造。

②收尾端预先焊较长、较厚的定位焊缝。

③焊丝向前倾斜布置。

④改用交流焊接。

(5)母材中有富硫层状偏析,或母材有分层缺陷会产生气孔。母材含硫量高、硫化物夹杂多时,焊接过程中会产生较多气体而形成气孔。防止措施:

①控制焊接规范,减小母材熔合比。例如用直流正接、小电流或粗焊丝焊接,用多道焊代替单道焊等o

②适当降低焊接速度,增加气体从熔池中逸出的时间。

③用含锰量高的焊丝焊接,使部分硫形成硫化锰排入熔渣。

④如果原来是不开坡口的对接焊,可以改成开V型坡口焊接,坡口角度比常用的坡口角度大一些o

⑤如果气孔是由于母材分层(轧制钢板时产生的一种缺陷)造成的,一般应除去分层部分后重新焊接。

对于层板容器,可先在层板坡口侧面,用手工焊或其他焊接方法焊接封闭焊缝,然后再装配、焊接埋弧焊缝。

(6)产生气孔的其他原因定位焊缝有气孔、夹渣等缺陷,未经清除就直接焊接埋弧焊缝时,会产生气孔;前一层焊道有气孔末清除彻底,焊接后层焊缝时还会产生气孔。角焊缝焊接速度过高也会产生气孔

第五篇:轧辊的埋弧焊堆焊修复

轧辊堆焊在堆焊领域占有很大比重,几乎所有的大中型钢厂都有轧辊堆焊能力,还有许多研究单位、焊接材料公司研制和生产有关轧辊堆焊的材料、设备和工艺。被堆焊的轧辊大多是已经磨损而不能使用的废旧轧辊,轧槽表面除了有铁锈、油污外,往往有轧制时造成的裂缝和龟纹。采用堆焊技术修复这些废旧轧辊具有重大的经济效益。

钢轧辊埋弧堆焊的工艺过程包括:

① 钢轧辊进行表面堆焊前必须进行表面清理

② 经过表面清理的轧辊放入轧辊预热炉中经过一段时间的预热。③ 在轧辊达到一定的温度后进行钢轧辊的自动埋弧焊堆焊 ④ 对堆焊完成的轧辊进行堆焊层的外观质量的检验;⑤ 对轧辊进行缓冷

⑥ 轧辊在使用前进行车削加工⑴⑷⑸⑹ ⑴ 轧辊堆焊前的车削加工

为了保证轧辊堆焊层的质量,提高轧辊堆焊效率,在堆焊前必须做好轧辊的表面清理工作。堆焊前钢轧辊要进行适当的切削,目的是将轧槽表面上的裂纹、龟裂全部车除。对于无裂纹处,要除去工作表面的铁锈和油污,在车削中发现个别的深孔砂眼,需要用电钻或砂轮将砂眼钻深及扩大,并用手工电弧焊补焊。轧辊堆焊前车削加工的原则是消除轧辊表面的任何缺陷。

轧辊堆焊前车削加工的车削量,新轧辊应根据图纸的尺寸将轧辊直径车小8~12㎜,以保证堆焊后的轧辊工作表面处于堆焊层的第三层以上。

由于堆焊能使轧辊工作直径始终处于一个定值,这就改变了过去那种轧辊工作直径从最大直径、经过几次车削到最小直径的惯例。对轧辊工作直径的选定应根据轧钢机调整的方便,与轧辊孔型设计人员协商制定。

轧辊的轧槽在堆焊前车削加工中应考虑在堆焊过程中防止夹渣的问题。加工部分要求没有小于90°的锐角,以防液态金属和溶剂的流失。也不允许车削后的轧槽有较薄的部分。防止轧槽在堆焊过程中出现局部过热。⑵轧辊堆焊前的预热

采用合金钢焊丝对轧辊进行堆焊时,堆焊前的预热是防止堆焊金属产生裂缝的最有效的措施。焊前预热能减少堆焊层金属的冷却速度,减少堆焊层金属的结晶偏析,减少热应力的产生。轧辊堆焊前预热可是基体金属在马氏体相变临界温度以上进行比较充分的分解,能避免堆焊层金属的淬硬倾向,防止堆焊焊缝及热影响区产生裂纹。

轧辊堆焊的预热温度可根据焊丝的含碳量确定,如图。

目前轧辊堆焊采用的焊丝一般为2Cr13、3Cr13、30CrMnSiA、3Cr2W8V、3CrMoSi、3Cr2W4Mn 等合金焊丝。在堆焊过程中,当堆焊层金属与轧辊的基体金属相变临界温度有较大的温差时,会产生较大的应力。在热状态或冷却时,如果应力总合大于堆

焊层金属的内在结构力时,堆焊层金属就会产生裂纹。轧辊堆焊前预热和焊后的缓慢冷却,造成堆焊层金属与基体金属平衡膨胀和收缩,可防止产生裂纹。⑶轧辊堆焊的工艺参数及操作要点

合理确定轧辊堆焊的工艺参数的基本要点是:电弧燃烧稳定、堆焊焊缝成型良好,电能消耗最少、生产效率较高。钢轧辊埋弧焊堆焊的工艺参数见表。

表中所列的数据是在小电流、低电压、薄层多次堆焊的情况下得到的。由于采用小电流和较快的堆焊速度,焊丝中的合金元素在电弧的高温作用下烧损较少,堆焊焊缝的熔透深度较浅。又因采用了薄层多次堆焊的方法,保证了轧辊轧槽表面的堆焊层金属具有需要的化学成分,硬度、及金相组织。

采用“ 小电流、低电压、薄层多次” 堆焊方法时,电弧电压不能太低或太高。如果电弧电压高了,虽然对引弧有利,但是在整个堆焊过程中将出现成型高低不平、脱渣困难,影响堆焊层质量,如果电弧电压太低,又会造成引弧困难,在堆焊过程中容易熄弧。堆焊层金属和轧辊基体金属不能很好的焊合,造成堆焊层剥落。所以电弧电压应控制在适当的范围内。轧辊自动埋弧焊堆焊的操作要点如下。

① 轧辊中心、焊丝位置及焊丝倾斜角 钢轧辊埋弧堆焊过程中,应把焊丝从轧辊顶点位置移向与回转方向相反的一边,与轧辊纵轴的交角α约 5°(见图)这样可以避免堆焊熔池中的液体金属和溶渣的流失破坏堆焊焊缝成形。为了确定焊丝从轧辊中心顶点向回转方向相反的一边移开的距离L,应知道堆焊熔池的长度,以便用熔池长度控制移开的距离。焊丝移开轧辊中心顶点的距离,可用经验方法求得,即 L=5% D 其中D 为轧辊直径(㎜)

② 堆焊焊缝的节距及堆焊行走速度 堆焊焊缝的节距是指相邻两条螺旋焊缝的重叠间歇。埋弧堆焊焊缝节距大小,除了影响堆焊层表面平整外,还影响堆焊层金属化学成分的均匀性和熔合比。在轧辊自动堆焊中,长草用的方法是减少堆焊金属的金属节距m ,降低基体金属在堆焊层中的比例,如图所示。

当m < 0.5 b 时,轧辊基体金属在堆焊层中所占的比例显著减小(见图)。用这种方法进行轧辊自动埋弧焊时,轧辊堆焊层的第一层的第3、4 螺旋堆焊焊缝上的融合比γ=20%~30%。第二层或第三层焊缝的化学成分接近焊丝的成分,满足轧辊堆焊的要求。实际施焊中,堆焊焊缝节距大小的调节,主要通过埋弧焊小车的行走速度控制。

⑷ 轧辊堆焊后的缓冷、车削

轧辊堆焊后的冷却应当是缓慢又均匀的冷却,以使由于堆焊层金属收缩和加热不均匀引起的内应力最小。堆焊后轧辊的缓冷有以下几种方法:

① 装入缓冷坑。简易的缓冷坑是在地面下用水泥砌一个坑,上面有绝热材料制成的盖。坑内一般可放入干燥的黄沙、石灰、稻草灰等。简易的缓冷坑如图所示 ② 装入保温炉 有轧辊预热、保温炉的地方,利用轧辊加热后的炉子预热,并将堆

焊完毕的轧辊装入炉内,随炉冷却。

堆焊后的轧辊应立即进行缓冷,冷却至100℃ 左右出炉(或出坑),然后进行机械加工。至于缓冷时间,主要是以轧辊的体积为依据。对于质量小于1.5t 的轧辊,缓冷时间应在12h 以上;对于质量在3t 以上的大轧辊,要求缓冷时间在40h 以上。轧辊堆焊中由于采用了2Cr13、3Cr13、3CrW8V 等合金焊丝,堆焊后的切削加工时刀具极易磨损和受到破坏。因此,堆焊轧辊粗加工时,采用硬质合金刀具,磨刀时取负角约5°。机床转速约10r/min,吃刀量适当减少。堆焊轧辊的精加工一般没有问题,因为轧辊表面已经做过粗加工。对于合金钢堆焊层金属的车削,虽然有一些困难,但还是比较容易克服的

在轧制生产中,轧辊与所轧金属直接接触,使金属产生塑性变形,是轧机的主要变形工具。轧辊是轧机大型消耗性不见,在整个生产过程中轧辊因磨损而消耗的部分约占轧辊总重量的10%~20%,而大量的轧辊消耗是由于修复过程中局部缺陷而导致报废的。因此,如何提高轧辊的使用寿命,对轧辊进行修旧利废,成为降低产品成本的一个重要途径。

轧辊堆焊是指去除轧辊表面的疲劳层或缺陷后,用合适的堆焊材料、采用科学的工艺方法将其修复至原始辊径的过程,它的主要优点是轧辊使用前后的辊径不变。因此轧辊堆焊技术为轧辊生产中降低轧辊消耗、提高轧辊使用寿命提供了可能。

各种堆焊技术的特点

目前在国内外冶金行业使用的堆焊技术有喷镀、气体保护焊、埋弧焊、电渣焊,其中轧辊埋弧焊是应用最广泛的工艺,具有生产效率高、质量好、经济效益较好的优点。各种工艺特点如表1。

表1 各种工艺特点 喷镀 气体保护焊 埋弧焊 电渣焊

熔敷速度/kg•h-1 >20 >10 >30

200~400

堆焊厚度/mm >4 10~20 >100 15~100

堆焊特点 单层或多层 多层 多层 多层

第一层稀释率/% 理论上为0 8~50 8~50 8~50

结合形式 机械 冶金 冶金 冶金

轧辊堆焊材料

轧辊根据其使用要求的不同,对堆焊材料的选择也不同,按其合金类型可归纳为八类:

低合金钢:此类合金价格便宜,堆焊金属组织以索氏体或屈氏体为主,冲击韧性好,抗裂性好,硬度HRC30~35,易于加工。具有一定的耐磨性,但不能进一步提高轧辊使用寿命。

热作模具钢:该类材料具有良好的红硬性、高温耐磨性及较高的冲击韧性,焊后消除应力退火后,硬度一般在HRC45~50,使用寿命比原轧辊提高1~5倍。

马氏体钢:焊接性能好、耐磨、耐热性能也较好,但成本较贵。

弥散硬化钢:15Cr3Mo2MnV等,焊态硬度HRC35~38,易加工。经560℃,保温15小时弥散硬化处理后,硬度可提高到HRC46~47。

奥氏体加工硬化钢:此类材料焊后硬度较低,但使用过程中由于冷加工硬化而大幅度提高。该合金系多用于深孔槽轧辊的孔型堆焊。

合金铸铁:这类合金具有很高的硬度和耐磨性、良好的热稳定性和抗氧化性。由于含碳很高,无法拔丝故埋弧焊很难,只能铸成管子作为电极进行电渣堆焊。堆焊轧辊比同样成分铸造辊耐磨性提高1.5~2倍,而成本比复合铸铁轧辊低1倍。

高碳合金钢:该类材料含炭量及合金元素较高,为防止堆焊时出现裂纹,要求较高的预热温度和层间温度,堆焊后要进行一定的热处理。

马氏体时效钢:该材料为Fe-Ni-Co-Mo合金系,焊态低硬度,便于加工,经时效处理硬度大为提高。

上面介绍了集中主要堆焊合金系统的可焊性、抗裂性、加工性及经济性,在具体选材时要根据轧辊类型、工作条件,预期寿命及设备条件等,进行综合分析、以选区合适的材料。

轧辊堆焊工艺

严格执行正确的轧辊堆焊工艺,是保证轧辊堆焊质量的好坏及成功与否的决定性因素。轧辊堆焊过程包括以下步骤:

堆焊前采用机械加工方法,对堆焊孔型进行粗加工,去除轧辊表面的疲劳层及缺陷,特别是裂纹必须彻底清除,对多次堆焊的轧辊,应经超声波探伤,检查内部情况,在确认无裂纹的情况下方可进行焊接。

预热

由于轧辊及堆焊材料均为含炭量和合金元素较高的材料,加之轧辊辊径大、刚性大、冷却速度快,很容易在焊接时造成脆性区,并且由于温度不均形成很大的热应力造成裂纹。为了防止裂纹的发生,堆焊前必须对轧辊进行预热,预热温度由辊身及堆焊材料成分而定。为了使轧辊表面得到均匀的硬度,预热温度应在材料的Ms点以上。为了减少热应力,加热速度也应当控制,特别是大轧辊,升温速度开始100℃采用约20℃/h,之后可为40℃/h。要求均匀加热。

焊接

焊接是堆焊成败的关键环节,要获得理想的堆焊层必须综合考虑某些可变因素,如:焊接电压、焊接速度、轧辊转速、轧辊的保温、焊接电流、焊接材料等,对一些含碳及合金元素高的辊芯,为防止脆性区的裂纹,除一定的预热措施外,多采用低碳低合金过渡层进行预先堆焊过渡层。

焊后处理

这是轧辊堆焊的最后一道工序,为了减少由于表面和内部冷速不一造成体积应力而引起裂纹,要控制冷速。一般控制冷速和加热速度大致相同,冷至100℃时要保温一定时间,冷至50℃以下可不再控制冷速。为了消除焊接残余应力,必须进行回火处理,回火温度视轧辊使用条件,一般控制在450~600℃之间。回火温度高,内应力消除彻底,但硬度降低。因而回火温度的选择,既要保证轧辊表面一定的硬度,又要尽量消除内应力。回火的保温时间通常取每一寸直径保温一小时,多在4~10小时内选取,冷却大部分是随炉缓冷,降温至150℃后可空冷。

结论

轧辊堆焊作为“复活”轧辊的一项先进技术,具有如下优点:

堆焊后的轧辊使用寿命普遍提高一倍以上。

极大的降低了吨钢成本,提高了生产效率。

堆焊后的轧辊具有良好的抗裂性、耐磨性、耐冷热疲劳性

埋弧焊主要缺陷及防止
TOP