第一篇:小结函数对称性
小 结 函 数 对 称 性
数学组
刘宏博
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础.函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美.本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来小结与函数对称有关的性质.一、函数自身的对称性
定理1.函数 y = f(x)的图像关于点A(a ,b)对称的充要条件是
f(x)+ f(2a-x)= 2b 证明:(必要性)设点P(x ,y)是y = f(x)图像上任一点,∵点P(x ,y)关于点A(a ,b)的对称点P‘(2a-x,2b-y)也在y = f(x)图像上,∴ 2b-y = f(2a-x)即y + f(2a-x)=2b故f(x)+ f(2a-x)= 2b,必要性得证.(充分性)设点P(x0,y0)是y = f(x)图像上任一点,则y0 = f(x0)∵ f(x)+ f(2a-x)=2b∴f(x0)+ f(2a-x0)=2b,即2b-y0 = f(2a-x0).故点P‘(2a-x0,2b-y0)也在y = f(x)图像上,而点P与点P‘关于点A(a ,b)对称,充分性得征.推论:函数 y = f(x)的图像关于原点O对称的充要条件是f(x)+ f(-x)= 0 定理2.函数 y = f(x)的图像关于直线x = a对称的充要条件是
f(a +x)= f(a-x)即f(x)= f(2a-x)(证明留给读者)推论:函数 y = f(x)的图像关于y轴对称的充要条件是f(x)= f(-x)定理3.①若函数y = f(x)图像同时关于点A(a ,c)和点B(b ,c)成中心对称(a≠b),则y = f(x)是周期函数,且2| a-b|是其一个周期.②若函数y = f(x)图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f(x)是周期函数,且2| a-b|是其一个周期.③若函数y = f(x)图像既关于点A(a ,c)成中心对称又关于直线x =b成轴对称(a≠b),则y = f(x)是周期函数,且4| a-b|是其一个周期.①②的证明留给读者,以下给出③的证明: ∵函数y = f(x)图像既关于点A(a ,c)成中心对称,∴f(x)+ f(2a-x)=2c,用2b-x代x得: f(2b-x)+ f [2a-(2b-x)] =2c………………(*)又∵函数y = f(x)图像直线x =b成轴对称,∴ f(2b-x)= f(x)代入(*)得:
f(x)= 2c-f [2(a-b)+ x]…………(**),用2(a-b)-x代x得 f [2(a-b)+ x] = 2c-f [4(a-b)+ x]代入(**)得:
f(x)= f [4(a-b)+ x],故y = f(x)是周期函数,且4| a-b|是其一个周期.二、不同函数之间的对称性
定理4.函数y = f(x)与y = 2b-f(2a-x)的图像关于点A(a ,b)成中心对称.定理5.①函数y = f(x)与y = f(2a-x)的图像关于直线x = a成轴对称.②函数y = f(x)与a-x = f(a-y)的图像关于直线x +y = a成轴对称.③函数y = f(x)与x-a = f(y + a)的图像关于直线x-y = a成轴对称.定理4与定理5中的①②证明留给读者,现证定理5中的③
设点P(x0 ,y0)是y = f(x)图像上任一点,则y0 = f(x0)。记点P(x ,y)关于直线x-y = a的轴对称点为P‘(x1,y1),则x1 = a + y0 , y1 = x0-a,∴x0 = a + y1 , y0= x1-a 代入y0 = f(x0)之中得x1-a = f(a + y1)∴点P‘(x1,y1)在函数x-a = f(y + a)的图像上.同理可证:函数x-a = f(y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f(x)的图像上。故定理5中的③成立.推论:函数y = f(x)的图像与x = f(y)的图像关于直线x = y 成轴对称.三、函数对称性应用举例 例1:定义在R上的非常数函数满足:f(10+x)为偶函数,且f(5-x)= f(5+x),则f(x)一定是()
(B)是偶函数,但不是周期函数
(D)是奇函数,但不是周期函数(A)是偶函数,也是周期函数(C)是奇函数,也是周期函数
解:∵f(10+x)为偶函数,∴f(10+x)= f(10-x).∴f(x)有两条对称轴 x = 5与x =10,因此f(x)是以10为其一个周期的周期函数,∴x =0即y轴也是f(x)的对称轴,因此f(x)还是一个偶函数.故选(A)
例2.设f(x)是定义在R上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时,f(x)= -1x,则f(8.6)= _________
2解:∵f(x)是定义在R上的偶函数∴x = 0是y = f(x)对称轴;
又∵f(1+x)= f(1-x)∴x = 1也是y = f(x)对称轴。故y = f(x)是以2为周期的周期函数,∴f(8.6)= f(8+0.6)= f(0.6)= f(-0.6)= 0.3 例3.设f(x)是定义在R上的奇函数,且f(x+2)= -f(x),当0≤x≤1时,f(x)= x,则f(7.5)=()
(A)
0.5(B)-0.5
(C)1.5
(D)-1.5 解:∵y = f(x)是定义在R上的奇函数,∴点(0,0)是其对称中心;
又∵f(x+2)= -f(x)= f(-x),即f(1+ x)= f(1-x),∴直线x = 1是y = f(x)对称轴,故y = f(x)是周期为2的周期函数.∴f(7.5)= f(8-0.5)= f(-0.5)= -f(0.5)=-0.5 故选(B)
第二篇:高中数学函数对称性和周期性小结
高中数学函数对称性和周期性小结
一、函数对称性:
1.2.3.4.5.6.7.8.f(a+x)= f(a-x)==> f(x)关于x=a对称
f(a+x)= f(b-x)==> f(x)关于 x=(a+b)/2 对称 f(a+x)=-f(a-x)==> f(x)关于点(a,0)对称 f(a+x)=-f(a-x)+ 2b ==> f(x)关于点(a,b)对称
f(a+x)=-f(b-x)+ c ==> f(x)关于点 [(a+b)/2,c/2] 对称 y = f(x)与 y = f(-x)关于 x=0 对称 y = f(x)与 y =-f(x)关于 y=0 对称 y =f(x)与 y=-f(-x)关于点(0,0)对称
例1:证明函数 y = f(a+x)与 y = f(b-x)关于 x=(b-a)/2 对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y = f(a+x)上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a+m)= f[ b –(2t – m)] ∴ b – 2t =a,==> t =(b-a)/2,即证得对称轴为 x=(b-a)/2.例2:证明函数 y = f(ax)上,令关于 x=t 的对称点Q(2t – m,n),那么n =f(a-m)= f[(2t – m)– b] ∴ 2ta)= 1 – 2/[f(x)+1],等式右边通分得f(xa)= [1 + f(x)]/[f(x)– 1],即
/[f(xf(x)] ∴
/[f(x1/f(x)= f(x2a)==> f(x)= f(x + 4a)∴
函数最小正周期 T=|4a|
第三篇:函数的对称性和周期性复习教案
函数的对称性和周期性
株洲家教:***
函数的对称性和周期性
一.明确复习目标
1.理解函数周期性的概念,会用定义判定函数的周期;
2.理解函数的周期性与图象的对称性之间的关系,会运用函数的周期性处理一些简单问题。3.掌握常见的函数对称问题
二、建构知识网络
一、两个函数的图象对称性
yf(x)与yf(x)关于x轴对称。
换种说法:yf(x)与yg(x)若满足f(x)g(x),即它们关于y0对称。
2、yf(x)与yf(x)关于Y轴对称。
换种说法:yf(x)与yg(x)若满足f(x)g(x),即它们关于x0对称。
1、yf(x)与yf(2ax)关于直线xa对称。
换种说法:yf(x)与yg(x)若满足f(x)g(2ax),即它们关于xa对称。
4、yf(x)与y2af(x)关于直线ya对称。
换种说法:yf(x)与yg(x)若满足f(x)g(x)2a,即它们关于ya对称。
5、yf(x)与y2bf(2ax)关于点(a,b)对称。
换种说法:yf(x)与yg(x)若满足f(x)g(2ax)2b,即它们关于点(a,b)对称。
ab6、yf(ax)与y(xb)关于直线x对称。
23、二、单个函数的对称性 性质1:函数证明:在函数yf(x)满足f(ax)f(bx)时,函数yf(x)的图象关于直线xyf(x)上任取一点(x1,y1),则y1f(x1),点(x1,y1)关于直线
ab对称。2xab的对称点(abx1,y1),当xabx1时 2f(abx1)f[a(bx1)]f[b(bx1)]f(x1)y1
yf(x)图象上。故点(abx1,y1)也在函数由于点(x1,y1)是图象上任意一点,因此,函数的图象关于直线x(注:特别地,a=b=0时,该函数为偶函数。)
性质2:函数证明:在函数(ab对称。2abc,)对称。22yf(x)满足f(ax)f(bx)c时,函数yf(x)的图象关于点(yf(x)上任取一点(x1,y1),则y1f(x1),点(x1,y1)关于点
abc,)的对称点(abx1,c-y1),当xabx1时,22f(abx1)cf[b(bx1)]cf(x1)cy1 即点(abx1,c-y1)在函数yf(x)的图象上。
由于点(x1,y1)为函数函数yf(x)图象上的任意一点可知
abc,)对称。(注:当a=b=c=0时,函数为奇函数。)22ba性质3:函数yf(ax)的图象与yf(bx)的图象关于直线x对称。
2yf(x)的图象关于点(证明:在函数y1)。yf(ax)上任取一点(x1,y1),则y1f(ax1),点(x1,y1)关于直线xba对称点(bax1,2f[b(bax1)]f[bbax1]f(ax1)y1 故点(bax1,y1)在函数yf(bx)上。由于
函数的对称性和周期性
株洲家教:*** 由点(x1,y1)是函数因此yf(ax)图象上任一点
yf(ax)与yf(bx)关于直线xba对称。
2三、周期性
1、一般地,对于函数么函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(xT)f(x),那f(x)就叫做周期函数,非零常数T叫做这个函数的周期。说明:周期函数定义域必是无界的。
推广:若f(xa)f(xb),则f(x)是周期函数,ba是它的一个周期
0,kZ)也是周期,所有周期中最小的正数叫最小正周期。一般所说的周期是指函数的最小2.若T是周期,则kT(k正周期。
说明:周期函数并非都有最小正周期。如常函数
3、对于非零常数证明:
f(x)C;
A,若函数yf(x)满足f(xA)f(x),则函数yf(x)必有一个周期为2A。
f(x2A)f[x(xA)]f(xA)[f(x)]f(x)∴函数yf(x)的一个周期为2A。
14、对于非零常数A,函数yf(x)满足f(xA),则函数yf(x)的一个周期为2A。
f(x)证明:f(x2A)f(xAA)1f(x)。
f(xA)1,则函数yf(x)的一个周期为2A。f(x)
5、对于非零常数A,函数yf(x)满足f(xA)证明:f(x2A)f(xAA)A,函数yf(x)满足
6、对于非零常数
1f(x)。
f(xA)A1f(x)A1f(x)f(x)或f(x)21f(x)21f(x)则函数
yf(x)的一个周期为2A。
证明:先看第一个关系式
3A)3AAf(x2A)f(x )3A221f(x)2A11f(xA)1f(xA)1f(xA)2f(xA)A1f(xA)1f(xA)121f(xA)f(x2A)f(xA)f(xA)f(x)f(x)f(x2A)
1f(x第二个式子与第一的证明方法相同
f(x)的定义域为N,且对任意正整数x
都有f(x)f(xa)f(xa)(a0)则函数的一个周期为6a 证明:f(x)f(xa)f(xa)
(1)
f(xa)f(x)f(x2a)
(2)两式相加得:f(xa)f(x2a)
f(x)f(x3a)f(x6a)
四、对称性和周期性之间的联系
7、已知函数性质1:函数yf(x)满足f(ax)f(ax),f(bx)f(bx)(ab),求证:函数yf(x)是周期函数。
函数的对称性和周期性
株洲家教:***
f(ax)f(ax)得f(x)f(2ax)
f(bx)f(bx)得f(x)f(2bx)∴f(2ax)f(2bx)∴f(x)f(2b2ax)
∴函数yf(x)是周期函数,且2b2a是一个周期。
性质2:函数yf(x)满足f(ax)f(ax)c和f(bx)f(bx)c(ab)时,函数yf(x)是周期函证明:∵数。(函数yf(x)图象有两个对称中心(a,cc)、(b,)时,函数yf(x)是周期函数,且对称中心距离的两倍,22是函数的一个周期)
证明:由f(ax)f(ax)cf(x)f(2ax)c)f(bx)cf(x)f(2bx) c
f(bx
得f(2ax)f(2bx)
得f(x)f(2b2ax)
∴函数yf(x)是以2b2a为周期的函数。性质3:函数yf(x)有一个对称中心(a,c)和一个对称轴xb(a≠b)时,该函数也是周期函数,且一个周期是4(ba)。
f(ax)f(ax)2cf(x)f(2ax)2c
f(bx)f(bx)f(x)f(2bx)
f(4(ba)x)f(2b(4a2bx))
f(4a2bx)f(2a(2b2ax))2cf(2b2ax)
2cf(2b(2ax))2cf(2ax)
2c(2cf(x))2c2cf(x)f(x)
推论:若定义在R上的函数f(x)的图象关于直线xa和点(b,0)(ab)对称,则f(x)是周期函数,4(ba)是证明:它的一个周期
证明:由已知f(x)f(2ax),f(x)f(2bx).f(x)f(2ax)f[2b(2ax)]f[2(ba)x] f[2a2(ba)x]f[2(2ab)x]f[2b2(2ab)x]f[4(ba)x],周期为4(ba).举例:ysinx等.性质4:若函数f(x)对定义域内的任意x满足:f(xa)f(xa),则2a为函数f(x)的周期。(若f(x)满足f(xa)f(xa)则f(x)的图象以xa为图象的对称轴,应注意二者的区别)证明:f(xa)f(xa)f(x)f(x2a)
性质5:已知函数yfx对任意实数x,都有faxfxb,则yfx是以
2a为周期的函数 证明:f(ax)bf(x)
f(x2a)f((xa)a)bf(xa)b(bf(x))f(x)
五、典型例题
例1(2005·福建理)f(x)是定义在R上的以3为周期的奇函数,且f(2)0,则方程f(x)0在区间(0,6)内解的个数的最小值是()A.2
B.3 解:
C.4
D.5)f(x)是R上的奇函数,则f(0)0,由f(x3f(2)0f(1)0f(1)0
∴f(4)0 ∴x=1,2,3,4,5时,f(x)0
这是答案中的五个解。
但是
f(15)f(f(x得)f(3)0,f(2)0f(5)0
153)f(1 )f(1 5)f(15)0 又
f(15知5)f(153)f( 4而
0f(1知 x1.5,x4.5,f(x)0也成立,可知:在(0,6)内的解的个数的最小值为7。例3 已知定义在R上的奇函数f(x)满足f(x2)f(x),则f(6)的值为()(A)-1
(B)0
(C)
(D)2
函数的对称性和周期性
株洲家教:*** 解:因为所以所以f(x)是定义在R上的奇函数
f(0)0,又f(x4)f(x2)f(x),故函数,f(x)的周期为4 f(6)f(2)f(0)0,选B
f(x)满足f(x2)f(x),且x(0,1)时,f(x)2x,则f(log118)的值为。
2例4.已知奇函数解:f(x2)f(x)fxf(x2)f(x4)
89f(log118)f(log218)f(4log218)f(log2)f(log2)
9829log299f(log2)28
88例5 已知f(x)是以2为周期的偶函数,且当x(0,1)时,f(x)x1.求f(x)在(1,2)上的解析式。
解法1:
从解析式入手,由奇偶性结合周期性,将要求区间上问题转化为已知解析式的区间上
∵x(1,2), 则x(2,1)
∴2x(0,1), ∵ T2,是偶函数
∴ f(x)f(x)f(2x)2x13x
x(1,2)
解法2:
f(x)f(x2)
如图:x(0,1), f(x)x1.∵是偶函数 ∴x(1,0)时f(x)f(x)x1
又周期为2,x(1,2)时x2(1,0)∴f(x)f(x2)(x2)13x
例6 f(x)的定义域是R,且f(x2)[1f(x)]1f(x),若f(0)2008(从图象入手也可解决,且较直观)求 f(2008)的值。
f(x4)11f(x2)1f(x4)11f(x8)解:f(x)f(x2)1f(x4)11f(x4)f(x4)1周期为8,f(2008)f(0)2008
1例7 函数fx对于任意实数x满足条件fx2,若f15,则ff5
fx_______________。解:由fx21fx得
fx41f(x)fx2,所以
f(5)f(1)5,则
11
f(12)5例8 若函数f(x)在R上是奇函数,且在1,0上是增函数,且f(x2)f(x).①求f(x)的周期;
②证明f(x)的图象关于点(2k,0)中心对称;关于直线x2k1轴对称,(kZ);③讨论f(x)在(1,2)上的单调性; ff5f(5)f(1)
解: ①由已知f(x)f(x2)f(x22)f(x4),故周期T4.②设P(x,y)是图象上任意一点,则yf(x),且P关于点(2k,0)对称的点为P1(4kx,y).P关于直线x2k1对称的点为P2(4k2x,y)
函数的对称性和周期性
株洲家教:***
f(4kx)f(x)f(x)y,∴点P1在图象上,图象关于点(2k,0)对称.又f(x)是奇函数,f(x2)f(x)f(x)∴f(4k2x)f(2x)f(x)y
x2k1对称.∴点P2在图象上,图象关于直线∵x1x22,则2x2x11,02x22x11
∵f(x)在(1,0)上递增, ∴f(2x1)f(2x2)……(*)又f(x2)f(x)f(x)
∴f(2x1)f(x1),f(2x2)f(x2).所以:f(x2)f(x1),f(x)在(1,2)上是减函数.例9 已知函数yf(x)是定义在R上的周期函数,周期T5,函数yf(x)(1x1)是奇函数.又知yf(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x2时函数取得最小值5.(1)证明:f(1)f(4)0;
(2)求yf(x),x[1,4]的解析式;(3)求yf(x)在[4,9]上的解析式.解:∵f(x)是以5为周期的周期函数,且在[1,1]上是奇函数,∴f(1)f(1)f(51)f(4),∴f(1)f(4)0.2②当x[1,4]时,由题意可设f(x)a(x2)5(a0),22由f(1)f(4)0得a(12)5a(42)50,∴a2,f(x)2(x2)25(1x4).③∵yf(x)(1x1)是奇函数,∴f(0)0,又知yf(x)在[0,1]上是一次函数,∴可设f(x)kx(0x1)∴③设1f(1)2(12)253,∴k3,∴当0x1时,f(x)3x,从而1x0时,f(x)f(x)3x,故1x1时,f(x)3x.∴当4x6时,有1x51,∴f(x)f(x5)3(x5)3x15.当6x9时,1x54,22∴f(x)f(x5)2[(x5)2]52(x7)5
3x15,4x6∴f(x).22(x7)5,6x9而
第四篇:可测函数小结
可测函数
(一)可测函数的定义
1、在可测函数定义的学习过程中,对于可测函数的表示:a∈R, 有{x | > a}可测,则f(x)可测 ;用简单间函数列来表示:有简单函数列{φn},f(x)满足limφn = f(x), 则f(x)可测;由鲁津定理得用连续函数逼近可测函数;n通过本章可测函数的学习,要把这三种关系透彻理解、掌握。
2、简单函数的引入对于学习讨论可测函数、L积分都有重要的意义。简单函数是常量函数、分段函数的进一步扩展。通过简单函数,对可测函数及L积分的讨论从简到繁、从特殊到一般过渡;要证明某个命题对于可测函数(或其一部分)成立,可先证明该命题对简单函数成立,再由极限过程过渡到一般可测函数。
3、可测函数列的等价条件。
(二)可测函数列的收敛性
由L测度建立的L积分理论中,零测度集不影响函数的可积性和积分值。实变函数中的L积分与数学分析中的R积分,有一个很重要的不同点,就是命题的成立引入了“几乎处处”的概念。
对于可测函数列的三种强度不等的收敛定义:几乎一致收敛、几乎处处收敛、依测度收敛,要理解其意义与作用及相互关系。
可测函数列{fn(x)}处处收敛与依测度收敛虽然有很大区别,但仍有密切联系,主要表现在于:
(1)处收敛的函数列可能不是依测度收敛,依测度收敛的函数列仍右能不是处处收敛。(2)若{fn(x)}依测度收敛f(x),则必有子列{fn i(x)}几乎处处收敛
于f(x)。
(3)几乎一致收敛函数列{fn(x)}一定依测度收敛于同一函数 ;反之,若{fn(x)}依测度收敛于f(x),则存在子列几乎一致收敛函数f(x)。
(三)函数可测与连续的关系——鲁津定理
区间上的连续函数、单调函数、简单函数都是可测函数,所以可测函数类比连续函数类更广。鲁津定理给出了连续函数与可测函数的关系,表明用连续函数可以“逼近”可测函数,从而用我们比较熟悉的连续函数去把握比较抽象的可测函数,在某些情况下可以适当地把可测函数转换为连续函数。
函数可测与连续关系的主要结论有:(1)闭集上的连续函数可测;(2)任一可测集上的连续函数可测;
(3)f于E几乎处处有限可测,则存在闭集FE,m(E-F)< ε,有连续函数g, 在F上有 f(x)= g(x).上述结论揭示了连续函数与可测函数的密切联系,这种关系让我们对于可测函数的了解更加深入,也是研究可测函数的有效手段。
鲁津定理给出了可测函数的一种构造,定理所述的结论是使函数为可测的一个充分条件。鲁津定理的结论可作为可测函数的定义,由此可建立可测函数的另一种观点。
第五篇:函数应用小结
函数应用学案
一、深刻领会函数与方程的关系,才能有效的解决函数与方程的问题,而函数的零点与方程的根的关系,二分法求方程的近似解是基础.
1.方程的根与函数的零点:方程f(x)=0有实数根⇔函数y=f(x)的图象与________ ⇔函数y=f(x)有________ .
2.零点判断法:
如果函数y=f(x)在区间[a,b]上的图象是________ 的一条曲线,并且有________,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.
3.二分法的定义:
对于在区间[a,b]上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间________,使区间的两个端点逐步逼近零点,进而得到________ 的方法叫做二分法.
4.用二分法求零点的近似值的步骤:
第1步:确定区间[a,b],验证________,给定精确度ε; 第2步:求区间(a,b)的中点x1; 第3步:计算f(x1).
(1)若f(x1)=0,则x1就是函数的零点;
(2)若f(a)·f(x1)<0,则令________ =x1(此时零点x0∈(____,____));(3)若f(x1)·f(b)<0,则令________ =x1(此时零点x0∈(____,____)).
第4步:判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复第2步至第4步.
[例1] 若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是()
A.a<-1
B.a>1 C.-1
D.0≤a<1 [例2] 函数f(x)=x3-3x2-4x+12的零点个数为()A.0
B.1
C.2
D.3
9[例3] 函数y=lgx-的零点所在的大致区间是()
xA.(6,7)
B.(7,8)C.(8,9)
D.(9,10)[例4] 方程x2+(m-2)x+5-m=0的两根都大于2,则m的取值范围为________.[例5] 用二分法求方程x=3-lgx在区间(2,3)内的近似解,要求精确到0.1,则至少要计算________次.
1.增长率与函数图象.
[例1] 某林区的森林蓄积量每年平均比上一年增长10.4%,若经过x年可以增长到原来的y倍,则函数y=f(x)的图象大致是
[例2] 向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是
2.函数模型的选取
[例4] 西北某羊皮手套公司准备投入适当的广告费对生产的羊皮手套进行促销.在一年内,据测算销售量S(万双)与广告费x(万元)之间的函数关系为S=3-
(x>0),已知生产羊皮手套的年固定投入为3万元,每生产1万双手套仍需再投入16万元.年销售收入=年生产成本的150%+年广告费的50%.(1)试将羊皮手套的年利润L(万元)表示为年广告费x(万元)的函数.
(2)当年广告费投入多少万元时,此公司的年利润最大,最大利润为多少?(年利润=年销售收入-年生产成本-年广告费.)