首页 > 精品范文库 > 8号文库
解析法在几何中的应用 -
编辑:九曲桥畔 识别码:17-696025 8号文库 发布时间: 2023-09-15 21:03:09 来源:网络

第一篇:解析法在几何中的应用 -

大庆师范学院物电学院课程论文

解析法在几何中的应用

姓名: 周瑞勇

学号: 20100107146

5专业: 物理学

指导教师: 何巍巍

解析法在几何的应用

周瑞勇

大庆师范学院物理与电气信息工程学院

摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。关键词:几何问题,表达关系,表达式,求解问题

一前 言

几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。

但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。

由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。

二解析法概述

几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生的一般的变量概念为主要内容的新的数学分支——解析几何学。

平面几何是研究平面图形性质的科学。组成平面图形的元素是点、线(包括曲线)。平面解析几何采用了坐标系,用代数方法来研究平面几何图形。所以。平面几何和平面解析几何是紧密联系的。我们通过坐标系,把几何问题转化为用代数的方法来论证。这种方法称为解析法。

三用解析法的几何证明

证线段的相等:用解析法证线段相等,首先求出有观点的坐标,运用两点间距离公式。此外还可以利用点到直线的距离公式,直线内分线段比公式(证其比值为1),以及利用中心对称或轴对称的点的坐标来证明。

证角的相等:利用直线斜率的定义,分别求出夹这两个角的边的斜率,利用两条直线夹角公式得到这两个角的正切值相等,在判定这个角是在某一个单调区间内则它们相等。

证两直线平行或垂直:先求出有关点的坐标,证这两条直线的斜率相等;若斜率不存在时,证这两直线于y抽平行;若有一条直线重合于坐标轴,证另一条直线有两点纵坐标或横坐标相等。

证不等问题:用两点间距离公式,两条直线夹角公式把它转化为证明不等式问题,从而运用不等式的性质来证明。

证点共线或线共点:建立经过任意两点的直线方程,然后验证其余点都适合这个方程;或运用两点之间距离公式或直线内外分段成比例公式证其满足梅氏定理的逆定理。

证点共圆或园共点:求出有关各点,利用两点间距离公式证诸点到某一点的距离相等;或先建立经过三点的园的方程,然后证其余点适合圆的方程。

证比例式或等积式:运用两点间距离公式求出线段的长度,再证它们的比相等或求出它们的乘积加以比较。

证定值问题:先写出固定点的坐标系建立有关的固定直线(或圆)的方程,并运用两点距离公式和两直线夹角公式,求出欲证的线段(定长)或直线(定向、定位)与固定图形的元素加以比较,从而说明是定值。

四解析法的几何计算

长度计算:适当建立坐标系求出有关点的坐标以后,常运用两点间公式、点到直线的距离、切线长公式;在求两线段的比时常运用直线内外分线段比公式。

角度的计算:求出用有关点的坐标,利用斜率定义、两条直线夹角公式得到欲求角度的正切值,再利用正切函数在某一区间的单调性求出角的度数。

面积的计算:运用有三点坐标做确定的上三角形的面积公式及四点坐标所确定的四边形面积公式。

五结论

我们可以运用解析法,同时要善于使用平面直角坐标系、极坐标系、斜坐标系、空间直角坐标系中的有关公式和方程来解决解决问题。

参考文献:

[1]陈德华.例谈解析法诱导综合法解初等几何题.蒙自师范高等专科学校学报.编辑部邮箱 2002年 04期.[2] 孟利忠.强化解析法在立体几何中的应用 数学通讯, 2001,(13).[3] 刘翠英.关于高等几何对初等几何教学指导的几个问题 [J].高等函授学报(自然科学版), 2006,(04)

第二篇:浅谈向量在几何中的应用

浅谈向量在几何中的应用

宁阳四中 271400 吕厚杰

解决立体几何问题“平移是手段,垂直是关键”,空间向量的方法是使用向量的代数方法去解决立体几何问题。两向量共线易解决平行,两向量的数量积则易解决垂直、两向量所成的角、线段的长度问题。合理地运用向量解决立体几何问题,在很大程度上避开了思维的高强度转换,避开了添加辅助线,代之以向量计算,使立体几何问题变得思路顺畅、运算简单。

1.证平行、证垂直

具体方法利用共线向量基本定理证明向量平行,再证线线、线面平行是证明平行问题的常用手段,由共面向量基本定理先证直线的方向向量与平面内不共线的两向量共面,再证方向向量上存在一点不属于平面,从而得到线面平行。证明线线、线面垂直则可通过向量垂直来实现。

例1 如图1,E、F分别为空间四边形ABCD中AB、CD的中点,证明AD、EF、BC平行于同一平面。

图1 证明:又

所以,且即

可知,与 共面,所以EF与AD、BC平行于同一平面。

例2.已知A(1,-2,11),B(4,2,3),C(6,-1,4),则ΔABC是___________。分析:显见:

(3,4,-8),(5,1,-7),(2,-3,1),故ΔABC为直角三角形。

2.求角、求距离

如果要想解决线面角、二面角以及距离问题就要增加平面法向量的知识。定义:如果n⊥α,那么向量n就叫平面α的法向量。

求解方法:

(1)异面直线所成的角α,利用它们所对应的向量转化为向量的夹角θ问题,但,所以

(2)直线与平面所成的角,利用直线的方向向量与平面的法向量夹角的余角(或补角的余角)。如图2:。

2(3)求二面角,转化为两平面法向量的夹角或夹角的补角,显见上述求法都避开了找角的繁琐,直接计算就可以了。

求点面距离,转化为此点与面内一点连线对应向量在法向量上投影的绝对值。例3.(2005年高考题)如图3,已知长方体ABCD�A1B1C1D1中,AB=2,AA

1=1,直线BD与平面AA1B1B所成的角为30°,AE垂直BD于E,F为A1B1的中点。(1)求异面直线AE与BF所成的角。

(2)求平面BDF与平面AA1B所成二面角(锐角)的大小。(3)求点A到平面BDF的距离。

3解:在长方体ABCD�A1B1C1D1中,以AB所在直线为x轴,AD所在直线为y轴,AA1所在直线为z轴,建立空间直角坐标系如图3,所以A(0,0,0),B(2,0,0),F(1,0,1),因为直线BD与平面AA1B1B所成的角为30°,所以∠DBA=30°

又AB=2,AE⊥BD,所以AE=1,AD=0),因为E(,0),D(0,(1)因为

所以

即异面直线AE、BF所成的角为

(2)易知平面AA1B的一个法向量m=(0,1,0),设n=(x,y,z)是平面BDF的一个法向量,由

所以取

所以

(3)点A到平面BDF的距离即

在平面BDF的法向量n上的投影的绝对值。

所以

例4.如图4,已知正四棱锥R�ABCD的底面边长为4,高为6,点P是高的中点,点Q是侧面RBC的重心。求直线PQ与底面ABCD所成的角。

4解:以O为原点,以OR所在直线为z轴,以过O与AB垂直的直线为x轴,与AB平行的直线为y轴建立空间直角坐标系。

因为底面边长为6,高为4,所以B(2,2,0),C(-2,2,0),R(0,0,6),所以Q(0,2),P(0,0,3),(0,-1),面ABCD的一个法向量为n=(0,0,1),设PQ与底面ABCD所成的角为α,则。

空间向量在立体几何中的应用体现了数形结合的思想,培养了学生使用向量代数方法解决立体几何问题的能力。目的是将空间元素的位置关系转化为数量关系,将形式逻辑证明转化为数值计算,用数的规范性代替形的直观性、可操作性强,解决问题的方法具有普遍性,大大降低了立体几何对空间想象能力要求的难度。

第三篇:浅谈几何画板在教学中的应用

浅谈《几何画板》在数学教学中的应用

常宁市职业中专 谭新芽

对于数学科学来说主要是抽象思维和理论思维,这是事实;但从人类数学思维系统的发展来说,形象思维是最早出现的,并在数学研究和教学中都起着重要的作用。不难想象,一个没有得到形象思维培养的人会有很高的抽象思维、理论思维的能力。同样,一个学生如果根本不具备数学想象力,要把数学学好那也是不可能的。正如前苏联著名数学家A.H.柯尔莫戈洛夫所指出的:“只要有可能,数学家总是尽力把他们正在研究的问题从几何上视觉化。”因此,随着计算机多媒体的出现和飞速发展,在网络技术广泛应用于各个领域的同时,也给学校教育带来了一场深刻的变革──用计算机辅助教学,改善人们的认知环境──越来越受到重视。从国外引进的教育软件《几何画板》以其学习入门容易和操作简单的优点及其强大的图形和图象功能、方便的动画功能被国内许多数学教师看好,并已成为制作中学数学课件的主要创作平台之一。那么,《几何画板》在高中数学教学中有哪些应用呢?作为一名高中数学教师笔者就此谈几点体会:

一、《几何画板》在高中代数教学中的应用

函数”是中学数学中最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻划,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”函数的两种表达方式──解析式和图象──之间常常需要对照(如研究函数的单调性、讨论方程或不等式的解的情况、比较指数函数和对数函数图象之间的关系等)。为了解决数形结合的问题,在有关函数的传统教学中多以教师手工绘图,但手工绘图有不精确、速度慢的弊端;应用几何画板快速直观的显示及变化功能则可以克服上述弊端,大大提高课堂效率,进而起到事倍功半的效果。

具体说来,可以用《几何画板》根据函数的解析式快速作出函数的图象,并且可以在同一个坐标系中作出多个函数的图象,如在同一个直角坐标系中作出函数y2x和y12的图象,比较图象的形状和位置,归纳指数函数的性质;还可以作出含有若干参数的函数图象,当参数变化时函数图象也相应地变化,如在讲函数y=Asin(ωx+φ)的图象时,传统教学只能将A、ω、φ代入有限个值,观察各种情况时的函数图象之间的关系;利用《几何画板》则可以以线段b、T的长度和A点到x轴的距离为参数作图(如图1),当拖动两条线段的某一端点(即改变两条线段的长度)时分别改变三角函数的首相和周期,拖动点A则改变其振幅,这样在教学时既快速灵活,又不失一般性。

《几何画板》在高中代数的其他方面也有很多用途。例如,借助于图形对不等式的一些性质、定理和解法进行直观分析──由“半径不小于半弦”证明不等式“a+b≥2(a、b∈R+)等;再比如,讲解数列的极限的概念时,作出数列an=10-n的图形(即作出一个由离散点组成的函数图象),观察曲线的变化趋势,并利用《几何画板》的制表功能以“项数、这一项的值、这一项与0的绝对值”列表,帮助学生直观地理解这一较难的概念。

二、《几何画板》在立体几何教学中的应用

立体几何是在学生已有的平面图形知识的基础上讨论空间图形的性质;它所用的研究方法是以公理为基础,直接依据图形的点、线、面的关系来研究图形的性质。从平面图形到空间图形,从平面观念过渡到立体观念,无疑是认识上的一次飞跃。初学立体几何时,大多数学生不具备丰富的空间想象的能力及较强的平面与空间图形的转化能力,主要原因在于人们是依靠对二维平面图形的直观来感知和想象三维空间图形的,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形受其视角的影响,难于综观全局,其空间形式具有很大的抽象性。如两条互相垂直的直线不一定画成交角为直角的两条直线;正方体的各面不能都画成正方形等。这样一来,学生不得不根据歪曲真象的图形去想象真实情况,这便给学生认识立体几何图形增加了困难。而应用《几何画板》将图形动起来,就可以使图形中各元素之间的位置关系和度量关系惟妙惟肖,使学生x 2 从各个不同的角度去观察图形。这样,不仅可以帮助学生理解和接受立体几何知识,还可以让学生的想象力和创造力得到充分发挥。

像在讲二面角的定义时(如图2),当拖动点A时,点A所在的半平面也随之转动,即改变二面角的大小,图形的直观地变动有利于帮助学生建立空间观念和空间想象力;在讲棱台的概念时,可以演示由棱锥分割成棱台的过程(如图3),更可以让棱锥和棱台都转动起来,使学生在直观掌握棱台的定义,并通过棱台与棱锥的关系由棱锥的性质得出棱台的性质的同时,让学生欣赏到数学的美,激发学生学习数学的兴趣;在讲锥体的体积时,可以演示将三棱柱分割成三个体积相等的三棱锥的过程(如图4),既避免了学生空洞的想象而难以理解,又锻炼了学生用分割几何体的方法解决问题的能力;在用祖恒原理推导球的体积时,运用动画和轨迹功能作图5,当拖动点O时,平行于桌面的平面截球和柱锥所得截面也相应地变动,直观美丽的画面在学生学得知识的同时,给人以美的感受,创建一个轻松、乐学的氛围。

三、《几何画板》在平面解析几何教学中的应用

平面解析几何是用代数方法来研究几何问题的一门数学学科,它研究的主要问题,即它的基本思想和基本方法是:根据已知条件,选择适当的坐标系,借助形和数的对应关系,求出表示平面曲线的方程,把形的问题转化为数来研究;再通过方程,研究平面曲线的性质,把数的研究转化为形来讨论。而曲线中各几何量受各种因素的影响而变化,导致点、线按不同的方式作运动,曲线和方程的对应关系比较抽象,学生不易理解,显而易见,展示几何图形变形与运动的整体过程在解析几何教学中是非常重要的。这样,《几何画板》又以其极强的运算功能和图形图象功能在解析几何的教与学中大显身手。如它能作出各种形式的方程(普通方程、参数方程、极坐标方程)的曲线;能对动态的对象进行“追踪”,并显示该对象的“轨迹”;能通过拖动某一对象(如点、线)观察整个图形的变化来研究两个或两个以上曲线的位置关系。

具体地说,比如在讲平行直线系y=x+b或中心直线系y=kx+2时,如图6所示,分别拖动图(1)中的点A和图(2)中的点B时,可以相应的看到一组斜率为1的平行直线和过定点(0,2)的一组直线(不包括y轴)。再比如在讲椭圆的定义时,可以由“到两定点F1、F2的距离之和为定值的点的轨迹”入手──如图7,令线段AB的长为“定值”,在线段AB上取一点E,分别以F1为圆心、AE的长为半径和以F2为圆心、AE的长为半径作圆,则两圆的交点轨迹即满足要求。先让学生猜测这样的点的轨迹是什么图形,学生各抒己见之后,老师演示图7(1),学生豁然开朗:“原来是椭圆”。这时老师用鼠标拖动点B(即改变线

段AB的长),使得|AB|=|F1F2|,如图7(2),满足条件的点的轨迹变成了一条线段F1F2,学生开始谨慎起来并认真思索,不难得出图7(3)(|AB|<|F1F2|时)的情形。经过这个过程,学生不仅能很深刻地掌握椭圆的概念,也锻炼了其思维的严密性。

综上所述,使用《几何画板》进行数学教学,通过具体的感性的信息呈现,能给学生留下更为深刻的印象,使学生不是把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,既能激发学生的情感、培养学生的兴趣,又能大大提高课堂效率。

第四篇:空间向量在几何中的应用

空间向量在立体几何中的应用

一.平行问题

(一)证明两直线平行

A,Ba;C,Db,a|| b

若知AB(x1,y1),CD(x2,y2),则有x1y2x2y1a||b

方法思路:在两直线上分别取不同的两点,得到两向量,转化为证明两向量平行。

(二)证明线面平行

线 a面,A,Ba,面 的法向 n,若ABn0ABnAB .方法思路:求面的法向量,在直线找不同两点得一

向量,证明这一向量与法向量垂直(即证

明数量积为0),则可得线面平行。

(三)面面平行

不重合的两平面 与 的法向量分别是  m 和 n,mn||

方法思路:求两平面的法向量,转化为证明

两法向量平行,则两平面平行。

二.垂直问题

(一)证明两直线垂直

不重合的直线 a 和直线 b 的方向向量分别为 a 和 b,则有ab0ab

方法思路:找两直线的方向向量(分别在两直线上各取两点得两向量),证明两向量的数量积为0,则可证两直线垂直。

(二)证明线面垂直  直线 l的方向向量为 a,e1,e2是平面 的一组基底(不共线的向量), 则有 ae10且ae20a

方法思路:证明直线的方向向量(在两直线上取两点得一向量)与

平面内两不共线向量的数量积都为0(即都垂直),则可证线面垂直。

(三)证明面面垂直 不重合的平面 和 的法向量分别为m 和 n,则有 mn0

方法思路:找两平面的法向量,只需证明两向量

数量积为为0,则可证明两平面垂直。

三.处理角的问题

(一)求异面所成的角

a,b是两异面直线,A,Ba,C,Db,a,b所成的角为,则有cos|cosAB,CD| ABCD|AB||CD|

方法思路:找两异面直线的方向向量,转化为向量的夹角问题,套公式。

(但要理解异面直线所成的角与向量的夹角相等或互补)。

(二)求线面角

设平面 的斜线 l 与面所成的角为,若A,Bl,m是面的法向量,mAB 则有sin.mAB

方法思路:找直线的方向向量与平面的法向量,转化为

向量的夹角问题,再套公式。(注意线面角与两

向量所在直线夹角互余)

(三)求二面角

方法1.设二面角l 的大小为 ,若面, 的法向量分别为 m 与 n.mn(1)若二面角为锐二面角,即(0,)则有cos.2mn

(2)若二面角为钝二面角,即(,)2 mn则有cos.mn

四.处理距离问题

(一)点到面的距离d 任取一点Q 得 PQ, m是平面 的法向量,则有:点P到 PQm面 的距离d=PQcos(向量PQ在法向量m 的投影的长度)|m|

(二)求两异面直线的距离d

知a,b是两异面直线,A,Ba,C,Db,找一向量与两异面直线都垂直的向量m,ACm则两异面直线的距离 dACcos=|m|

方法思路:求异面直线的距离,先找一向量与两异面直线都垂直的向量m,然后分别在两异面直线上各任取一点A,C,则其距 ACm离 d 就是AB在向量m上的投影的长度,距离d|m|

Ps:向量 m 与异面直线a、b 都垂直,可用方程组求出 m 的坐标.五.如何建立适当的坐标系

1.有公共顶点的不共面的三线两两互相垂直

例如正方体、长方体、底面是矩形的直棱柱、底面是直角三角形且过直角顶点的侧棱垂直于底面的三棱锥等等。

2.有一侧棱垂直底面

OC底面OAB

()1OAB是等边三角形

(2)OAB是以OB为斜边的直角三角形

(1)(2)

(3)PA底面ABCD,且四边形ABCD是菱形

(4)PA底面ABCD,且四边形ABCD是ABC=60的菱形

(3)

3.有一侧面垂直于底面

(4)

(1)在三棱锥S-ABC中,ABC是边长为4的正三角形,平面SAC底面ABC,且SASC(2)四棱锥P-ABCD中,侧面PCD是边长为 2 的正三角形,且与底面垂直,底面ABCD是ADC60的菱形

.(1)(2)

两平面垂直的性质定理:若两面垂直,则在其中一面内垂直于它们的交线的直线垂直于另一平面,转化为有一线垂直于底面的问题.4.直棱柱的底面是菱形正四棱锥正三棱锥

第五篇:几何画板在初中几何教学中的几点应用

浅谈几何画板在初中数学教学中的几点应用

泰兴市南沙初中 刘岩碧

摘 要:几何画板是现代信息技术与课程整合的一项杰出创作.应用几何画板可以提高几何教学的直观性和准确性,弥补了传统教学方式在直观感、立体感和动态感等方面的不足,让学生更深刻体会到几何“动”的一面.从而达到改进部分章节的教学方法和教学手段的目的,更好地提高课堂效率的作用.

关键字:几何画板;初中几何;特色运用

新课改下的初中几何的教学正在发生革命性的变化.过去的几何教学一直过分强调演绎推理,却忽视了几何的“图形”特征.新课改的最大亮点,便是恢复了几何的“图形”特征,削弱证明在初中几何中那种“神圣不可动摇”的地位,使初中几何重新焕发生机.借用学生的话说是:几何“活”了,几何也可以“动”了.课程的改革势必引起教学方法的改革.可不是吗?现在的初中几何的讲台再也不是“粉笔加尺规”就可以上的了,教学理念的变化加上现代教育技术的普遍应用已经给教学手段,特别是几何教学也带来了新的变化和改进.

“信息技术与课程的整合”是我国面向21世纪基础教育教学改革的新视点.借助多媒体的动画效果,更有利于向学生展示几何图形的“动”的一面.计算机辅助教学进人课堂,可使抽象的概念具体化、形象化,尤其是计算机能进行动态的演示,弥补了传统教学方式在直观感、立体感和动态感等方面的不足,利用这个特点可处理其他教学手段难以处理的问题,并能引起学生的兴趣,增强他们的直观印象,为教师化解教学难点、突破教学重点、提高课堂效率和教学效果提供了一种现代化的教学手段.几何画板也正是在这样的背景下被研发出来的.现在我们很欣喜地看到这项工具正在给我们的数学教学带来更多的革命性的变化.

下面就本人所从事的初中数学的教学,谈谈几何画板在对教材中某些知识点处理上的独到之处.

[案例一]:

《等腰三角形》是初中几何的一个重点内容,这部分有很多定理.教材在处理方法上引入了较多的动手操作和直观感知,通过折纸、观察、归纳等方法很直观地得出等腰三角形的有关性质和识别.但是由于学生在制作等腰三角形的模型时,存在一定的误差,导致结论不是很准确.而且学生所制作的模型带有一定的局限性,无法更好地解释这种结论的一般性.应用几何画板就可以模拟这些折叠、翻转的动画效果,而且可以达到很准确的效果.然后还可以通过拖动等腰三角形的顶点任意改变它的形状和大小,直观地说明结论的正确性,从而也便于论证结论的一般性.

具体过程如下:

(1)等腰△ABC纸片中,AB=AC,(图1-1)将AB与AC重合在一起折叠,(图1-2)观察→两部分会完全重合→等腰三角形是轴对称图形,折痕AD是对称轴,B与C重合,BD与CD重合→∠B=∠C,即等边对等角.(图1-3)通过引导学生对折痕AD的分析,也就能很容易得出“三线合一”的性质.用这种直接的方式得出结论,就可以避免烦琐的推理过程,而且也让学生更容易记住结论.

(2)在画△ABC,使∠B=∠C,D为BC中点,连结AD,(图1-4)沿AD为折痕对折,观察→两部分会完全重合→AB与AC会完全重合,△ABC是等腰三角形,即等角对等边.(图1-5)

(3)拖动等腰△ABC的顶点A,改变三角形的形状,得到不同形状的符合条件的三角形,然后重复上述的步骤(1)和步骤(2),也得到同样的结论.让学生掌握以上结论的一般性,(图1-6,图1-7).

[案例二]:

讲三角形内角和定理,以前都是用剪纸、拼接和度量的方法让学生直观感受,但由于实际操作起来都有误差,很难达到理想的效果.现在利用“几何画板”随意画一个三角形(图2-1),度量出它的三个内角并求和(图2-2——图2-5),然后拖动三角形的顶点任意改变三角形的形状和大小(图2-6的钝角三角形和图2-7直角三角形),发现:无论怎么变,三个内角的和总是180度.这无疑大大地激起学生进一步探究“为什么”的欲望.

[案例三]:

在学习三角形的三条角平分线(三条中线、三条高或高的延长线、三边的垂直平分线)相交于一点时,传统教学方式都是让学生作图、观察、得出结论,但每个学生在作图中总会出现种种误差,导致三条线没有相交于一点,即使交于一点了,也会心存疑惑:是否是个别现象?使得学生很难领会数学内容的本质.但利用信息技术就不同了,我们可以在几何画板里只要画出一个三角形(图3-1),用菜单命令画出相应的三条角平分线(图3-2),就能观察到三线交于一点的事实(图3-3),然后任意拖动三角形的顶点,改变三角形的形状和大小,发现三线交于一点的事实总是不会改变的(图3-4).特别是像高这样有特征情况的线,还可以通过拖动得出交点的三个不同位置.(图3-5,图3-6,图3-7)

[案例四]:

在学习《探索勾股定理》时,利用“几何画板”作一个动态变化的直角三角形,通过滚动的数值度量各边长度的平方值,(图4-1让点A沿AC方向运动),并通过观察,引导学生发现任何一个直角三角形的两直角边的平方和等于斜边的平方,(图4-2,图4-3,图4-4)从而加深了对勾股定理的认识、理解和应用.

学无定法,教同样也无定法.我们应该在平时的教学中不断地钻研教材,力求以最简洁,最高效的方法进行有效地教学.新课改在对课程改革的同时也带动了教学方法和教学手段的不断创新.因此,我们应该抓住这样的时机,除了关注课程和课堂教学改革的同时,也寻求一些更能提高课堂效率的教学手段的更新.将多媒体辅助教学的方法真正落到实处,不仅做到辅助教学,还要真正做到能促进教学.

解析法在几何中的应用 -
TOP