首页 > 教学资源 > 学校管理
初中数学复习专题-旋转难题
编辑:夜色微凉 识别码:73-391677 学校管理 发布时间: 2023-04-12 09:12:42 来源:网络

1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

图13-1

A(G)

B(E)

C

O

D(F)

图13-2

E

A

B

D

G

F

O

M

N

C

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

图13-3

A

B

D

G

E

F

O

M

N

C

2.(10河北|A

B

C

E

F

G

图15-2

D

A

B

C

D

E

F

G

图15-3

A

B

C

F

G

图15-1)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图15-1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.

(1)在图15-1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;

(2)当三角尺沿AC方向平移到图15-2所示的位置时,一条直角边仍与AC边在同一直线上,另一条

直角边交BC边于点D,过点D作DE⊥BA于

点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;

(3)当三角尺在(2)的基础上沿AC方向继续平

移到图15-3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否

仍然成立?(不用说明理由)

3.(2010

梅州)用两个全等的正方形和拼成一个矩形,把一个足够大的直角三角尺的直角顶点与这个矩形的边的中点重合,且将直角三角尺绕点按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形的两边相交于点时,如图甲,通过观察或测量与的长度,你能得到什么结论?并证明你的结论.

(2)当直角三角尺的两直角边分别与的延长线,的延长线相交于点时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.

A

B

G

C

E

H

F

D

图甲

A

B

G

C

E

H

F

D

图乙

4.(09烟台市)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.(1)求证:△BDE≌△BCF;

(2)判断△BEF的形状,并说明理由;

(3)设△BEF的面积为S,求S的取值范围.5.如图①,四边形和都是正方形,它们的边长分别为(),且点在上(以下问题的结果均可用的代数式表示).

(1)求;

(2)把正方形绕点按逆时针方向旋转45°得图②,求图②中的;

(3)把正方形绕点旋转一周,在旋转的过程中,是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.

D

C

B

A

E

F

G

G

F

E

A

B

C

D

(第28题)

6.如图,在边长为4的正方形中,点在上从向运动,连接交于点.

(1)试证明:无论点运动到上何处时,都有△≌△;

(2)当点在上运动到什么位置时,△的面积是正方形面积的;

(3)若点从点运动到点,再继续在上运动到点,在整个运动过程中,当点

运动到什么位置时,△恰为等腰三角形.

1.解:(1)BM=FN。

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠ABD=∠F=45°,OB=OF,又∵∠BOM=∠FON,∴△OBM≌△OFN,∴BM=FN;

(2)BM=FN仍然成立。

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF,∴∠MBO=∠NFO=135°,又∵∠MOB=∠NOF,∴△OBM≌△OFN,∴BM=FN。

2.3.解:(1)BG=EH.

∵四边形ABCD和CDFE都是正方形,∴DC=DF,∠DCG=∠DFH=∠FDC=90°,∵∠CDG+∠CDH=∠CDH+∠FDH=90°,∴∠CDG=∠FDH,∴△CDG≌△FDH,∴CG=FH,∵BC=EF,∴BG=EH.

(2)结论BG=EH仍然成立.

同理可证△CDG≌△FDH,∴CG=FH,∵BC=EF,∴BC+CG=EF+FH,∴BG=EH.

4.5.6.

初中数学复习专题-旋转难题
TOP