首页 > 教学资源 > 教学设计
二次函数教学设计(最终5篇)
编辑:静默星光 识别码:69-1058835 教学设计 发布时间: 2024-07-02 22:07:06 来源:网络

第一篇:二次函数教学设计

二次函数教学设计(精选8篇)

作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么应当如何写教学设计呢?以下是小编精心整理的二次函数教学设计(精选8篇),欢迎阅读,希望大家能够喜欢。

二次函数教学设计1

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点

1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点

1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法

讨论探索法.教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课

一、例题讲解

投影片:(§2.8.1A)

我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么

(1)h与t的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?

[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:

-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议

投影片:(§2.8.1B)

二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?

(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?

(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;

二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想

在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?

[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有

-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习

随堂练习(P67)

Ⅳ.课时小结

本节课学了如下内容:

1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业

习题2.9

板书设计

§2.8.1 二次函数与一元二次方程(一)

一、1.例题讲解(投影片§2.8.1A)

2.议一议(投影片§2.8.1B)

3.想一想

二、课堂练习

随堂练习

三、课时小结

四、课后作业

备课资料

思考、探索、交流

把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?

解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则

S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r=.∴S圆=πr2=π·()2=π· = ≈796(m2).所以圆的面积最大.

二次函数教学设计2

教材分析

本节课主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次函数图象的最高点(最低点),因此,可利用顶点坐标求实际问题中的最大值(或最小值).在最大利润这个问题中,应用顶点坐标求最大利润,是较难的实际问题。

本节课的设计是从生活实例入手,让学生体会在解决问题的过程中获取知识的快乐,使学生成为课堂的主人。

按照新课程理念,结合本节课的具体内容,本节课的教学目标确定为相互关联的三个层次:

1、知识与技能

通过实际问题与二次函数关系的探究,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法。

2、过程与方法

通过对实际问题的研究,体会数学知识的现实意义。进一步认识如何利用二次函数的有关知识解决实际问题。渗透转化及分类的数学思想方法。

3、情感态度价值观

(1)通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。

(2)在知识教学中体会数学知识的应用价值。

本节课的教学重点是 “探究利用二次函数的最大值(或最小值)解决实际问题的方法”,教学难点是“如何将实际问题转化为二次函数的问题”。

实验研究:

作为一线教师,应该灵活地处理和使用教材。充分发挥教师自己的智慧,把学生置于教学的出发点和核心地位,应学生而动,应情境而变,课堂才能焕发勃勃生机,课堂上才能显现真正的活力。因此我对教材进行了重新开发,从学生熟悉的生活情境出发,与学生生活背景有密切相关的学习素材来构建学生学习的内容体系。把握好以下两方面内容:

(一)、利用二次函数解决实际问题的易错点:

①题意不清,信息处理不当。

②选用哪种函数模型解题,判断不清。

③忽视取值范围的确定,忽视图象的正确画法。

④将实际问题转化为数学问题,对学生要求较高,一般学生不易达到。

(二)、解决问题的突破点:

①反复读题,理解清楚题意,对模糊的信息要反复比较。

②加强对实际问题的分析,加强对几何关系的探求,提高自己的分析能力。

③注意实际问题对自变量 取值范围的影响,进而对函数图象的影响。

④注意检验,养成良好的解题习惯。

因此我由课本的一个问题转化为两个实际问题入手通过创设情境,层层设问,启发学生自主学习。

教学目标

1.知识与能力:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。

2.过程与方法:通过实验,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。

3.情感、态度与价值观:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。

教学重点与难点

教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。

教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。

学生学情分析

我所代班级的学生是高一新生,他们在初中已学过二次函数的简单性质与图像,知道二次函数在顶点处取得最大值或最小值,在前几节课又学习了函数的概念与表示、单调性与最值的相关知识,已经具备了本节课学习必须的基础知识。

教法分析

根据教学实际,我将本节课设计为数学探究课,在探究的过程中,借助于多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。同时为了配合多媒体的教学,准备了学案让学生配套使用。先让学生提前预习相关内容,对所要探究的问题有初步的了解,再在课堂上详细的探究,课后在学案上有相应的课后作业题让学生巩固所学知识。

教学过程

(一)复习旧知

回忆二次函数的图像与性质:

1.图像:

2.定义域:

3.单调性:

4.最值:

【设计意图】复习旧知,引入新课。

(二)自主探究

探究1:定轴定区间最值问题

分别在下列范围内求函数f(x)=x2-2x-3的最值:

规律总结:作出二次函数的图像,通过图像确定函数在给定区间上的最值。

【设计意图】

通过探究

1,让学生讨论探究定函数在定区间上最值的求解方法,并通过二次函数在闭区间上图像直观形象地观察、分析问题和解决问题。

(三)合作探究(含参二次函数最值求解问题

探究2:动轴定区间最值问题

求函数f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。

【设计意图】

通过探究2,让学生讨论探究动轴定区间上最小值的求解方法,并通过动态演示二次函数在闭区间上的图像,让学生直观形象地观察、分析问题和解决问题。

变式训练:求函数f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。

【设计意图】

通过变式训练,让学生进一步体会动轴定区间上最大值的求解方法,同时归纳出动轴定区间最值问题求解的一般规律。

规律总结:移动对称轴,比较对称轴和区间的位置关系,再结合图像进行进行分类讨论,注意做到“不重不漏”。

探究3:定轴动区间最值问题

求函数f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。

【设计意图】让学生分组讨论探究3的求解方法,使学生体会运动的相对性,从而类比探究2的过程与方法可以制定出解决问题3的方法。

变式训练:求函数f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.【设计意图】

通过变式训练,让学生进一步体会定轴动区间上最大值的求解方法,同时归纳出定轴动区间最值问题求解的一般规律。

规律总结:移动区间,比较对称轴和区间的位置关系,再结合图像进行分类讨论,注意做到“不重不漏”。

(四)知识小结

本节课研究了二次函数的三类最值问题:

(1)定轴定区间最值问题;(2)动轴定区间最值问题;(3)定轴动区间最值问题.核心思想是判断对称轴与区间的相对位置,应用数形结合、分类讨论思想求出最值。

【设计意图】

归纳总结二次函数问题在闭区间上最值的一般解法和规律,完成本节课知识的建构。

(五)结束语

数缺形时少直观,形少数时难入微.数形结合百般好,割裂分家万事休!

(六)课后作业

1.分别在下列范围内求二次函数f(x)=x2+4x-6的最值。

2.求函数f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。

3.求函数f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。

【设计意图】

学生应用探究所得知识解决相关问题,进一步巩固和提高二次函数在闭区间上最值的求解方法与规律。

二次函数教学设计3

一、说课内容:

九年级数学下册第27章第一节的二次函数的概念及相关习题(华东师范大学出版社)

二、教材分析:

1、教材的地位和作用

这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解数形结合的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

2、教学目标和要求:

(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.3、教学重点:对二次函数概念的理解。

4、教学难点:抽象出实际问题中的二次函数关系。

三、教法学法设计:

1、从创设情境入手,通过知识再现,孕伏教学过程

2、从学生活动出发,通过以旧引新,顺势教学过程

3、利用探索、研究手段,通过思维深入,领悟教学过程

四、教学过程:

(一)复习提问

1.什么叫函数?我们之前学过了那些函数?

(一次函数,正比例函数,反比例函数)

2.它们的形式是怎样的?

(y=kx+b,ky=kx ,ky= , k0)

3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?

【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课

函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。

例1、(1)圆的半径是r(cm)时,面积s(cm2)与半径之间的关系是什么?

解:s=0)

例2、用周长为20m的篱笆围成矩形场地,场地面积y(m2)与矩形一边长x(m)之间的关系是什么?

解: y=x(20/2-x)=x(10-x)=-x2+10x(0

例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

解: y=100(1+x)2

=100(x2+2x+1)

= 100x2+200x+100(0

教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

(三)讲解新课

以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

二次函数的定义:形如y=ax2+bx+c(a0,a, b, c为常数)的函数叫做二次函数。

巩固对二次函数概念的理解:

1、强调形如,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

2、在 y=ax2+bx+c 中自变量是x,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r0)

3、为什么二次函数定义中要求a?

(若a=0,ax2+bx+c就不是关于x的二次多项式了)

4、在例3中,二次函数y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以为零?

由例1可知,b和c均可为零.若b=0,则y=ax2+c;

若c=0,则y=ax2+bx;

若b=c=0,则y=ax2.注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.(1)y=3(x-1)2+1(2)s=3-2t2

(3)y=(x+3)2-x2(4)s=10r2

(5)y=22+2x(6)y=x4+2x2+1(可指出y是关于x2的二次函数)

(四)巩固练习

1.已知一个直角三角形的两条直角边长的和是10cm。

(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关

于x的函数关系式。

【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。

(1)分别写出S与x,V与x之间的函数关系式子;

(2)这两个函数中,那个是x的二次函数?

【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

五、评价分析

本节的一个知识点就是二次函数的概念,教学中教师不能直接给出,而要让学生自己在分析、揭示实际问题的数量关系并把实际问题转化为数学模型的过程中,使学生感受函数是刻画现实世界数量关系的有效模型,增加对二次函数的感性认识,侧重点通过两个实际问题的探究引导学生自己归纳出这种新的函数二次函数,进一步感受数学在生活中的广泛应用。对于最大面积问题,可给学生留为课下探究问题,发展学生的发散思维,方法不拘一格,只要合理均应鼓励。

二次函数教学设计4

一、教材分析

1.教材的地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

④会根据二次函数的性质解决简单的实际问题。

3.学情分析:

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

认知目标

(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

能力目标

提高学生对知识的整合能力和分析能力。

情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(1)掌握二次函数y=图像与系数符号之间的关系。

(2)各类形式的二次函数解析式的求解方法和思路。

(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.二、教学方法:

1.运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:

创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)从定义出发的简单题目。

(二)典型例题分析,通过反馈使学生掌握重点内容。

(三)综合应用能力提高。

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

2、作业设计:(见课件)

3、板书设计:(见课件)

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

二次函数教学设计5

教学目标

1、经历用三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系与各自不同的特点

2、能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题

3、能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

教学重点和难点

重点:用三种方式表示变量之间二次函数关系

难点:根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究

教学过程设计

一、从学生原有的认知结构提出问题

这节课,我们来学习二次函数的三种表达方式。

二、师生共同研究形成概念

1、用函数表达式表示

☆做一做书本P56矩形的周长与边长、面积的关系

鼓励学生间的互相交流,一定要让学生理解周长与边长、面积的关系。

比较全面、完整、简单地表示出变量之间的关系

2、用表格表示

☆做一做书本P56填表

由于运算量比较大,学生的运算能力又一般,因此,建议把这个表格的一部分数据先给出来,让学生完成未完成的部分空格。

表格表示可以清楚、直接地表示出变量之间的数值对应关系

3、用图象表示

☆议一议书本P56议一议

关于自变量的问题,学生往往比较难理解,讲解时,可适当多花时间讲解。

可以直观地表示出函数的变化过程和变化趋势

☆做一做书本P574、三种方法对比

☆议一议书本P58议一议

函数的表格表示可以清楚、直接地表示出变量之间的数值对应关系;函数的图象表示可以直观地表示出函数的变化过程和变化趋势;函数的表达式可以比较全面、完整、简单地表示出变量之间的关系。这三种表示方式积压自有各自的优点,它们服务于不同的需要。

在对三种表示方式进行比较时,学生的看法可能多种多样。只要他们的想法有一定的道理,教师就应予以肯定和鼓励。

二次函数教学设计6

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

二次函数教学设计7

教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

教学目标:

1.知识与技能

会运用二次函数计其图像的知识解决现实生活中的实际问题。

2.过程与方法

通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

3.情感、态度与价值观

通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

教学重点:解决与二次函数有关的实际应用题。

教学难点:二次函数的应用。

教学媒体:幻灯片,计算器。

教学安排:3课时。

教学方法:小组讨论,探究式。

教学过程:

第一课时:

Ⅰ.情景导入:

师:由二次函数的一般形式y=(a0),你会有什么联想?

生:老师,我想到了一元二次方程的一般形式(a0)。

师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

现在大家来做下面这两道题:(幻灯片显示)

1.解方程。

2.画出二次函数y= 的图像。

教师找两个学生解答,作为板书。

Ⅱ.新课讲授

同学们思考下面的问题,可以共同讨论:

1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

2.如果方程(a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

生乙:我们经过讨论,认为如果方程(a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

师:说的很好;

教师总结:一般地,如果二次函数y= 的`图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

问题:已知二次函数y=。

(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?

(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y-1-0.89-0.76-0.61-0.44-0.25-0.04-0.19 0.44 0.71 1

②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

y-0.040-0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

第一问很简单,可以请一名同学来回答这个问题。

生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

类似的,我们得出方程精确到百分位的正根是0.62。

对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

最后师生共同利用求根公式,验证求出的近似解。

教师总结:我们发现,当二次函数(a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

Ⅲ.练习

已知一个矩形的长比宽多3m,面积为6。求这个矩形的长(精确到十分位)。

板书设计:

二次函数的应用(1)

一、导入 总结:

二、新课讲授 三、练习

第二课时:

师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

师:好,看这样一个问题你能否解决:

活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:

1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

2.设四个小矩形的总面积为y,请写出用x表示y的函数表达式。

3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

学生思考,并小组讨论。

解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

由面积公式得 y=(x)

化简得 y=

代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

画函数图像:

通过图像,我们知道y的最大值为5。

师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

师:现在利用我们前面所学的知识,解决实际问题。

活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,(1)AC=______;

(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?

(4)总面积S取最大值或最小值时,点C在AB的什么位置?

教师讲解:二次函数 进行配方为y=,当a0时,抛物线开口向上,此时当x= 时,;当a0时,抛物线开口向下,此时当x= 时。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

解答过程(板书)

解:(1)当BC=x时,AC=2-x(02)。

(2)S△CDE= ,S△BFG= ,因此,S= + =2-4x+4=2 +2,画出函数S= +2(02)的图像,如图34-4-3。

(3)由图像可知:当x=1时,;当x=0或x=2时。

(4)当x=1时,C点恰好在AB的中点上。

当x=0时,C点恰好在B处。

当x=2时,C点恰好在A处。

[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

练习:

如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。

(1)Rt△ABP与Rt△PCQ相似吗?为什么?

(2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?

小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

板书设计:

二次函数的应用(2)

活动1: 总结方法:

活动2: 练习:

小结:

第三课时:

我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

(幻灯片显示交通事故、紧急刹车)

师:你知道两辆车在行驶时为什么要保持一定的距离吗?

学生思考,讨论。

师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

请看下面一个道路交通事故案例:

甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙=。

教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

学生思考!教师引导。

对于二次函数S甲=0.1x+0.01x2:

(1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

(2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

同学们,从这个事例当中我们可以体会到,如果二次函数y=(a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

下面看下面的这道例题:

当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

v/(km/h)40 60 80 100 120

s/m 2 4.2 7.2 11 15.6

(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

(3)求当s=9m时的车速v。

学生思考,亲自动手,提高学生自主学习的能力。

教师提问,学生回答正确答案,教师再进行讲解。

课上练习:

某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

板书设计:

二次函数的应用(3)

一、案例 二、例题

分析: 练习:

总结:

数学网

二次函数教学设计8

目标:

1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。

重点难点:

重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是的重点。

难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。

教学过程:

一、创设问题情境

如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?

分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: y=ax2(a<0)(1)

因为y轴垂直平分AB,并交AB于点C,所以CB=AB2 =2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。

因为点B在抛物线上,将它的坐标代人(1),得 -0.8=a×22 所以a=-0.2

因此,所求函数关系式是y=-0.2x2。

请同学们根据这个函数关系式,画出模板的轮廓线。

二、引申拓展

问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?

让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。

问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?

分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。

二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。

解:设所求的二次函数关系式为y=ax2+bx+c。

因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。

由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到4a+2b=0.816+4b=0 解这个方程组,得a=-15b=45 所以,所求的二次函数的关系式为y=-15x2+45x。

问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?

问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?

(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)

请同学们阅渎P18例7。

三、课堂练习: P18练习1.(1)、(3)2。

四、综合运用

例1.如图所示,求二次函数的关系式。

分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。

解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。

设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到64a+8b=-44a-2b=-4 解这个方程组,得a=-14b=32

所以,所求二次函数的关系式是y=-14x2+32x+4

练习: 一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。

五、小结:

二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。

六、作业

1.P19习题 26.2 4.(1)、(3)、5。

2.选用课时作业优化设计。

第二篇:二次函数教学设计

教学内容:

人教版九年义务教育初中第三册第108页

教学目标:

1.1.理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2.2.通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3.3.通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识,第五册二次函数教学设计。

教学重点:

二次函数的意义;会画二次函数图象。

教学难点:

描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一.一.创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2.①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的关系

答:S=L(30-L)=30L-L2 ②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二.二.归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数.注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2)由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三.三.尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1.1.尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

2.2.模仿巩固:教师将了解到的各种不同图象用实物投影向大家展示,到底哪一个对呢?下面师生共同画出函数y=x2的图象。

解:

一、列表:

x

112

3Y=x2

941

二、描点、连线: 按照表格,描出各点.然后用光滑的曲线,按照x(点的横坐标)由小到大的顺序把各点连结起来.对照教师画的图象一一分析学生所画图象的正误及原因,从而得到画二次函数图象的几点注意,初中数学教案《第五册二次函数教学设计》。

练习:画出函数;的图象(请两个同学板演)

X

112

3Y=0.5X2

4.520.5

0.5

02

4.5

Y=-X2

4-1

画好之后教师根据情况讲评,并引导学生观察图象形状得出:二次函数 y=ax2的图象是一条抛物线。

(这里,教师在学生自己探索尝试的基础上,示范画图象的方法和过程,希望学生学会画图象的方法;并及时安排练习巩固刚刚学到的新知识,通过观察,感悟抛物线名称的由来。)

三.三.运用新知、变式探究

画出函数 y=5x2图象

学生在画图象的过程中遇到函数值较大的困难,不知如何是好。

第三篇:二次函数教学设计

《二次函数》教学设计

一、教材分析:

《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。本章“二次函数”的学习也是从以上几个方面展开。首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。最后让学生运用二次函数的图像和性质解决一些实际问题。

本章教学时间约需12课时,具体分配如下(仅供参考): 21.1 二次函数

(6课时)21.2用函数的观点看一元二次方程

(1课时)21.3实际问题与二次函数

(3课时)数学活动

小结

(2课时)

21.1 二次函数教学时间约为 6课时,下面是第一课时的教学设计,此时学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和反比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系.并能利用尝试求值的方法解决实际问题.

二、教学目标:

知识技能:

1.探索并归纳二次函数的定义;

2.能够表示简单变量之间的二次函数关系. 数学思考:

1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法; 2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

解决问题:

1.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

2.能够利用尝试求值的方法解决实际问题.进一步体会数学与生活的联系,增强用数学意识。

情感态度:

1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;

2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;

3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.

三、教学重点、难点:

教学重点:

1.经历探索和表示二次函数关系的过程,获得二次函数的定义。

2.能够表示简单变量之间的二次函数关系. 教学难点:

经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.

四、教学方法:教师引导——自主探究——合作交流。五:教具、学具:教学课件

六、教学媒体:计算机、实物投影。

七、教学过程:

[活动1] 温故知新,引出课题。

师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?

生:学过正比例函数,一次函数,反比例函数.

师:那函数的定义是什么,大家还记得吗?

生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.

师:能把学过的函数回忆一下吗?

生:可以。

一次函数y=kx+b(其中k、b是常数,且k≠0)

正比例函数y=kx(k是不为0的常数)

反比例函数y=k

(k是不为0的常数)

x师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗? 生: 定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。

师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.

师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。

设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。

[活动2]创设情境 探究新知: 问题

1.正方体六个面是全等的正方形,设正方形棱长为 x,表面积为 y,则 y 关于x 的关系式为是什么?

2.多边形的对角线数 d 与边数 n 有什么关系?

n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d =______。

3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?

这种产品的原产量是20件,一年后的产量是

件,再经过一年后的产量是

件,即两年后的产量为。

4. 问题2中有哪些变量?其中哪些是自变量? 大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢? 5.观察上面的三个函数,从解析式看有什么共同点?

师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。

定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为 2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。

2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。

[活动3] 例题学习内化新知

问题

例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)²+1

(2)y=x+k

x

(3)s=3-2t²

(4)y=(x+3)²-x²

(5)y=-x

(6)v=10Л r²

m例2,函数 y

( 3)xm2(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函数是反比例函数?(3)m取什么值时,此函数是二次函数?

师生行为:教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,例2让学生分组展开讨论,待学生充分交流后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。

教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的学生适当引导。

设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一个讨论做铺垫;例2中三个问题的设计,由浅入深,层层递进,在复习旧知的同时获得解决新问题的经验,进一步内化新知、突破难点。整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习的主动权交给学生,增强学生创造的信心,体验到成功的快乐。

[活动4] 练习反馈

巩固新知 问题:

(1)

P80.练习1、2(2)

y 

(m

m)x

是二次函数,求m的值.

师生行为:教师提出问题,问题(1)学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,指名口答结果,教师强调正确解题思路;

教师重点关注:学生能否准确用二次函数表示变量之间关系;学生解题时候暴露的共性问题作针对性的点评,注重培养学生正确的思路和方法,积累解题经验。

设计意图:问题(1)是从简单的应用开始,及时巩固新知,让学生获得用二次函数表示变量之间关系的体验;问题(2)是让学生对二次函数定义很深层次的理解,培养数学思维的严谨性; 2m2m

八、自主小结,深化提高:

请同学们谈谈本节课的体会和收获,各抒己见,不拘泥于形式,教师对学生的回答给予帮助,让语言表达更准确。

设计意图:学生归纳本节课学习的主要内容,让学生自觉对所学知识进行梳理,形成体系,养成良好的学习习惯。

九、分层作业,发展个性:

作业设计:(必做题)1.阅读教材并完成P90 习题21.1:

1、2. 2.写好数学日记。

(备选题)1.已知函数y=ax2+bx+c(a、b、c是常数),当a___时是二次函数;

当a___,b___时是一次函数;

当a__,b__,c__时是正比例函数。2.画出最简单的二次函数y=x2的图象。预习作业:1.看书P80 设计意图:把作业分为必做题和选做题两种。必做题较基础,可以发现和弥补课堂学习的遗漏和不足;备选题则仅供学有余力的学生选用。

十、教学反思:

数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺利。由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。

第四篇:二次函数教学设计

一、教学目标

1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体会如何用数学的方法描述变量之间的数量关系。2.能够表示简单变量之间的二次函数关系。

3.经历尝试、猜测以及动手验证等过程,发展合作交流意识,以及数学应用能力。

二、教学设计

(一)认真阅读课本(5分钟),并回答下列问题: 1.什么叫函数?前面学过哪些函数? 2.观察图片,图中喷泉水流所经过的路线以及篮球入篮的路线会与某种函数有关系吗?(通过回顾旧知识,激活学生原有的知识储备,并适时借助图片做好背景知识的铺垫,引起学生回忆、思考,为新课的学习做好准备。)

(二)探究新知 1.提出问题

某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

(1)对这个情境你能提出什么问题?所提问题中有哪些变量?

(2)如何表示两个变量之间的关系?(将课本上的问题串换成如上两个问题,给学生更多的思考空间。让学生分组讨论、合作交流,鼓励学生用自己的方法解决问题。针对学生的回答,教师及时给予鼓励。)

学生解决问题的思路大体上有两种。

思路一:课本上提供的思路。假设果园增种x棵橙子树,橙子的总产量为y个,则

y=(100+x)(600-5x)=-5x2+100x+60 000。

思路二:假设果园种x棵橙子树,那么平均每棵树结多少个橙子?假设果园种x棵橙子树,橙子的总产量为y个,则y=x[600-5(x-100)]=-5x2+1 100x。2.想一想

在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?你能根据表格中的数据作出猜测吗?

(让学生经历尝试、猜测以及动手验证等过程,通过分组讨论、合作交流,得出解决方案。在此过程中教师适当引导学生。)3.做一做

银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量。在我国,利率的调整是由中国人民银行根据国民经济发展的情况而决定的。

设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)。

(让学生认真审题,并让学生讲解这笔钱如何存,目的是让学生真正理解题意。之后,通过学生交流将问题解决。答案:y=100(x+1)2=100x2+200x+100。)

4.议一议

观察y=-5x2+100x+60 000与y=100x2+200x+100,y是x的函数吗?y是x的一次函数?反比例函数?

(通过比较,由学生自己归纳得出二次函数的定义:形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数。要求学生注意a≠0这一要求。定义讲清之后,让学生举几个二次函数的例子。)

(三)知识运用 1.例题

下列函数中,哪些是二次函数?

(1)y=5(x-1)2+1;(2)y=x+1x;(3)s=6-5t;

(4)y=(x+3)2-x2;(5)y=3x-x;(6)v=8πr2。

(通过本例题的处理,进一步帮助学生加深对二次函数定义的理解。通过(4)y=(x+3)2-x2强调a≠0这一条件。)

2.练一练

(1)课本随堂练习第1~2题;

(2)课本习题

21第1题。

(让学生认真审题,启发学生思考,由学生讲解完成,鼓励学生到讲台上讲解,引导学生运用知识解决问题,并适时加以点拨。针对学生存在的问题,及时反馈、矫正。)

(四)感悟与收获(必由生总结)

通过本节课的学习,你有哪些收获?

(鼓励学生用自己的语言说出自己的收获,并大胆质疑,师生共同释疑。给学生提供一个交流和倾听的机会,鼓励学生从多个角度交流自己的感受。)

(五)布置作业(要适当)略。

第五篇:《二次函数》教学设计

实际问题与二次函数教案

仙游私立一中

林元炳

教学目标:

1、知识与技能:经历数学建模的基本过程。

2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。

3、情感、态度与价值观:体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。

教学重点:二次函数在最优化问题中的应用。

难点:从现实问题中建立二次函数模型,学生较难理解。

复习旧知:

1、求在下列自变量范围下二次函数y=-x+2x-3的最值:

2⑴若-3≤x≤0,该函数的最大值为___________、最小值为__

。⑵若0≤x≤3,该函数的最大值_____________、最小值为______________。先画函数草图,再进行具体分析。

问题引入:

问题1, 某商店将每件进价为8元的某种商品按每件10元出售,一天可销出100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 分析: 先思考以下几个问题:

1.商品的利润与售价、进价以及销售量之间有什么关系? [利润=(售价-进价)×销售量] 2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)] 3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)] 4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2] 5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)] 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x+100x+200(0≤x≤2)„„„„„„„„(2)变式

一、某商店如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润. 注意:在变式中分析清楚随着价格的改变,其销售量也随之改变;进而总利润也发生了变化。

练习:商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 请同学们思考以下两个问题:

(1)题目中有几种调整价格的方法?

(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?

分析:

调整价格包括涨价和降价两种情况(1),先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖

件,实际 卖出

件,每件的利润为____________元。(或销售额为

元,买进商品需付

元),因此,所得利润为

元。()解:设涨价x元时利润最大,则每星期可少卖_________件,实际卖出___________件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

(2),在降价的情况下,最大利润是多少?请你参考(1)的过程写出分析过程。设每件降价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。降价x元时则每星期少卖

件,实际卖出

件,销售额为

元,买进商品需付

元,因此,所得利润为

元。

解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

由(1)(2)的讨论分析,你知道应该如何定价能使利润最大吗?

解这类题目的一般步骤:

归纳:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

问题2;

某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱。问:

(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;

(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

分析:在这个问题中要注意的是:“物价部门规定每箱售价不得高于55元”这个条件。所以自变量的取值要考虑到55元这个限制。

练习2,某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元但不超过80元;每件商品的售价每涨价1元,每个月少卖出1件;如果售价超过80元后,每涨落价1元,每个月少卖3件。设每件商品的售价为x元,每个月的销售量为y件。(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W元,请直接写出W与x的函数关系式;

(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

作业:课本P27 第9题

二次函数教学设计(最终5篇)
TOP