首页 > 工作总结 > 其他总结
复变函数总结
编辑:岁月静好 识别码:36-450889 其他总结 发布时间: 2023-05-06 07:47:17 来源:网络

第一章

复数

=-1

欧拉公式

z=x+iy

实部Re

z

虚部

Im

z

2运算

共轭复数

共轭技巧

运算律

P1页

3代数,几何表示

z与平面点一一对应,与向量一一对应

辐角

当z≠0时,向量z和x轴正向之间的夹角θ,记作θ=Arg

z=

k=±1±2±3…

把位于-π<≤π的叫做Arg

z辐角主值

记作=

4如何寻找arg

z

例:z=1-i

z=i

z=1+i

z=-1

π

极坐标:,利用欧拉公式

可得到

高次幂及n次方

凡是满足方程的ω值称为z的n次方根,记作

第二章解析函数

1极限

2函数极限

复变函数

对于任一都有

与其对应

注:与实际情况相比,定义域,值域变化

称当时以A为极限

当时,连续

例1

证明在每一点都连续

证:

所以在每一点都连续

3导数

例2

时有

证:对有

所以

例3证明不可导

解:令

当时,不存在,所以不可导。

定理:在处可导u,v在处可微,且满足C-R条件

例4证明不可导

解:

其中

u,v

关于x,y可微

不满足C-R条件

所以在每一点都不可导

例5

解:

不满足C-R条件

所以在每一点都不可导

例6:

解:

其中

根据C-R条件可得

所以该函数在处可导

4解析

若在的一个邻域内都可导,此时称在处解析。

用C-R条件必须明确u,v

四则运算

例:证明

解:

任一点处满足C-R条件

所以处处解析

练习:求下列函数的导数

解:

所以

根据C-R方程可得

所以当时存在导数且导数为0,其它点不存在导数。

初等函数

Ⅰ常数

Ⅱ指数函数

定义域

Ⅲ对数函数

称满足的叫做的对数函数,记作

分类:类比的求法(经验)

目标:寻找

幅角主值

可用:

过程:

所以

例:求的值

Ⅳ幂函数

对于任意复数,当时

例1:求的值

解:

例2:求

Ⅴ三角函数

定义:对于任意复数,由关系式可得的余弦函数和正弦函数

例:求

解:

第三章复变函数的积分

1复积分

定理3.1

设C是复平面上的逐段光滑曲线在C上连续,则在C上可积,且有

注:①C是线

②方式跟一元一样

方法一:思路:复数→实化

把函数与微分相乘,可得

方法二:参数方程法

☆核心:把C参数

C:

例:

①C:0→的直线段②;

解:①C:

结果不一样

2柯西积分定理

例:

C:以a为圆心,ρ为半径的圆,方向:逆时针

解:C:

积分与路径无关:①单联通

②处处解析

例:求,其中C是连接O到点的摆线:

解:已知,直线段L与C构成一条闭曲线。因在全平面上解析,则

把函数沿曲线C的积分化为沿着直线段L上的积分。由于

★关键:①恰当参数

②合适准确带入z

3不定积分

定义3.2

设函数在区域D内连续,若D内的一个函数满足条件

定理3.7

若可用上式,则

例:

计算

解:

练习:计算

解:

4柯西积分公式

定理

处处解析在简单闭曲线C所围成的区域内则

例1:

解:

例2:

解:

例3:

解:

注:①C:

一次分式

③找到

在D内处处解析

例4:

解:5

解析函数的高阶导数

公式:

n=1,2……

应用要点:①

③精准分离

例:

调和函数

若满足则称叫做D内的调和函数

若在D内解析

所以

把称为共轭调和函数

第四章

级数理论

1复数到

距离

谈极限

对若有使得

此时

为的极限点

记作

推广:对一个度量空间都可谈极限

极限的性质

级数问题

部分和数列

则收敛,反之则发散。

性质:1若

都收敛,则收敛

2若一个收敛,一个发散,可推出发散

绝对收敛

但收敛,为条件收敛

等比级数

时收敛,其他发散

幂级数

求收敛域

例:求的收敛半径及收敛圆

解:因为

所以级数的收敛半径为R=1,收敛圆为

泰勒级数

泰勒定理:设函数在圆K:内解析,则在K内可以展成幂级数

其中,(n=0,1,2……),且展式还是唯一的。

1:求在处的泰勒展式

:在全平面上解析,所以在处的泰勒展式为

例2:

将函数展成的幂级数

解:

罗朗级数

罗朗定理

若函数在圆环D:内解析,则当时,有

其中

例:将函数在圆环(1)

(2)

内展成罗朗级数。

解:(1)在内,由于,所以

(2)在内,由于,所以

孤立奇点

定义:若函数在的去心邻域内解析,在点不解析,则称为的孤立奇点。

为可去奇点

为一级极点

为本性奇点

第5章

留数理论(残数)

定义:

设函数以有限项点为孤立奇点,即在的去心邻域内解析,则称积分的值为函数在点处的留数

记作:

其中,C的方向是逆时针。

例1:求函数在处的留数。

解:因为以为一级零点,而,因此以为一级极点。

例2:求函数在处的留数

解:是的本性奇点,因为

所以

可得

第7章

傅里叶变换

通过一种途径使复杂问题简单化,以便于研究。

定义:对满足某些条件的函数

在上有定义,则称

为傅里叶变换。

同时

为傅里叶逆变换

注:①傅里叶变换是把函数变为函数

②傅里叶逆变换是把函数变为函数

③求傅里叶变换或傅里叶逆变换,关键是计算积分

④两种常见的积分方法:凑微分、分部积分

复习积分:①

注:

例1:求的解:

例2:求的解:

-函数

定义:如果对于任意一个在区间上连续的函数,恒有,则称为-函数。

例1:求-函数的解:

例2:求正弦函数的傅氏变换

解:

第8章

拉普拉斯变换

设在时有定义

复变函数总结
TOP