首页 > 精品范文库 > 1号文库
金属热处理原理及工艺 期末总结
编辑:空山新雨 识别码:10-1068730 1号文库 发布时间: 2024-07-17 17:11:15 来源:网络

第一篇:金属热处理原理及工艺 期末总结

正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺

固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺 时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。Al-4Cu合金在时效过程中,过饱和固溶体的各个沉淀阶段,其顺序可概括为: 过饱和G.P.区过渡相过渡相(CuAl2)稳定相 固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型 时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度时效处理有自然时效和人工时效两种。

淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺

回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺

调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。表面淬火:是将钢件的表面通过快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。适用于中碳钢。化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺 渗碳:向钢的表面渗入碳原子,提高表面含碳量,提高材料表面硬度、抗疲劳性和耐磨性。

渗氮:在工件表面渗入氮原子,形成一个富氮硬化层的过程。提高材料表面硬度、抗疲劳性和耐磨性,且渗氮性能优于渗碳。碳氮共渗:碳氮同时渗入工件表层。提高表面硬度、抗疲劳性和耐磨性,并兼具渗碳和渗氮的优点

完全退火和等温退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重工件的最终热处理,或作为某些工件的预先热处理。

球化退火主要用于过共析的碳钢及合金工具钢(如制造刃具,量具,模具所用的钢种)。其主要目的在于降低硬度,改善切削加工性,并为以后淬火作好准备。

去应力退火又称低温退火(或高温回火),这种退火主要用来消除铸件,锻件,焊接件,热轧件,冷拉件等的残余应力。如果这些应力不予消除,将会引起钢件在一定时间以后,或在随后的切削加工过程中产生变形或裂纹。铁素体(F)1.组织: 碳在α-Fe(体心立方结构的铁)中的间隙固溶体2.特性: 呈体心立方晶格.溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80-120,σb=250N/mm^2;而塑性和韧性很好,δ=50%,ψ=70-80%.因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件.这类钢有超低碳钢,如 0Cr13,1Cr13、硅钢片等

奥氏体1.组织: 碳在γ-Fe(面心立方结构的铁)中的间隙固溶体。2.特性:呈面心立方晶格.最高溶碳量为2.06%,在一般情况下,具有高的塑性,但强度和硬度低,HB=170-220,奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等 渗碳体(C)1.组织: 铁和碳的稳定化合物(Fe3C)2.特性: 呈复杂的八面体晶格.含碳量为6.67%,硬度很高,HRC70-75,耐磨,但脆性很大,因此,渗碳体不能单独应用,而总是与铁素体混合在一起.碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是

以渗碳体或其他碳化物形式出现

珠光体(P)1.组织;铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)铁素体片和渗碳体

片交替排列的层状显微组织, 2.特性: 是过冷奥氏体进行共析反应的直接产物.其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同.奥氏体在约600℃分解成的组织称为细珠光体(有的叫一次索氏体),在500-600℃分解转变成用光学显微镜不能分辨其片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和奥氏体低而较渗碳体高.正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在钢材承受负荷时会引起应力集中,故不如索氏体 莱氏体(L)1.组织: 渗碳体和奥氏体组成的机械混合物(含碳4.3%)2.特性: 铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体.当温度到达共析温度莱氏体中的奥氏转变为珠光体.因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合).莱氏体硬而脆(>HB700),是一种较粗的组织,不能进行压力加工,如白口铁.在铸态含有莱氏体组织的钢有高速工具钢和Cr12型高合金工具钢等.这类钢一般有较大有耐磨性和较好的切削性

淬火与马氏体1.组织: 碳在α-Fe中的过饱和固溶体,显微组织呈针叶状2.特性:淬火后获得的不稳定组织.具有很高的硬度,而且随含碳量增加而提高,但含碳量超过0.6%后的硬度值基本不变,如含C0.8%的马氏体,硬度约为HRC65,冲击韧性很低,脆性

很大,延伸率和断面收缩率几乎等于零.奥氏体晶粒愈大,马氏体针叶愈粗大,则冲击韧性愈低;淬火温度愈低,奥氏体晶粒愈细,得到的马氏体针叶非常细小,即无针状马氏组织,其韧性最高 回火马氏体(S)1.组织: 与淬火马氏体硬度相近,而脆性略低的黑色针叶状组织

2.特性:淬火钢重新加热到150-250℃回火获得的组织.硬度一般只比淬火马氏体低HRC1-3格,但内应力比淬火马氏体小

索氏体(S)1.组织: 铁索体和较细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到500-680℃回火后获得的组织.与细珠光体相比,在强度相同情冲下塑性及韧性都高,随回火温度提高,硬度和强度降低,冲击韧性提高.硬度约为HRC23-35.综合机械性能比较好.索氏体有的叫二次索氏体或回火索氏体

屈氏体屈氏体(T)组织或特性

1.组织: 铁索体和更细的粒状渗碳体组成的组织2.特性:淬火钢重新加热到350-450℃回火后获得的组织.它的硬度和强度虽然比马氏体低,但因其组织很致密,仍具有较高的强度和硬度,并有比马氏体好的韧性和塑性,硬度约为

HRC35-45.屈氏体有的叫二次屈氏体或回火屈氏体

下贝氏体(B)1.组织: 显微组织呈黑色针状形态,其中的铁素体呈现针状,而碳化物呈现极小的质点以弥散状分布在针状铁素体内2.特性:过冷奥氏体在400-240℃等温度转变后的产物.具有较高的硬度,约为HRC40-55,良好的塑性和很高的冲击韧性,其综合机械性能比索氏体更好;因此,在要求较大的、韧性和高强度相配合时,常以含有适当合金元素的中碳结构钢等温淬火,获得贝氏体以改善钢的机械性能,并减小内应力和变形 低碳马氏体具有高强度与良好的塑性、韧性相结合的特点(σb=1200-1600N/mm^2,σ0.2=1000-1300N/mm^2,δ5≥10%,ψ≥40%αk≥60J/cm^2);同时还有低的冷脆转化温度(≤-60℃);在静载荷、疲劳及多次冲击载荷下,其缺口敏感度和过载敏感性都较低.低碳马氏体状态的20SiMn2MoVA综合力学性能,比中碳合金钢等温淬火获得的下贝氏体更好.保持了低碳钢的工艺性能,但切削加工较难.工艺

1.低碳钢及低碳合金钢制模具 例如,20,20Cr,20CrMnTi等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→冷挤压成形→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。

2.高合金渗碳钢制模具 例如12CrNi3A,12CrNi4A钢的工艺路线为:下料→锻造模坯→正火并高温回火→机械粗加工→高温回火→精加工→渗碳→淬火、回火→研磨抛光→装配。3.调质钢制模具 例如,45,40Cr等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→调质→机械精加工→修整、抛光→装配。

4.碳素工具钢及合金工具钢制模具 例如T7A~T10A,CrWMn,9SiCr等钢的工艺路线为:下料→锻成模坯→球化退火→机械粗加工→去应力退火→机械半精加工→机械精加工→淬火、回火→研磨抛光→装配。

5.预硬钢制模具

例如5NiSiCa,3Cr2Mo(P20)等钢。对于直接使用棒料加工的,因供货状态已进行了预硬化处理,可直接加工成形后抛光、装配。对于要改锻成坯料后再加工成形的,其工艺路线为:下料→改锻→球化退火→刨或铣六面→预硬处理(34~42HRC)→机械粗加工→去应力退火→机械精加工→抛光→装配。氮化工件工艺路线:锻造-退火-粗加工-调质-精加工-除应力-粗磨-氮化-精磨或研磨。适用于各种高速传动精密齿轮、机床主轴(如镗杆、磨床主轴),高速柴油机曲轴、阀门等。由于氮化层薄,并且较脆,因此要求有较高强度的心部组织,所以要先进行调质热处理,获得回火索氏体,提高心部机械性能和氮化层质量。论述钢材在热处理过程中出现脆化现象的主要原因及解决方法。答:①过共析钢奥氏体化后冷却速度较慢出现网状二次渗碳体时,使钢的脆性增加,脆性的网状二次渗碳体在空间上把塑性相分割开,使其变形能力无从发挥。解决方法,重新加热正火,增加冷却速度,抑制脆性相的析出。②淬火马氏体在低温回火时会出现第一类回火脆性,高温回火时有第二类回火脆性,第一类回火脆性不可避免,第二类回火脆性,可重新加热到原来的回火温度,然后快冷恢复韧性。③工件等温淬火时出现上贝氏体时韧性降低,重新奥氏体化后降低等温温度得到下贝氏体可以解解。④奥氏体化温度过高,晶粒粗大韧性降低。如:过共析钢淬火温度偏高,晶粒粗大,获得粗大的片状马氏体时,韧性降低;奥氏体晶粒粗大,出现魏氏组织时脆性增加。通过细化晶粒可以解决。

20CrMnTi、40CrNiMo、60Si2Mn、T12属于哪类钢?含碳量为多少?钢中合金元素的主要作用是什么?淬火加热温度范围是多少?常采用的热处理工艺是什么?最终的组织是什么?性能如何?

20CrMnTi为渗碳钢,含碳量为0.2%,最终热处理工艺是淬火加低温回火,得到回火马氏体,表面为高碳马氏体(渗碳后),强度、硬度高,耐磨性好;心部低碳马氏体(淬透)强韧性好。Mn与Cr 提高淬透性,强化基体,Ti阻止奥氏体晶粒长大,细化晶粒。

40CrNiMo为调质钢,含碳量为0.4%,最终

热处理工艺是淬火加高温回火,得到回火索氏

体,具有良好的综合机械性能,Cr、Ni提高淬透性,强化基体,Ni提高钢的韧性,Mo细化晶粒,抑制第二类回火脆性。

60Si2Mn为弹簧钢,含碳量为0.6%,最终热处理工艺是淬火加中温回火,得到回火托氏体(或回火屈氏体),具有很高的弹性极限,Si、Mn提高淬透性,强化基体,Si提高回火稳定性。

T12钢为碳素工具钢钢,含碳量为1.2%,最终热处理工艺是淬火加低温回火,得到回火马氏体+粒状Fe3C+残余奥氏体(γ'),强度硬度高、耐磨性高,塑性、韧性差。

用T12钢(锻后缓冷)做一切削工具,工艺过程为:正火→球化退火→机加工成形→淬火→低温回火。各热处理工艺的目的是什么?得到什么组织?各种组织具有什么性能。

① 正火:消除网状的二次渗碳体,同时改善锻

造组织、消除锻造应力,得到片状的珠光体,片状的珠光体硬度较高,塑性韧性较差。② 球化退火:将片状的珠光体变成粒状珠光

体,降低硬度,便于机械加工;组织为粒状珠光体,这种组织塑性韧性较好,强度硬度较低。

③ 淬火:提高硬度、强度和耐磨性;组织为马

氏体+粒状碳化物+残余奥氏体;这种组织具有高强度高硬度,塑性韧性差。

④ 低温回火:减少或消除淬火应力,提高塑形

和韧性;组织为回火马氏体+粒状碳化物+残余奥氏体。回火组织有一定的塑性韧性,强度、硬度高,耐磨性高。

什么是淬火?目的是什么?具体工艺有哪些?简述淬火加热温度的确定原则。

把钢加热到临界点(Ac1或Ac3)以上保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为淬火。

淬火目的:提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;结构钢通过淬火和回火之后获得良好的综合机械性能;此外,还有很少数的一部分工件是为了改善钢的物理和化学性能。如提高磁钢的磁性,不锈钢淬火以消除第二相,从而改善其耐蚀性等。

具体工艺有:单液淬火法;中断淬火法(双淬火介质淬火法);喷射淬火法;分级淬火法;等

温淬火法。

淬火加热温度,主要根据钢的相变点来确定。对亚共析钢,一般选用淬火加热温度为Ac3+(30~50℃),过共析钢则为Ac1+(30~50℃),合金钢一般比碳钢加热温度高。确定淬火加热温度时,尚应考虑工件的形状、尺寸、原始组织、加热速度、冷却介质和冷却方式等因素。在工件尺寸大、加热速度快的情况下,淬火温度可选得高一些。另外,加热速度快,起始晶粒细,也允许采用较高加热温度。

某车床主轴(45钢)加工路线为: 下料→锻造→正火→机械加工→淬火(淬透)→高温回火→花键高频表面淬火→低温回火→半精磨→人工时效→精磨。正火、淬火、高温回火、人工时效的目的是什么?花键高频表面淬火、低温回火的目的是什么?表面和心部的组织是什么?

正火处理是为了得到合适的硬度,以便切削加工,同时改善锻造组织,消除锻造应力。淬火是为了得到高强度的马氏体组织,高温回火是为了得到回火索氏体,淬火+高温回火称为调质,目的是为使主轴得到良好的综合力学性能。人工时效主要是为了消除粗磨削加工时产生的残余应力。花键部分用高频淬火后低温回火是为了得到回火马氏体,增加耐磨性。表面为回火马氏体,心部为回火索氏体组织。

低碳钢(15、20)、中碳钢(40、45)、共析钢(T8)获得良好综合力学性能的最终热处理工艺及组织。

低碳钢:淬火加低温回火,组织为回火马氏体。中碳钢:淬火加高温回火,组织为回火索氏体。共析钢:等温淬火,组织为下贝氏体。三

十九、正火、退火工艺选用的原则是什么? 含0.25%C以下的钢,在没有其它热处理工序时,可用正火来提高强度。对渗碳钢,用正火消除锻造缺陷及提高切削加工性能。对含碳0.25~0.50%的钢,一般采用正火。对含碳0.50~0.75%的钢,一般采用完全退火。含碳0.75~1.0%的钢,用来制造弹簧时采用完全退火作预备热处理,用来制造刀具时则采用球化退火。含碳大于1.0%的钢用于制造工具,均采用球化退火作预备热处理。珠光体、贝氏体、马氏体的特征、性能特点是什么?

片状P体,片层间距越小,强度越高,塑性、韧性也越好;粒状P体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。

常用的热处理方法

一、退火目的:

1、降低硬度,便于切削加工;

2、细化晶粒,均匀组织,以改善钢件毛坯的机械性能,或者为下一步淬火做好准备;

3、消除内应力具体工艺有:扩散退火、完全退火、不完全退火、球化退火、再结晶退火和消除应力退火。

二、正火目的是使低碳和中碳钢件及渗碳机件的组织细化,增加强度与韧性,减少内应力,改善切削性能。正火实质上是退火的一种特殊形式具有与退火相似的目的所不同的是冷却速度比退火快,可以缩短生产周期,比较经济。

三、淬火目的是提高钢件的硬度和强度。对于工具刚来说,淬火的主要目的是提高它的硬度,以保证刀具的切削性能和冲模工具及量具的耐磨性。有很多零件如齿轮、曲轴等,他们在工作时一方面要受磨,另一方面又要受到冲击作用,因此要求零件表面有很高的硬度,而中心有较好的韧性。这时可以利用表面淬火的方法来达到上述要求。表面淬火是应用将工件的表面迅速加热到淬火温度(这时金属内部的温度仍比较低),随后立即用水喷到工件表面上,进行急速冷却。这样就能获得表面硬、中心韧的要求。表面加热时,可用氧炔焰、高频电流或中频电流加热。

四、回火目的是消除淬火后的脆性和内应力,调整组织,提高钢件的塑性和冲击韧性。对于工具来说,是为了尽可能减少脆性保留硬度。对于零件来说是为了提高韧性,但不可避免的会使硬度降低。

五、调质淬火后高温回火,叫做调质。

目的是使钢件获得很高的韧性和足够的强度,使其具有良好的综合机械性能。很多重要零件如主轴、丝杠、齿轮等都是经过调质处理的。调质一般是在零件机械加工后进行的,也可把锻坯或经过粗加工的光坯调质后再进行机械加工。

第二篇:金属学与热处理期末复习总结

一、名词解释:

1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。

2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法。

3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能。

4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。

5回火脆性:是指淬火钢回火后出现韧性下降的现象。

6二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。7回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。9水韧处理:将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织。

10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变。

11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体(含残留奥氏体)的最低冷却速度。

12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂。

13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程。14本质晶粒度:本质晶粒度用于表征钢加热时奥氏体晶粒长大的倾向。

二、简答: 何为奥氏体化?简述共析钢的奥氏体化过程。

答:

1、将钢加热至临界点以上使形成奥氏体的金属热处理过程。

2、它是一种扩散性相变,转变过程分为四个阶段。

(1)形核。将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核。珠光体群边界也可形核。在快速加热时,由于过热度大,铁素体亚边界也能形核。

(2)长大。奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变。为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大。

(3)残余渗碳体的溶解。铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体。

(4)奥氏体的均匀化。残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的。只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体。奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响?简述影响奥氏体晶粒大小的因素。

答:

1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响。奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好。但奥氏体化温度过高或在高温下保持时间过长会显著降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度。

2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小。

(1)加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大。

(2)加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大。(3)钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小。

(4)钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小。简述影响过冷奥氏体等温转变的因素。

答:奥氏体成分(含碳量、合金元素)、奥氏体状态(钢的原始组织、奥氏体化的温度和保温时间)及应力和塑性变形。

1、含碳量的影响

亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低。过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低。

2、合金元素的影响

除Co、Al(WAl>2.5%)外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低。

3、奥氏体状态的影响

奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移。

4、应力和塑性变形的影响

在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变。

对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移。

4简述片状珠光体和粒状珠光体的组织和性能。

答:

1、片状珠光体 组织:WC=0.77%的奥氏体在近于平衡的缓慢冷却条件下形

成的珠光体是由铁素体和渗碳体组成的片层相间的组织。

性能:主要决定于片间距。

片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大。随片间距减小,钢的塑性显著增加。片间距减小,塑性变形抗力增大,故强度。硬度提高。

2、粒状珠光体 组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织

性能:主要取决于渗碳体颗粒的大小,形态与分布。

钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高。碳化物越接近等轴状、分布越均匀,则钢的韧性越好。

粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性

能以及淬火工艺性能都比珠光体好。

5何为马氏体?简述马氏体的晶体结构、组织形态、性能及转变特点。

答:是碳在α-Fe中过饱和的间隙固溶体。

2、马氏体的晶体结构在钢中有两种:体心正方结构WC<0.25%,c/a=1。

体心正方结构WC>0.25%,c/a>1。

组织形态:板条马氏体、片状马氏体

200℃以上,WC<0.2%,完全形成板条马氏体,因其体内含有大量位错又称

位错马氏体。特点强而韧

0.2%

200℃以下,WC>1.0%,完全形成片状马氏体,因其亚结构主要为孪晶又称

孪晶马氏体。特点硬而脆

4、(1)马氏体的显著特点是高硬度和高强度,原因包括固溶强化、相变强

化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小。

马氏体的硬度主要取决于马氏体的含碳量。合金元素对马氏体的硬度影

响不大,但可以提高其强度。

(2)马氏体的塑性和韧性主要取决于马氏体的亚结构。

5、(1)无扩散性。奥氏体成分保留在马氏体中

(2)马氏体转变的切变共格性

(3)马氏体转变具有特定的惯习面和位向关系(4)马氏体转变是在一定温度范围内进行的 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化。答:

1、钢的回火转变包括五个方面

(1)80℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体

马氏体:碳溶于α-Fe的过饱和的固溶体

(2)80℃-100℃回火,马氏体开始分解,组织是回火马氏体

回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体。(3)200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体(4)200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体 回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物。

(5)500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体

回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物。

2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高。简述回火脆性的分类、特点及如何消除。

答:1分类:第一类回火脆性(低温回火脆性250℃-400℃)和第二类回火脆性(高温回火脆性450℃-650℃)2特点 第一类回火脆性:(1)具有不可逆性

第二类回火脆性:(1)具有可逆性;

(2)与回火后的冷却速度有关

(3)与组织状态无关,但以M的脆化倾向 3如何消除

第一类回火脆性:无法消除,合金元素会提高脆化温度。第二类回火脆性:(1)选择含杂质元素极少的优质钢材以及采用形变热处理;

(2)加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;(3)对亚共析钢在A1~A3临界区可采用亚温淬火

(4)采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件。叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别。答:

1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关。临界冷却速度越慢,淬透性越大。其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示。

2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大。用淬火马氏体可能达到的最高硬度来表示。

3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度。

4、区别:(1)同一材料的淬透层深度与工件尺寸、冷却介质有关.工件

尺寸小、介质冷却能力强,淬透层深。

(2)淬透性与工件尺寸、冷却介质无关,它是钢的一种属性。相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的。何谓淬火热应力、组织应力?影响因素都是什么?简述热应力和组织应力造成的变形规律。

答:

1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨(或冷缩)的不一致所引起的内应力。

2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力。

3、影响因素:

(1)含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强。

(2)合金元素的影响:加入合金元素热应力和组织应力增加。

(3)工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将 由组织应力性逐渐变成热应力性。

b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显。

(4)淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型。

4、变形规律:

(1)热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小。

(2)组织应力引起变形与热应力相反。何谓回火?叙述回火工艺的分类,得到的组织,性能特点及应用。

答:

1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺。

2、分类: 低温回火:(1)得到回火马氏体。

(2)在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力。(3)适用于刀具、量具、滚动轴承、渗碳件及

高频表面淬火件。

中温回火:(1)得到回火托氏体。

(2)基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性。

(3)适用于弹簧热处理及热锻模具。

高温回火:(1)得到回火索氏体。

(2)获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性。

(3)广泛用于各种结构件如轴、齿轮等热处理。

也可作为要求较高精密件、量具等预备热处理。简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用。

答:

1、过程:(1)介质(渗剂)的分解

(2)工件表面的吸收

(3)原子向内部扩散。

2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳

3、渗碳层厚度(由表面到过度层一半处的厚度):一般为0.5-2mm。

4、渗碳层表面含碳量:以0.85%-1.05%为最好。

5、用刚:为含0.1-0.25%C的低碳钢和低碳合金钢。碳高则心部韧性降低。

6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火(分三类:遇冷直接淬火、一次淬火、二次淬火)+低温回火。

7、组织:表层:高碳M回+颗粒状碳化物+A(少量)心部:低碳M回+铁素体(淬透时)、铁素体+索氏体

8、应用:拖拉机履带板,坦克履带板

第三篇:热处理工艺总结

1.退火

将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度后,一般随炉温缓慢冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。

应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料 2.一般在毛坯状态进行退火。

2.正火

将钢件加热到Ac3以上30~50度,保温后以稍大于退火的冷却速度冷却。

目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。

应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。

3.淬火

将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。

目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。

应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。4.回火

将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。

目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和韧性,获得工作所要求的力学性能;3.稳定工件尺寸。

应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。

5.调质

淬火后高温回火称调质,即将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。

目的:1.改善切削加工性能,提高加工表面光洁程度;2.减小淬火时的变形和开裂;3.获得良好的综合力学性能。

应用要点:1.适用于淬透性较高的合金结构钢、合金工具钢和高速钢;2.不仅可以作为各种较为重要结构的最后热处理,而且还可以作为某些紧密零件,如丝杠等的预先热处理,以减小变形。

6.时效

将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。

目的:1.稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工后的内应力,稳定形状和尺寸。

应用要点:1.适用于经淬火后的各钢种;2.常用于要求形状不再发生变化的紧密工件,如紧密丝杠、测量工具、床身机箱等。

7.冷处理 将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀一致后取出均温到室温。

目的:1.使淬火钢件内的残余奥氏体全部或大部转换为马氏体,从而提高钢件的硬度、强度、耐磨性和疲劳极限;2. 稳定钢的组织,以稳定钢件的形状和尺寸。

应用要点:1.钢件淬火后应立即进行冷处理,然后再经低温回火,以消除低温冷却时的内应力;2.冷处理主要适用于合金钢制的紧密刀具、量具和紧密零件。

8.火焰加热表面淬火

用氧-乙炔混合气体燃烧的火焰,喷射到钢件表面上,快速加热,当达到淬火温度后立即喷水冷却。

目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍保持韧性状态。

应用要点:1.多用于中碳钢制件,一般淬透层深度为2~6mm;2.适用于单件或小批量生产的大型工件和需要局部淬火的工件。

9.感应加热表面淬火

将钢件放入感应器中,使钢件表层产生感应电流,在极短的时间内加热到淬火温度,然后喷水冷却。

目的:提高钢件表面硬度、耐磨性及疲劳强度,心部保持韧性状态。

应用要点:1.多用于中碳钢和中堂合金结构钢制件;2. 由于肌肤效应,高频感应淬火淬透层一般为1~2mm,中频淬火一般为3~5mm,高频淬火一般大于10mm.

10.渗碳

将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面获得一定浓度和深度的渗碳层。

目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍然保持韧性状态。

应用要点:1.用于含碳量为0.15%~0.25%的低碳钢和低合金钢制件,一般渗碳层深度为0.5~2.5mm;2.渗碳后必须进行淬火,使表面得到马氏体,才能实现渗碳的目的。

第四篇:金属热处理的工艺过程介绍

金属热处理的工艺过程介绍 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。

加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。

金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。

冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。

金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。

钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

淬火是将工件加热保温后,在水、油或其他无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

“四把火”随着加热温度和冷却方式的不同。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。

使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。

不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其他合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其他热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。

热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。

例如白口铸铁经过长时间退火处理可以获得可锻铸铁,提高塑性 寿命可以比不经热处理的齿轮成倍或几十倍地提高;另外,价廉的碳钢通过渗入某些合金元素就具有某些价昂的合金钢性能,可以代替某些耐热钢、不锈钢 ;工模具则几乎全部需要经过热处理方可使用。

第五篇:(金属学与热处理)工程材料学总结

《工程材料学》总结

第一部分:晶体结构与塑性变形 一、三种典型的金属晶体结构

1.bcc、fcc、hcp的晶胞结构、内含原子数,致密度、配位数。Bcc:体心立方,内包含2个原子,致密度为0.68,配位数为8 Fcc:面心立方,4个原子,致密度0.74,配位数12 Hcp:密排六方,6个原子,致密度0.74,配位数12 2.立方晶系的晶向指数[uvw]、晶面指数(hkl)的求法和画法。

3.晶向族〈„〉/晶面族{„}的意义(原子排列规律相同但方向不同的一组晶向/晶面,指数的数字相同而符号、顺序不同),会写出每一晶向族/晶面族包括的全部晶向/晶面。4.bcc、fcc晶体的密排面和密排方向。

密排面 密排方向

fcc {111} <110> bcc {110} <111>

二、晶体缺陷

1.点缺陷、线缺陷、面缺陷包括那些具体的晶体缺陷。

点缺陷:特征“三个方向尺寸都很小”空位,间隙原子,置换原子 线缺陷:特征“两个方向上的尺寸很小”位错:刃型位错,螺型位错

面缺陷:特征“在一个方向上尺寸很小”外表面,内界面:晶界,亚晶界,孪晶界,堆垛层错和相界 2.刃型位错的晶体模型。

三、塑性变形与再结晶

1.滑移的本质:滑移是通过位错运动进行的。2.滑移系 =滑移面 + 其上的一个滑移方向。滑移面与滑移方向就是晶体的密排面和密排方向。

3.强化金属的原理及主要途径:阻碍位错运动,使滑移进行困难,提高了金属强度。

主要途径是细晶强化(晶界阻碍)、固溶强化(溶质原子阻碍)、弥散强化(析出相质点阻碍)、加工硬化(因塑变位错密度增加产生阻碍)等。

4.冷塑性变形后金属加热时组织性能的变化过程:回复→再结晶→晶粒长大。5.冷、热加工的概念

冷加工:在再结晶温度以下进行的加工变形,产生纤维组织和加工硬化、内应力。

热加工:在再结晶温度以上进行的加工变形,同时进行再结晶,产生等轴晶粒,加工硬化、内应力全消失。6.热加工应使流线合理分布,提高零件的使用寿命。第二部分:金属与合金的结晶与相图

一、纯金属的结晶

1.为什么结晶必须要过冷度?

由热力学可知,在某种条件下,结晶能否发生,取决于固相的自由度是否低于液相的自由度,即 G =GS-GL<0;只有当温度低于理论结晶温度 Tm 时,固态金属的自由能才低于液态金属的自由能,液态 金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。

2.结晶是晶核形成和晶核长大的过程。

3.细化铸态金属的晶粒有哪些主要方法?(三种方法)控制过冷度,变质处理,振动搅动 二、二元合金的相结构与相图

1.固溶体和金属化合物的区别。(以下哪一些是固溶体,哪一些是金属化合物:α-Fe、γ-Fe、Fe3C、A、F、P、Ld、S、T、B上、B下、M片、M条?)

’2.匀晶相图

①在两相区内结晶时两相的成分、相对量怎样变化? ②熟练掌握用杠杆定律计算的步骤:

⑴将所求材料一分为二,⑵注意杠杆的位置和长度,⑶正确列出关系式。3.共晶(析)相图

①熟悉共晶(析)相图的基本形式(水平线、一变二)。②会区分共晶(析)体、先共晶(析)相、次生相(二次相)。

③会在相图中填写组织组成物(或相组成物),掌握不同合金在室温时的平衡组织, 会熟练应用杠杆定律计算相组成物和组织组成物的相对量。

三、Fe-Fe3C 相图(重点)

1.默绘相图并牢记共晶转变和共析转变的温度与各相成分。包晶转变:1495摄氏度 共晶转变:温度1148摄氏度 共析转变:727摄氏度

2.掌握各类合金平衡结晶过程与室温时的平衡组织,会画符合要求的平衡组织示意图: ①各组织组成物的形态,②在相图上标注各组织组成物。3.会用杠杆定律计算相组成物和组织组成物的相对量。第三部分:各类材料与钢铁热处理(重点)

一、各类材料的牌号、热处理和用途

1. 会根据牌号确定钢的化学成分(碳及合金元素的含量范围)。①结构钢钢号特征: 前二位数字(万分比)普通碳素结构钢(如Q235等)、普通低合金钢(如Q295等)包括:⑴工程构件用钢: 含碳量小于0.20%。

热处理:热轧空冷后(相当于正火)直接使用 ⑵机器零件用钢: 按含碳量区分,由低到高是 渗碳钢(0.100.50%)(碳素钢:40, 45;合金钢:40Cr, 35CrMo, 40CrNiMo)、热处理:调质处理,即淬火+高温回火 用途:轴,弹簧钢(0.500.60%的工具钢, 如:3Cr2W8V,5CrNiMo 热处理:淬火+高温回火

⑶量具用钢:C:0.9-1.5%, 碳素工具钢:T10A, T12A 热处理:水(油淬)+低温回火 低合金工具钢:9SiCr, GCr15, 热处理:淬火(油)+冷处理+低温回火

③不锈钢钢: Cr含量≥13%, 如:1Cr18Ni9Ti,3Cr13 2.钢的热处理工序及应用

①预先热处理: 完全退火(用于亚共析钢,用于组织均匀化,Ac3+30 C)

球化退火(用于共析钢、过共析钢, Ac1+30 C)

正火(过共析钢中消除网状二次碳化物,低碳亚共析钢中代替完全退火但强度硬度高一些, Ac3(ACcm)+30 C)

②最终热处理

⑴一般: 低温回火(用于刃具、冷模具等)

淬火 + 中温回火(用于弹簧等)

高温回火(即调质,用于轴类等)

⑵特殊: 构件用钢:不淬火,在热轧或正火(空冷)状态使用;

渗碳钢:先渗碳,再淬火 + 低温回火。

3. 铸铁、有色金属材料的分类

①要求掌握铸铁的分类并认识牌号(HT、QT、KT等)。②了解铸铁中石墨形态(几种形态?)对铸铁性能的影响。③ 要求认识铝合金、铜合金、钛合金的类型和强化途径。4.材料力学性能各指标的符号、名称。

二、热处理原理 1. 2. 3. 4. 钢加热到临界点(AC1/AC3/ACm)以上形成奥氏体,应控制加热温度和保温时间以避免晶粒长大。共析钢的TTT曲线示意图。

P、S、T、B上、B下、M片、M条的形态。

M的性能:硬度决定于马氏体内含碳量,韧性决定于马氏体的粗细及形态。

5.TTT曲线的应用: 冷却方式 画冷却曲线 所得组织 6.回火形成粒状组织M回、T回、S回(T回、S回与片状组织T、S无关)。

三、热处理工艺 1.会确定加热温度 ①退火、正火、淬火:

碳钢:临界点(AC1/AC3/ACm)+ 30℃;合金钢原则相同,但温度较高。②回火: 低温回火,中温回火,高温回火(用于淬火后的热处理)2.冷却方式与目的

① 退火—炉冷;②正火—空冷;③淬火—单液淬火,水淬油冷,分级淬火(减小内应力),等温淬火(获得B下)3.淬透性与淬硬性的区别

淬透性:钢淬火获得M多少的能力,决定于C曲线左右的位置。

淬硬性:钢淬火获得M的硬度高低,决定于M内的含碳量。故高碳钢的淬硬性好而淬透性不好,低碳合金钢的淬透性好而淬硬性不够(如20CrMnTi)。

四、要求会定性分析合金元素在钢中主要作用的原因。①提高淬透性,②固溶强化,③弥散强化,④细化晶粒 ⑥所有合金元素都提高回火稳定性。

五、高速钢

1.莱氏体钢的锻造: 莱氏体钢内存在不均匀分布的粗大共晶碳化物,严重降低钢的性能,不能用热处理方法消除,必须进行反复多向的锻造击碎之,使之分布均匀,改善组织性能。高速钢及Cr12型钢都是莱氏体钢。2.为获得高速钢的红硬性,其热处理工艺应当: ① 高温淬火形成高碳高合金度的马氏体

高温加热(W18Cr4V 1280℃;W6Mo5Cr4V2 1220℃)使大量碳化物溶入奥氏体,形成高碳高合金度的奥氏体,经淬火形成高碳高合金度的马氏体 + 大量残余奥氏体 + 未溶碳化物,为二次硬化作准备。② 560℃多次回火时发生二次硬化,原因是:

⑴弥散强化,回火温度达500℃以上时,从马氏体内析出大量稳定的特殊合金碳化物,弥散分布,使硬度上升, 至560℃硬度达到峰值。

⑵二次硬化,在回火冷却时发生A向 M回 转变,也使硬度上升。多次回火可继续降低残余奥氏体量,进一步提高硬度。最终组织:回火马氏体 + 少量残余奥氏体 + 碳化物

,六、典型零件的选材、热处理及工艺路线(综合应用)

1、选材原则:力学性能;工艺性能;经济性;(轻型、高寿命)2. 轴类零件: 调质钢,如:40,40Cr等

热处理:调质(即淬火 + 高温回火)。(S回)

弹簧零件:弹簧钢。如:60Si2Mn 热处理:淬火 + 中温回火。(T回)机床齿轮:调质钢,如: 40,40Cr 热处理:调质表面淬火(高频)+ 低温回火。

汽车、拖拉机变速箱齿轮:渗碳钢,如:20Cr或20CrMnTi

热处理:渗碳 + 淬火 + 低温回火。

2.一般工艺路线: 锻(铸)造成形 → 预先(备)热处理 → 粗加工 → 最终热处理 → 精加工

金属热处理原理及工艺 期末总结
TOP