首页 > 精品范文库 > 12号文库
干法脱硫工艺技术分析
编辑:琴心剑胆 识别码:21-822300 12号文库 发布时间: 2023-12-03 18:43:09 来源:网络

第一篇:干法脱硫工艺技术分析

干法脱硫工艺技术分析

摘 要:火电厂排放的二氧化硫形成的酸雨已严重危害人类的生存环境,国家强制要求火电厂必须安装烟气脱硫装置。但是,受技术和经济等条件的限制,必须发展脱硫率高、系统可利用率高、流程简化、系统电耗低、投资和运行费用低的脱硫技术和工艺。在这种形势下,干法脱硫工艺应运而生。为此,结合国内外目前比较成熟、大型商业化运行的几种干法、半干法脱硫工艺,分析了干法、半干法脱硫工艺在大型化发展、控制调节、预除尘器和脱硫除尘器设置的技术要点,最后指出干法脱硫工艺具有广阔的应用前景。

关键词:烟气脱硫;干法脱硫工艺;技术要点;前景

1烟气脱硫技术的发展和现状

世界上烟气脱硫技术的发展经历了以下3个阶段:

a)20世纪70年代,以石灰石湿法为代表第一代烟气脱硫。

b)20世纪80年代,以干法、半干法为代表的第二代烟气脱硫。主要有喷雾干燥法、炉内喷钙加炉后增湿活化(LIFAC)、烟气循环流化床(CFB)、循环半干法脱硫工艺(NID)等。这些脱硫技术基本上都采用钙基吸收剂,如石灰或消石灰等。随着对工艺的不断改良和发展,设备可靠性提高,系统可用率达到97%,脱硫率一般为70%~95%,适合燃用中低硫煤的中小型锅炉

c)20世纪90年代,以湿法、半干法和干法脱硫工艺同步发展的第三代烟气脱硫。

由于技术和经济上的原因,一些烟气脱硫工艺已被淘汰,而主流工艺,如石灰石-石膏湿法、烟气循环流化床、炉内喷钙加炉后增湿活化、喷雾干燥法、气体悬浮吸收脱硫工艺(GSA)以及改进后的NID却得到了进一步的发展,并趋于成熟。这些烟气脱硫工艺的优点是:脱硫率高(可达95%以上);系统可利用率高;工艺流程简化;系统电耗低;投资和运行费用低。从20世纪90年代开始,中国先后从国外引进了各种类型的脱硫技术,建成了6个示范工程项目,涉及湿法、半干法和干法烟气脱硫技术,见表1。

本文根据几种干法、半干法脱硫工艺的基本原理,对干法工艺的几个重要方面进行分析。

2脱硫塔大型化的要点

2.1尽量使用单塔脱硫

随着机组容量的增大,脱硫塔的直径也随着增大。在能使用单塔的情况下,尽量不要使用双塔和多塔,因为单一吸收塔技术提高了系统的可靠性和脱硫率,而且初期投资费可降低30%~50%。脱硫副产品回收利用的研究开发,也拓宽了其商业应用的途径。

2.2脱硫塔大型化的主要问题

脱硫塔大型化最主要的问题是要保证塔内流场中温度的均匀性和调节的灵敏性。

a)塔内流场中温度均匀性的要求

在塔的高度方向的各个断面上,各点的温度趋于一致,不能有高、低温差异太大的情况出现。因为高温处的SO2吸收反应效果较差,高温时吸收剂的活性较小,反应温度与烟气露点温度的差值较大(AST),反应率就低;而低温处,尤其出现低于露点温度,即AST<0时,容易出现局部的结露、粘连和筒壁腐蚀,这就是为什么有些脱硫工艺需要在反应塔内加装内衬的原因,其实,这种情况的危害性较大,反应塔可以通过内衬防腐,但烟气下游的设备和烟气管道却难以防腐,且花费较大。

b)脱硫塔调节的灵敏性要求

随着负荷、工况的变化,各参数的负荷应变时间短,较少滞后,使脱硫效率随着工况的变化而变化,从而保证各种工况下脱硫率稳定。 2.3循环流化床烟气脱硫塔

为保证脱硫反应塔温度的均匀性和调节灵敏性,要求塔内有良好的传质特性。物料的传质往往比传热更重要,而且能更快达到更好的效果,单纯的传热速度较慢,而且热力场有热力梯度,很难使各点的温度在短时间内很均匀,利用循环流化床的原理而设计的脱硫塔,在这一方面比较能够达到这一要求,它使反应塔内的传热传质非常强烈。 2.3.1循环流化床脱硫塔的特点

根据循环流化床原理而设计制造的脱硫反应塔,其烟气进入反应塔底部时,塔内文丘里的加速,将喷入塔内的吸收剂和循环回流的物料吹起,形成沸腾床体,气体和物料无论处于流化床的过渡段还是稳定段,都处于强烈的紊流状态,物料之间的碰撞、摩擦、反应、传热等物理化学过程非常强烈,任何工况变化所引起的波动都会在这个强烈的传热传质状态下迅速达到新的平衡。这样,布置在塔顶的温度测点产生假信号或几个测点的温度信号不一致而使控制系统无法及时进行各种物料的调节的可能性大为减少,同时也使脱硫设备出现低温、结露、腐蚀的概率大为减少。

2.3.2回流式循环流化床烟气脱硫塔的特点

尤其是德国WULFF公司的回流式烟气循环流化床(RCFB),其独特的流场和塔顶结构设计,在RCFB吸收塔中,烟气和吸收剂颗粒的向上运动中会有一部分因回流(Reflux)而从塔顶向下返回塔中。这股向下的回流固体与烟气的方向相反,而且,它是一股很强的内部湍流,从而增强了烟气与吸收剂的接触时间。实际上可以认为这是一种与外部再循环相似的内部再循环。在内部再循环的作用下,RCFB工艺的脱硫效率得到了优化。也许很多脱硫工艺都很难避免腐蚀情况的出现,但这种概率和趋向则可以把握。 2.4脱硫塔内烟气湿度的控制

温度的控制,实质上是对烟气湿度的控制。脱硫工艺中,烟气的湿度对脱硫效率的影响很大。例如炉内喷钙尾部增湿工艺,其炉内喷钙脱硫效率为25%~35%,尾部增湿效率为40%~50%,总效率为75%左右,这说明了烟气湿度对脱硫效率的影响。在相对湿度为40%~50%时,消石灰活性增强,能够非常有效地吸收SO2,烟气的相对湿度是利用向炉内给烟气喷水的方法来提高。半干法烟气脱硫工艺中,水和石灰以浆液的状态注入烟气,浆液中固态物的质量分数为35%~50%,而干法脱硫工艺,如RCFB和NID,加入的水量相同,但水分布在粉料微粒的表面,用于蒸发的表面积很大。烟气湿度的提高,可以使烟气脱硫操作温度接近或高于露点温度10~20 ℃(实践中,这一温度范围为65~75 ℃),激活消石灰吸收SO2。SO2是烟气中反应较慢的成分,保持床温接近露点温度(即较高的相对湿度),可以保持微粒表面的湿膜有较长的停留时间,促进SO2和Ca2化学成分之间的反应,使吸收的程度和石灰的利用率达到最佳。SO3和卤化酸类(HCl、HF等)的酸性比SO2强,所以SO3,HCL,HF成分在装置中的去除率达99%,因其活性强,几乎能全部与SO2同时被吸收,适量的卤化酸类因钙的吸湿性、因雾滴在湿润环境中的干燥时间较长,有助脱除SO2,这也是采用接近露点温度的另一好处。

3干法脱硫工艺的运行调节

干法脱硫工艺的系统控制和调节主要取以下3个信号,用以前馈或反馈到各个调节回路,相互配合,达到脱硫的最佳工况条件,保证脱硫的效果。3.1控制好脱硫塔内的温度及高度重视塔内的加水方式

a)监测脱硫塔内的温度,以此来调节喷水系统的开度和喷水量的大小,保持适当的AST值,使床温在各种负荷和工况条件下,烟气的酸露点温度始终保持在较高处,这样,吸收剂的活性最佳,能够较好地捕捉SO2,并发生化学反应,提高脱硫率。

在大型化商业运行的脱硫塔中,温度的控制是比较困难的,它是制约脱硫装置大型化发展的主要因素之一。当脱硫塔直径越来越大时,要各个大面积截面上的温度保持均匀性,需采取大量的有效措施,目前,干法、半干法脱硫装置还没有在较大容量机组上使用的业绩,与此有很大关系。较为成熟的脱硫技术,如旋转喷雾法,GSA法,其单塔容量一般都在100 MW机组以下,单塔直径4 500 mm以下,而NID法则做得更小一些。各国公司都在围绕干法、半干法脱硫装置大型化发展进行开发和研究,德国WULFF公司利用流化床和带内回流的循环流化床技术(RCFB),在解决传热传质这一问题上,取得了一定的成绩,效果明显。目前,RCFB单塔用于奥地利1台300 MW机组烟气脱硫并获得成功。

b)给脱硫塔内加水的方式颇为讲究。在旋转喷雾,GSA半干法中,由于吸收剂以浆液形式喷入时带有水,运行时又需加调节,造成由温度信号而引起的水路调节变得复杂化,因为在喷浆工艺中,所加入的水与吸收剂的量有比例关系,使喷水调节受其它因素影响。NID法的水完全与吸收剂、再循环料一道加入反应塔(视垂直烟道为反应塔)。RCFB法吸收剂直接以干粉形态喷入,水路另外单独喷入,就喷水调温而言,RCFB法显然要更方便一些。 3.2监测SO2排放量

监测SO2排放量信号,用于调节脱硫剂的加入量。当SO2排放量较大时,就应加入更多的吸收剂去吸收更多的SO2;当SO2的排放量较小时,就应减少吸收剂的使用,使系统运行经济合理,降低成本。3.3监测吸收塔的压降

监测吸收塔的压降,用于调节再循环量的大小,使脱硫渣的循环量和循环次数控制在设计范围之内,这样既可控制下游脱硫除尘器的入口灰尘的质量浓度和烟囱烟尘质量浓度的排放,又可提高吸收剂的利用率,降低碱酸比。

控制这三个监测量及其相关的信号去调节各运行回路,使脱硫系统的运行达到最优化,这是干法、半干法脱硫工艺控制系统的基本要求。就控制的灵敏性、可靠性而言,如果三个控制回路能完全独立,各行其是,互不影响则最理想,而RCFB技术的控制原理最能符合这一要求,由于其吸收剂、水和脱硫渣的再循环是独立加入到脱硫塔的,这样就避免了其它工艺三者的互相牵连,避免了增加脱硫剂时附加了水而使温度下降或加水降温时附加了脱硫剂,从而增加再循环量而增大碱酸比的情况。当然,以上三个参数总是相互影响、协同调节的,但三路系统的参数分别调节,会更方便灵活一些。

4预除尘器设置的探讨

对于是否使用预除尘器,很多文献或资料并没有详细说明。据国外一些资料指出,一般干法或半干法都设有预除尘器,但国内很多电厂没有设预除尘器。不设预除尘器,笔者认为起码会影响以下2方面。 4.1不利于燃料灰和脱硫灰的再循环

根据计算,锅炉燃煤产生的燃料灰的量比较多,而用于脱硫产生的脱硫灰的量比较少,通常前者是后者的三倍左右。以200 MW机组为例,耗煤量约95 t/h,产生的燃料灰约22 t(灰分的质量分数以25%计),而脱硫灰量(硫的质量分数以0.85%计)约7 t;以300 MW机组为例,耗煤量约140 t/h,产生的燃料灰约32 t,而脱硫灰量约11 t。这就是说,如果没有预除尘器,当脱硫灰和燃料灰混在一起再循环时,将有75%的再循环物是燃料灰,而这些大量的燃烧灰对提高脱硫率和降低碱酸比值并没有帮助,还会减少吸收剂、脱硫灰与SO2的接触,消耗动力,增大反应塔容量;由于再循环量变大,还会提高烟气喷射的初始速度以达到同样的流化状态,这一初始速度的提高,还会带来以下2个问题:

a)减小烟气在塔内的停留时间,使气体很快通过吸收塔,降低了塔内的反应率,将部分脱硫反应留在了下游设备中。

b)一般燃料灰比脱硫灰要粗一些,燃料灰的平均粒径大致为15μm±5μm,脱硫灰的平均粒径大致为10μm±5μm;燃料灰的体积质量一般为700~1 000 kg/m3,而脱硫灰的体积质量一般为500~1 000 kg/m3,烟气流速的加大,将大量的细微粒带出了反应塔,不利于吸收剂的有效利用,影响了碱酸比。 4.2影响脱硫塔下游的脱硫除尘器

是否设置预除尘器,对脱硫塔下游的脱硫除尘器会产生较大的影响。如果没有预除尘,大量燃煤灰混在脱硫灰中一起循环,使得循环量变大,脱硫除尘器的入口质量浓度也随之增大,在除尘器排放指标一定的情况下,脱硫除尘器的入口质量浓度是有限度的,太高的入口粉尘质量浓度也会使除尘器的造价上升,这样势必减少循环次数,降低吸收剂利用率,使碱酸比值变大。如果有预除尘器,这一情况将得到改善。这就可以解释GSA,NID脱硫工艺,在没有预除尘器时,循环次数只有30~50次;而CFB,RCFB脱硫工艺,由于设置了预除尘器,循环次数就可以达到100~150次。

5脱硫除尘器的设置

干法、半干法脱硫用的除尘器有别于火力发电厂的常规除尘器,大型火力发电厂一般1台炉配2台除尘器,而脱硫装置如果是配单塔脱硫,则通常只配一台除尘器。除了设备数量的不同使得脱硫除尘器变大外,其差别还主要在于除尘器入口质量浓度的不同。火力发电厂所配除尘器的入口质量浓度通常在35 g/m3左

3右(标准状态),若烟尘排放标准以200 mg/m计(标准状态),则效率通常为99.4%左右,而脱硫除尘器的入口质量浓度由于脱硫渣的多次再循环而变得很大,3通常达到0.6~1 kg/m(标准状态)。要达到相同的排放质量浓度,除尘效率通常要求达到99.97%以上。如使用RCFB技术的广州恒运集团公司的以大代小1×210 MW机组的烟气脱硫系统,脱硫除尘器的入口质量浓度为800 g/m3(标准状态),除尘效率要求达99.975%;使用NID技术的浙江巨化股份有限公司的230 t/h烟

3气脱硫用除尘器的入口质量浓度为1 kg/m(标准状态),除尘效率要求达99.98%。凡利用循环技术进行干法、半干法脱硫的工艺,其脱硫除尘器的入口质量浓度都很高。如GSA,NID等工艺,由于循环量较大,一般循环次数为30~40次时,脱

3硫除尘器的入口质量浓度便达到了1 kg/m(标准状态)。如采用预除尘器,由于再循环量减少了大约70%,其循环次数在100~150次左右时,脱硫除尘器的3入口质量浓度可达到600~800 g/m(标准状态),如RCFB工艺。对于高粉尘质量浓度的除尘器,国外有用布袋式的,也有用静电式的。由于布袋除尘价格较高,检修强度较大,更换频率快,且系统压降较大,厂用电高,我国趋向于使用静电除尘器。静电除尘器处理高质量浓度粉尘在结构上有其特殊的地方,各种工艺所采取的办法也不尽相同,如GSA工艺,在烟气进静电除尘器之前,先通过旋风分离器进行机械预除尘;NID脱硫工艺,在静电除尘器上加一段机械预除尘和小灰斗;lurgi公司采用上进气方式,通过烟气回转折流预除尘;德国WULFF公司在进口及第一电场采取预除尘措施的同时,又在振打清灰,改善放电极线形式,加大放电强度,提高放电电流强度,防止二次飞扬等方面做工作,并取得了较好的效果,获得了很高的除尘效率。尽管脱硫除尘器的入口质量浓度很高,但由于脱硫灰分的组成主要是钙的化合物,不会有燃煤灰中的Al2O3和游离SiO2等难以捕捉的物质,且脱硫灰的粉尘较细、比电阻较小,含湿量相对高一些、温度较低等因素,还是对除尘有利。但是,脱硫除尘器是干法、半干法脱硫工艺一个非常主要的设备。因为不仅有部分脱硫反应在除尘器中完成,而且除尘器还与脱硫塔的再循环联系在一起。严格意义上讲,脱硫除尘器是干法、半干法脱硫工艺的一个组成部分,与脱硫塔密不可分,实际上,国外所讲的干法脱硫工艺系统,就包括了脱硫除尘器。

6结论

由于干法脱硫工艺在占地、造价、操作、调节、维护、副产品无二次污染等方面的优点,这种工艺越来越受到业主方的广泛青睐。现在各国都在积极研究干法脱硫技术,并使之逐步向设备大型化、系统简单化、控制自动化发展,所以国内干法、半干法应用的比例也在逐步提高。随着对干法脱硫工艺的深入认识、研究和改进以及对脱硫灰综合利用的开发,干法脱硫工艺将会有更加广阔的应用前景。

参考文献

[1]黎在时,刘卫平.德国 WULFF公司的干法脱硫技术[J].中国环保产业,2002(2):74—76 [2]刘孜.我国二氧化硫和酸雨污染防治工作取得阶段性成果[J].电力需求侧管理, 2001,3(3):5—6

[3]容銮恩.燃煤锅炉机组[M]. 北京: 中国电力出版社, 1998 [4]郝吉明,王书恩.燃煤二氧化硫污染控制技术手册[M]北京: 化学工业出版社, 2001 [5]薛建明, 马果骏.炉内喷钙炉后活化脱硫工艺对电除尘器性能的影响[J].电力环境保护, 2001,17(1):9—11

[6]王文龙,施正伦.流化床脱硫灰渣的特性与综合利用研究[J].电站系统工程, 2002, 18(5):19—21

第二篇:干法脱硫工艺技术分析(teniu推荐)

干法脱硫工艺技术分析

摘要:现代社会的发展,社会各界对于能源的需求十分巨大,天然气作为优质的清洁能源,其产业在良好的社会形势下,得到了快速稳定的发展。科学技术的提升,促进了其各项技术的发展,其中脱硫工艺技术语天然气生产过程中极为重要的技术之一,其对于天然气的质量有着决定性的作用。基于此,本文就干法脱硫工艺技术进行分析与研究。

关键词:干法;脱硫工艺;技术

一、碱法脱硫技术

碱法脱硫技术属于化学脱硫法的一种,是指使用酸碱度在9至11之间的强碱弱酸盐溶液作为吸收剂,将硫元素吸收,较为典型的即是碳酸盐法。如果是以碳酸钠作为溶液,在吸收塔内把原料气和碳酸钠溶液进行融合入,使之发生化学反应,其会生成碳酸氢钠(NaHCO3)及硫氢化钠(NaHS)。先将富液吸收大量的硫化氢,再采用真空碳酸盐法,利用蒸汽对其进行蒸馏,再次形成溶液,将该方法和克劳斯法有机结合,硫磺纯度可以达到99.6%左右,该过程中需要使用蒸汽及大量冷却水,能耗较大。热碳酸盐法是指在减少压力的情况下,利用蒸汽对其进行加热再生,使之透析出硫化氢气体,并生成碳酸钠(Na2CO3),如果原料中的氧气及二氧化碳较为丰富,即可以使用该方法。

二、物理吸收法

1.工艺概况

物理吸收法的吸收剂一般是使用较为特殊的有机复合物,其对于硫化氢等气体具有良好的溶解性,可以实现脱硫的目的。现代较为常用的物理吸收法有多乙二醇二甲醚法、低温甲醇法、N甲基吡咯烷酮法等,其中低温甲醇法的优势十分显著,运用的较为广泛。其又称为冷甲醇法,其基本原理是由于低温条件下,甲醇能够有效的吸收硫化氢等酸性气体,如果温度由20℃降低至零下40℃,二氧化碳在其中的溶解度会提升6倍左右;如果温度保持在零下40至零下50℃,硫化氢的溶解度则要超过二氧化碳,约为二氧化碳的6倍左右,可以利用该性质分别吸收硫化氢及二氧化碳。该工艺在脱硫的过程中不仅能够实现后期的净化目标,并能够分别将其中需要处理的各种成分一一进行回收处理,包括二氧化碳、硫化氢、羰基硫等,将二氧化碳进行回收后可以英语制作尿素;利用克劳斯法可以在硫化氢溶液中回收硫磺,充分利用资源。该方式对于天然气的净化效果十分限制,能够将硫含量降低至0.1μL/L以内,且反应的过程中不会出现气泡的现象,因此不会造成设备的腐蚀。但是由于甲醇具有一定的镀锌,应在设备中设置制冷装备,使得操作及维修工作存在一定的难度。

2.主要流程

首先需要把原料天然气中二氧化碳的含量控制到一定范围内,有计划的将硫化氢除去,并使用闪蒸再生塔系统脱去酸性组成成分,该工艺能够较为自主的选择脱去其中的有机硫,还可以改变天然气的烃露点,使之更加符合要求。

三、生物脱硫法

生物脱硫法是较为新型的天然气处理技术,主要是先利用某些微生物、细菌的特点,把硫化氢转变为单质硫,最后将其回收处理。现代使用的生物脱硫方法一般是在良好的环境中,使用有机微生物或酶,对硫成分形成催化反应,使得非水溶性硫化物转变为水溶性化合物,再脱去其中的硫成分。有学者运用Bio-SR工艺,将铁盐的吸收作用和氧化亚铁硫杆菌相结合,进行了硫化氢的脱除实验,实验效果较为良好,脱除效率高达98.4%。但是该项技术尚未成熟,在国内尚处于实验探索的过程中,如果将其应用于工业方面,其需要较长的时间进行初始化运行,微生物稳定也有难度,需要较高的技术。

四、烟气脱硫传统工艺

(一)湿法脱硫技术

烟气湿法脱硫技术是世界上广为应用的脱硫技术。到目前为止,可供选择的湿法脱硫技术较多,主要有石灰石/石灰—石膏法、氢氧化镁(氧化镁)法、氢氧化钠法、亚硫酸钠法、氨法、海水法等。其中,石灰石/石灰—石膏法因其工艺具有技术成熟、效率较高(﹥90%)、运行可靠、操作简单、烟气中的粉尘对脱硫过程影响小,以及原料来源丰富、成本低廉、运行可靠和钙利用率高(﹥90%)等优点,其装机容量占现有工业脱硫装置总容量的85%。但是,目前我国大型烟气脱硫装置一般采用国外低PH浆液空塔喷淋技术,运行过程液气比高、PH低,投资及维护成本高。除此之外还存在吸收剂消耗量大、生成物难处理、易产生二次污染等问题。除此之外,该方法易在设备内形成积垢,且存在堵塞、腐蚀与磨损的弊端。以500MW燃煤电厂为例,采用石灰石/石灰—石膏法每年消耗石灰6.1万t(或石灰石13.2万t),生成废渣43.8万t。即使是改良后的双碱法也由于Na2SO4难以再生,需要不断向系统补充NaOH或Na2Co3,造成碱的消耗增多。

超重力脱硫技术是北京化工大学开发的一种湿法脱硫新工艺,于2010年在巨化硫酸厂实现工业化应用,形成了20万t/a硫酸工业尾气SO2深度脱除与资源化利用成套产业化装置和工艺。超重力技术利用强化宏观传质和微观混合过程的方法,减少设备内物料的停留时间,大幅缩小设备的尺寸与质量,生产强度得到提高、易于操作,开停车、维护与检修方便。超重力脱硫在巨化硫酸厂的运行结果表明:其脱硫效率高达98%以上,尾气排放的SO2浓度低于200mg/m3,是一种值得推广的湿法烟气脱硫技术,应用前景广阔。

(二)干法脱硫技术

干法脱硫工艺是在完全干燥、没有液相参与的状态下,通过应用一定的技术手段将烟气中的SO2分解或固定下来,以减少SO2的排放。

传统的干法烟气脱硫技术是将固体状态的石灰粉料直接喷射到炉膛或反应塔内,通过化学反应,吸收固定烟气中的SO2。干法烟气脱硫反应物和反应产物均为固态干粉,不存在腐蚀、结垢及废水处理等问题。传统的干法脱硫流程还具备设备简单、投资小、占地少、施工周期短、反应过程烟气温降小和有利于烟囱排气扩散等优点。但是由于反应发生在气固界面,受到扩散环节限制,其脱硫效率较低(一般仅有30%~60%)

(三)半干法脱硫技术

在湿法和干法脱硫技术基础上,结合湿法脱硫工艺反应充分、效率高,干法脱硫工艺投资少,无需废水处理的优势,开发出了半干法脱硫技术。它是除了湿法脱硫工艺之外,应用最广的脱硫技术,占市场份额的10%。半干法脱硫技术是将石灰浆液喷入反应塔中,借助烟气自身热量使吸收液中的水绝热蒸发后随烟气排出,烟气中SO2则以亚硫酸钙/硫酸钙的形式固定后外排。文献以氧化锌烟尘为吸收剂,浆化后吸收锌冶炼挥发窑烟气,二氧化硫以亚硫酸盐和硫酸盐的形式回收,二氧化硫回收率达到90%以上。

半干法工艺中,旋转喷雾干燥法使用最为广泛。该方法由美国JOY公司和丹麦NIRO公司合作开发,其核心设备喷雾干燥塔可以同时实现反应吸收和干燥两方面作用。为了保证干燥和吸收过程的充分进行,一般需保证烟气在塔中停留10~12s 结束语

由于干法脱硫工艺在占地、造价、操作、调节、维护、副产品无二次污染等方面的优点,这种工艺越来越受到业主方的广泛青睐。现在各国都在积极研究干法脱硫技术,并使之逐步向设备大型化、系统简单化、控制自动化发展,所以国内干法、半干法应用的比例也在逐步提高。随着对干法脱硫工艺的深入认识、研究和改进以及对脱硫灰综合利用的开发,干法脱硫工艺将会有更加广阔的应用前景。

参考文献:

[1]任丽.半干法脱硫副产物烧制硫铝酸盐水泥的试验研究[D].山东大学,2009.[2]张丽英.干法、半干法脱硫灰的性质及其用于生产蒸养砖的应用研究[D].武汉理工大学,2008.[3]刘孟贺.LIFAC干法脱硫灰的性能及其在水泥中的应用研究[D].西安建筑科技大学,2008.[4]王现菊.干法半干法脱硫灰渣在热利用过程中二氧化硫的逸出规律及机理分析[D].华南理工大学,2010.[5]张雷.循环悬浮式半干法烟气脱硫系统结构设计及分析[D].武汉理工大学,2011.[6]黄斌,张毅,李东旭.干法脱硫灰制备石膏砂浆及其性能研究[J].硅酸盐通报,2013,01:1-5.

第三篇:干法脱硫

.干法脱硫

干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100℃);中温(100~400℃);高温(>400℃)脱硫剂。我国有关院所开发成功多种型号的低温、中温脱硫剂,西北化工研究院开发成功高温脱硫剂。

4.脱硫方法的选择

选择脱硫方法的原则是,在满足生产需要的前提下,价格尽量便宜。根据不同原料气中硫化物的形态,将不同的脱硫方法进行排列组合,构成不同的脱硫工艺,以达到脱硫效果最佳,运行费用最低。例如煤气和半水煤气中硫的形态主要为H2S和COS,传统的方法是采用高温钴钼加氢转化,再用ZnO精脱。该工艺的缺点是需要高温热源,能耗高,费用高,目前可采用的流程是,湿法脱硫→COS水解→常温精脱工艺。其优点是能耗低、硫容高,与常温ZnO脱硫相比价格便宜的多。再如焦炉气中硫成分复杂,可采用湿法脱硫→钴钼加氢转化→锰矿→中温精脱工艺。天然气中若只含有少量的H2S及RSH,可以单独使用ZnO脱硫剂。若含有RSR C4H4S等复杂的有机硫化物,则应采用钴钼加氢转化后加ZnO精脱,如果总硫含量较高,应先用湿法脱硫工艺脱除大部分H2S,然后用钴钼加氢转化,再用锰矿脱去大部分的RSH,最后用ZnO精脱。

今后应根据不同工况,不同原料气,不同形态的硫化物和不同的技术要求,开发出更优化的脱硫新工艺,提高脱硫的技术水平,提高经济效益,这也是要研究的大课题。

第四篇:干法脱硫交流

脱硫工艺方案

工艺流程描述:循环流化床干法脱硫工艺系统主要由生石灰消化输送系统、循环流化床吸收塔、喷水增湿系统、返料系统、气力输送系统、灰库、脱硫除尘器以及仪表控制系统组成,如图1-1。

图1-1

循环干法工艺流程示意图

工艺简介:

CFB烟气脱硫工艺是八十年代末德国鲁奇(Lurgi)公司开发的一种新的干法脱硫工艺,这种工艺以循环流化床原理为基础,通过吸收剂的多次再循环,延长吸收剂与烟气的接触时间,大大提高了吸收剂的利用率。它不但具有干法工艺的许多优点,如流程简单、占地少,投资小以及副产品可以综合利用等,而且能在很低的钙硫比(Ca/S=1.1~1.3)情况下达到湿法工艺的脱硫效率,即95%以上。实践证明,CFB烟气脱硫工艺处理能力大,对负荷变动的适应能力很强,运行可靠,维护工作量少,且具有很高的脱硫效率。

我公司在自主知识产权干法脱硫技术的基础上,结合本公司在大型火电厂烟气脱硫工程实践中积累的丰富经验,并消化吸收国外先进技术,开发的干法循环流化床脱硫工艺,具有较高的性价比。该工艺系统由脱硫系统、除尘系统和输灰系统等组成。是目前国内干法类脱硫技术中处理能力大、脱硫综合效益优越的一种脱硫工艺。

烟气经过预除尘后由反应塔下部经过整流后进入反应塔,与消石灰颗粒充分混合,HCL、HF、SO2、SO3和其他有害气体与消石灰反应,生成CaCL2·2H2O、CaF2、CaSO3·1/2H2O、CaSO4·2H2O和CaCO3。反应产物由烟气从反应塔上部带出。经后布袋除尘器收集。分离出的固体绝大部分被送回流化床反应器,以延长吸收剂的作用时间,提高利用效率。将水直接喷入反应器下部,使反应温度尽可能接近露点温度,以提高脱硫效率。

该烟气脱硫工艺的吸收剂可以直接用生石灰干消化所得的氢氧化钙细粉,由于这种消石灰颗粒很细,因此无须磨细,即节省了购买磨机等大型设备的投资费用,也减少了能源消耗,使运行费用大为降低。

脱硫副产品呈干粉状,其化学组成与喷雾干燥工艺的副产品相类似,主要有飞灰、CaCl2、CaSO3、CaSO4、CaF2以及未反应的吸收剂等组成,其处置方法与喷雾干燥的副产品基本相同。工艺原理:

循环干法工艺的原理是Ca(OH)2粉末和烟气中的SO2和几乎全部的SO3、HCl、HF等酸性气体,在Ca(OH)2粒子的液相表面发生反应,反应如下:

在循环干法工艺的循环流化床内,Ca(OH)2粉末、烟气及喷入的水分,在流化状态下充分混合,并通过Ca(OH)2粉末的多次再循环,使得床内参加反应的Ca(OH)2量远远大于新投加的Ca(OH)2量,即实际反应的吸收剂与酸性气体的摩尔比远远大于表观摩尔比,从而使HCl、HF、SO2、SO3等酸性气体能被充分地吸收,实现高效脱硫。

工艺流程描述:

从锅炉的空气预热器出来的烟气温度约150℃左右,直接从底部进入吸收塔,烟气通过吸收塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床里进行反应;含有大量粉尘的烟气进入袋除尘器,经袋除尘器除尘净化的烟气通过脱硫除尘器后引风机从烟囱排放;采用消石灰作为吸收剂,外购消石灰先存入消石灰储仓内,再经计量系统加入反应塔;而经袋除尘器捕集下来的固体颗粒,一部分循环回吸收塔进一步参加反应,一部分经仓泵输送至灰库,工艺流程附图。

进入吸收塔的烟气通过吸收塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床里,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成聚团物向下返回,而聚团物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑移速度高达单颗粒滑移速度的数十倍。这样的循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现高脱硫率提供了保证。

在文丘里的出口扩管段设一套喷水装置,喷入雾化水以降低脱硫反应器内的烟温,使烟温降至高于烟气露点20℃左右,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2·Ca(OH)2·2H2O等。

烟气在上升过程中,颗粒一部分随烟气被带出吸收塔,一部分因自重重新回流到循环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间,从而有效地保证了脱硫效率。

喷入用于降低烟气温度的水,通过以激烈湍动的、拥有巨大表面积的颗粒作为载体,在塔内得到充分蒸发,保证了进入后续除尘器中的灰具有良好的流动性能。

由于SO3几乎全部得以去除,加上排烟温度始终控制在高于露点温度20℃,因此烟气不需要再加热,同时整个系统也无须任何防腐处理。

净化后的含尘烟气从吸收塔顶部侧向排出,然后转向进入脱硫后除尘器,再通过锅炉风机排入烟囱。经除尘器捕集下来的固体颗粒,通过除尘器下的再循环系统,返回吸收塔继续参加反应,如此循环,多余的少量脱硫灰渣经仓泵输送至灰库再通过罐车外运。我公司循环干法烟气脱硫技术的工艺、结构特点如下:

1)设备使用寿命长、维护量小。

塔内完全没有任何运动部件和支撑杆件,烟气流速合理,塔内磨损小,没有堆积死角,设备使用寿命长、检修方便。

2)烟气、物料、水在剧烈的掺混升降运动中接触时间长、接触充分,脱硫效率高。由于设计选择最佳的烟气流速,使得气固两相流在吸收塔内的滑移速度最大,脱硫反应区床层密度高,颗粒在吸收塔内单程的平均停留时间长,烟气在塔内的气固接触时间高达6秒以上,使得脱硫塔内的气固混合、传质、传热更加充分,优化了脱硫反应效果,从而保证了达到较高的脱硫效率。

3)控制简单。

工艺控制过程主要通过三个回路实现(如下图1-2),这三个回路相互独立,互不影响。脱硫剂给料量控制

根据脱硫反应塔入口和出口烟气中SO2浓度控制消石灰粉的给料量,以确保烟囱排烟中SO2的排放值达到标准。

循环灰量控制

干法吸收塔内的固/气比(固体颗粒浓度)是保证其良好运行的重要参数。沿床高度的固/气比可以通过沿床高度底部和顶部的压差△P来表示。固/气比越大,表示固体颗粒浓度越大,因而床的压力损失越大。根据沿床高度底部和顶部的压差△P来控制反应器进口的回灰量,将△P控制在一定范围内,从而保证床内必需的固/气比,使反应器始终处于良好的运行工况。△P的最大值由锅炉引风机所能克服的最大阻力和电除尘器的除尘效率所决定。

脱硫烟温控制 根据反应塔顶部处的烟气温度直接控制反应器底部的喷水量。以确保反应器内的温度处于最佳反应温度范围内。喷水量的调节方法一般采用回水调节阀,通过调节回流水压来调节喷水量。

雾化喷嘴喷嘴型式可根据具体情况选单相喷嘴和两相流两种型式。

图1-2 循环干法工艺控制回路图

4)单塔处理能力大,已有大型化的应用业绩。

通过采用一个塔内配置多个文丘里管的结构,单塔理论上最高可处理2.5×106Nm3/h的烟气。同类型配置单个文丘里单塔流化床系统已在山西××电厂(200MW燃煤机组)上得到成功运行。

为克服单个大文丘里喷嘴的缺点,以便适于处理大烟气量,在该工艺中采用一种入口为多个文丘里喷嘴的吸收塔,其优点:一是减少单个喷嘴的高度和自由射流区的长高,由于在自由射流区内颗粒物的含量较低,减少其长度,可增大有效反应空间;使烟气与固体颗粒物的混合得到加强。

5)采用计算机直接模拟底部进气结构,保证了脱硫塔入口气流分布均匀。

为了适应处理大烟气量,必须采用一塔多个文丘里喷嘴结构的吸收塔,还必须使进入塔内的烟气流场分布较为均匀,否则因各个喷嘴流速差异较大,可能导致固体颗粒物从某个喷嘴向下滑落。

为了解决布气不均匀造成塔内形成不均匀的固体颗粒分布的问题,我们采用了直接数值模拟的蒙特卡洛方法(DSMC)对脱硫塔内的气固两相流动进行直接模拟。通过计算机全尺寸直接模拟,来确定脱硫塔底部进气结构,从而保证了脱硫塔入口气流分布均匀。

6)无须防腐。

吸收塔内具有优良的传质传热条件,使塔内的水分迅速蒸发,并且可脱除几乎全部的SO3,烟气温度高于露点20℃以上,可确保吸收塔及其下游设备不会产生腐蚀。

7)良好的入口烟气二氧化硫浓度变化适应性。

当煤的含硫量或要求的脱硫效率发生变化时,无需增加任何工艺设备,仅需调节脱硫剂的耗量便可以满足更高的脱硫率的要求。

其它

在燃用煤种符合设计和校核煤种的要求下,脱硫布袋除尘器出口烟温≥70℃,脱硫效率≥90%工况下,脱硫剂、工艺水、电耗量、物耗总价格不超过我方保证值。

脱硫除尘装置系统总阻力(脱硫塔入口到引风机入口)不超过我方保证值。系统总阻力≤3200Pa。脱硫装置本体漏风率应至少达到≤2%;布袋除尘器本体漏风率应至少达到≤2%,总漏风率≤4%。钙硫比为1.3。

脱硫剂消耗量约为1.27t/h。烟尘排放指标

烟尘排放浓度保证值≤50mg/Nm3。脱硫装置可用率

脱硫装置可用率保证值≥95%。气力除灰系统综合出力

气力除灰系统在锅炉BMCR工况下能够长期连续稳定运行,系统综合出力满足业主方需要。

第五篇:干法脱硫

干法脱硫技术及应用

我国是燃煤大国,连续多年SO2排放总量超过2000万t,已成为世界上最大的排放国。烟气脱硫是控制SO2排放最有效、最经济的手段。目前,我国大型火电厂烟气脱硫主要采用国外应用较成熟、业绩较多的石灰石/石膏湿法工艺,但由于湿法工艺系统复杂、投资较大、占地面积大、耗水较多、运行成本较高,国内企业迫切需要投资少、运行成本低、效率高的脱硫技术。奥地利AEE集团(LLAG)公司在上世纪70年代末率先将循环流化床工艺用于烟气脱硫,开发了一种烟气循环流化床干法脱硫工艺(Circu.1ating Fluidized Bed nue GasDesulphurization,简称CFB— FGD)。经过近30年的不断改进(主要是在90年代中后期),解决负荷适应性、煤种变化、物料流动性、可靠性、大型化应用等方面的技术问题,至今运行业绩达到40多台套。

辽宁万和环保有限责任公司于2009年10月在国内率先引进了德国LLAG公司的CFB—FGD技术。2002年底,华能国际电力有限公司在经过多次论证和招标后,为其下属抚顺新钢铁烧结机的2 X 300MW机组配套由辽宁万和环保股份有限公司负责设计、制造的CFB—FGD装置。

l 工程概况

抚顺新钢铁位于辽宁省中部地区的抚顺市,是个典型的多煤地区,距沈阳东南方向150km。一期已建2X 100MW燃煤机组,2002年新建二期工程,安装2 X 300MW空冷燃煤发电机组,配置2台1053t/h'~粉锅炉。

榆社电厂2 X 300MW机组配套烟气循环流化床脱硫系统于2003年4月开始设计,2003年12月开始安装。2004年10月初和11月中旬,两套脱硫系统分别与锅炉同步投运。脱硫效率高达90%以上,运行可靠,成功地将国外先进技术与国内的吸收、消化和工程管理相结合,取得了较好的技术经济性能,使之成为目前世界上单机容量最大的干法脱硫系统。2 工程设计 2.1 煤质特性

榆社电厂二期工程燃用贫煤,主要的煤质特性

2.3 吸收剂分析(1)吸收剂名称:生石灰

(2)吸收剂品质要求:软煅生石灰粒径≤lmm,氧化钙(CaO)含量≥70%,生石灰消化速度Voo<4min(检验标准为DIN EN459—2)。2.4 工艺原理

CFB—FGD工艺以循环流化床原理为基础,采用消石灰为脱硫剂。该技术工艺流程如图1所示,主要由吸收塔、脱硫除尘器、吸收剂制备、物料再循环及排放、工艺水、仪表控制系统等6个部分组成。

烧结机排放烟气通过文丘里管的加速从吸收塔的底部与加入的吸收剂和脱硫灰混合后而悬浮起来,形成激烈的湍动状态,使颗粒与烟气之间具有很大的相对滑落速度,颗粒反应界面不断摩擦、碰撞更新,从而极大地强化了气固间的传热、传质。同时通过向吸收塔内喷水,湿润颗粒表面,烟气冷却到最佳的化学反应温度。此时烟气中的SO2 和几乎全部的SO3、HCI、HF等酸性成分被吸收而除去,生成CaSO3·1/2H2O等副产物。主要化学反应是: Ca(OH)2+S02 = CaSO3·1/2H20+1/2H20 Ca(OH)2+SO3 = CaSO4·1/2H20+1/2H20 CaSO3·1/2H2O +1/202 = CaSO4·1/2H2O 2Ca(OH)2+2HCI = CaCI2·Ca(OH)2·2H20 Ca(OH)2+2HF = CaF2+2H20 Ca(OH)2+C02 = CaCO3+H20 为了降低吸收剂的耗量和稳定流化床的运行,除尘器收集到的脱硫产物和未反应的吸收剂循环回吸收塔进一步参加反应。由于吸收塔内拥有较高颗粒的床层密度,使得床内的Ca/S比高达50以上,S02可以得到充分反应。通过控制吸收剂的加入量以及物料与烟气的接触时间,可获得90%~98%的稳定SO2脱除效率以及99%的SO3、HCI、HF脱除效率。2.5 设计参数

脱硫除尘岛的设计要求同时满足烧结机燃用设计煤种和校核煤种两种情况,具体设计参数如表3。3 系统组成 3.1 吸收塔

吸收塔为文丘里空塔结构,是整个脱硫反应的核心。由于烟气中几乎所有的SO3都被脱除以及始终在烟气露点温度20℃ 以上,吸收塔内部不需要任何防腐内衬,塔体由普通碳钢制成。为适应大型化应用,吸收塔流化床的入口采用4个文丘里管结构。

吸收塔的流化床反应段的直径为7.5m,吸收塔总高度为35m。3.2 脱硫除尘器

脱硫除尘器采用布袋除尘器(也可以用电除尘器),由于物料的不断循环使脱硫除尘器的人口粉尘浓度高达6O0~1000g/Nm3,是常规电站电除尘器的20~30倍,为了满足环保烟尘浓度50mg/Nm3的要求。脱硫除尘器的除尘效率必须到达99.98%以上,但由于通过吸收塔的喷水增湿、降温,十分有利于脱硫效率的提高。万和环保采用德国鲁奇Bs型高浓度电除尘技术,通过有效的结构设计以满足脱硫工艺的要求。脱硫除尘器采用双室四电场,型号为BS470/2—4/38/400/15.425/4×11一LC,本体阻力250Pa,阳极板采用ZI24型,阴极线为V型线,设计效率为99.99%。3.3 吸收剂制备系统

CFB—FGD所需的脱硫剂一般为Ca(OH)2,其来源有两种方式:一是直接采购符合要求的消石灰Ca(OH)2粉,二是采购满足要求的粉状CaO由密封罐车运到脱硫岛并泵人生石灰仓。然后经过安装在仓底的干式石灰消化器生成Ca(OH)2干粉,通过气力输送进人消石灰仓储存。根据脱硫需要,通过计量系统向吸收塔加入Ca(OH)干粉。

本项目的生石灰仓和消石灰仓的有效容积分别为300m3、500m3,满足满负荷运行7天用量。干式石灰消化器采用意大利进口产品,其结构为卧式双轴搅拌式消化器,设计消化能力为10t/h,消石灰粉含水率低于1.5%。

3.4 物料再循环及排放系统

脱硫除尘器收集的脱硫灰大部分通过空气斜槽返回吸收塔进行再循环,该项目设有两条循环空气斜槽,通过控制循环灰量即可调节吸收塔的压降。在脱硫除尘器的灰斗设有2个外排灰点,采用正压浓相气力输送方式,输送能力按实际灰量的200%设计,对应配套两条输送管道将脱硫灰输送到脱硫灰库贮存。3.5 工艺水系统

脱硫除尘岛的工艺用水包括吸收塔脱硫反应用水和石灰消化用水。前者通过高压水泵以一定的压力通过回流式喷嘴注人吸收塔内,在回流管上设有回水调节阀,用以跟踪和调节水量。高压水泵的流量为60m3/h,压力为4.0MPa。石灰消耗用水采用计量泵根据生石灰的加人量进行控制。3.6 控制系统

CFB—FGD的工艺控制过程主要有3个控制回路,这3个回路相互独立,互不影响。(1)SO2控制:根据吸收塔人口SO2、ESP2排放SO2浓度和烟气量控制吸收剂的加入量,以保证达到按要求的SO2排放浓度;(2)吸收塔反应温度的控制:通过控制喷水量可以控制吸收塔内的反应温度在最佳反应温度70~80~C;(3)吸收塔压降控制:通过控制循环物料量,控制吸收塔整体压降在1600~2000Pa左右。榆社项目采用SIEMENS的DCS系统,操作简单,画面丰富,准确灵活,与锅炉主机通讯可靠畅通。4 工艺布置

榆社电厂2×300MW机组CFB—FGD脱硫除尘岛内各个分系统均独立设置,所有的工艺、电气设备均为一炉一套。脱硫除尘岛沿锅炉中心轴,顺烟气方向成一字形布置,即原烟气主烟道中心线、预电除尘器、吸收塔中心线、脱硫电除尘器中心线、锅炉引环保技术风机、烟囱在一条直线上。主要辅助工艺设施如工艺水系统、吸收剂制备系统就近围绕吸收塔,各设备的平面和空间组合,既做到工作分区明确,又做到合理、紧凑、方便,外观造型美观,整体性好,并与电厂其他建筑群体相协调,同时最大限度地节省用地。脱硫除尘岛内的建构筑物主要有预电除尘器、吸收塔、脱硫电除尘器、生石灰仓、消石灰仓、脱硫控制楼等。脱硫控制楼布置在两台炉的中间,两台炉脱硫除 岛照片见图2所示__ 5 运行情况

2004年10月初和11月中旬,两套脱硫系统分别与锅炉同步投运,经过1个多月的试运行后,于12月上旬两台炉脱硫除尘岛顺利通过了78h的满负荷运行考核,并移交给电厂运行。由于榆社电厂燃用贫煤和混煤,实际含硫量高于设计和校核煤种,约为2.5%,在考核运行时,脱硫除尘岛的人口SO2浓度最高达到近7000mg/Nm3,但通过加大Ca/S,可以确保90%以上的脱硫效率,最高达到98.4%(参见图3),同时脱硫后电除尘器出口粉尘排放在20~50mg/Nm3之间,满足环保要求。而在考核运行中采用的吸收剂生石灰的纯度只有70%,活性 为10min左右 本次考核的运行参数如表4。7 结束语

抚顺新钢铁烧结机2×300MW机组烟气循环流化床干法脱硫系统是目前世界上投运成功的处理烟气量最大,同时也是配套烧结机机组容量最大的干法脱硫装置。通过运行证明,CFB—FGD脱硫工艺可以满足大型烧结机机组烟气脱硫、除尘的需要。不仅脱硫率可达到90%以上,而且脱硫电除尘器出口粉尘排放也能满足50 mg/Nm3的环保要求。同时,CFB—FGD脱硫工艺可以满足高硫煤的脱硫需要,为我国高硫煤地区的脱硫工艺选择增加一种技术、经济性良好的比选工艺。

中电投远达环保工程有限公司

摘 要:综述了国内外燃煤电厂干法烟气脱硫技术及其应用现状。其中对循环流化床烟气脱硫技术的特点及其在国内脱硫工程中的应用进行了详细介绍,并对比了湿法与干法脱硫技术的投资及运行成本。经分析发现,循环流化床法烟气脱硫技术是目前技术较成熟、运行可靠的干法脱硫技术。

关键词:干法脱硫技术;循环流化床;经济性概述

目前国内外应用的干法(半干法)脱硫技术大致分为如下几种:循环流化床脱硫技术(CFB)、活性炭(焦)法、NID半干法脱硫技术、SDA旋转喷雾半干法脱硫技术、LIFAC技术和电子束法等。其中在国内火力发电厂应用较多的干法技术为循环流化床(CFB)脱硫和NID脱硫,前者单塔脱硫能力可达300MW(最大应用业绩为600MW机组),后者为50MW(最大应用业绩为200MW机组)。LIFAC技术主要用于前几年较多的CFB锅炉的脱硫整改。活性炭技术目前在国内应用并不多,基本集中在神华集团的自备电厂,国外的最大应用业绩为600MW机组;电子束法和SDA旋转喷雾法在国内外都未有较多应用。

现主要介绍国内火力发电厂应用较多的循环流化床法,另对活性炭脱硫技术也进行了介绍。

国内外应用现状

循环流化床烟气脱硫技术是目前国内外应用比较成熟的干法烟气脱硫技术[1,2]。与湿法脱硫相比,优点是:耗水量少(约为湿法的50%左右)、占地面积小(约为湿法的60%左右,布置较为灵活,炉前炉后均可)、运行成本比湿法略低等优点;缺点是:负荷适应性较差,对运行人员要求较高,吸收剂利用率为60%~80%(湿法为97%),脱硫副产品不稳定,难以综合利用,通常脱硫效率为85%~90%,适用于硫含量小于2%的机组,目前单塔最大处理能力为300MW,国内最大应用业绩为华能邯峰2×600MW机组,采用一炉两塔方式。

国外环保公司掌握此项技术的主要有;奥地利能源&环境工程有限公司(AEE)、德国鲁奇能捷斯公司(LLAG)、德国Wulff公司和美国艾尼克公司。

国内环保公司掌握此项技术的主要有;远达环保公司(技术来源—奥地利能源&环境工程有限公司),福建龙净和山东三融公司(技术来源—德国鲁奇能捷斯公司),武汉凯迪公司(技术来源—德国Wulff公司),甘肃龙源公司(技术来源—美国艾尼克公司)。工艺技术简介

循环流化床法烟气脱硫技术的工艺流程如图1所示,根据循环流化床的原理,通过物料在反应塔内的内循环和高倍率的外循环,形成含固量很高的气固流化床,从而强化了脱硫吸收剂颗粒之间、烟气SO2、SO3、HCl、HF等气体与脱硫吸收剂的接触时间和传热传质性能,并延长了固体物料在反应塔内的停留时间,提高了SO2与脱硫剂的利用率和脱硫效率[3,4]。

循环流化床烟气脱硫的技术特点如下:

(1)塔内没有运动部件,磨损较小,设备使用寿命长,维护量小,运行费用较低。

(2)无需防腐。吸收塔内具有优良的传质传热条件,使塔内的水分迅速蒸发,并且可同步脱除SO3,HCl,HF等酸性气体,烟气温度高于露点20℃左右,因此吸收塔及其下游设备不会产生粘结、堵塞、腐蚀。

循环流化床烟气脱硫技术的应用情况

远达公司于2006年11月与奥地利能源&环境集团公司(AEE)完成了技术装让,目前应用于江西南昌发电厂2×125MW机组、吉林浑江发电厂#5/#6机组(2×200MW)、吉林松花江电厂2×125MW机组、吉林四平电厂2×125MW机组、上海城投危废焚烧项目,其中江西南昌电厂2×125MW机组已于2007年8月完成了初步验收,浑江#6机组正在进行热态调试。上海城投危废项目为亚洲最大的危废焚烧线。

江西南昌发电厂为远达公司的第一个干法项目,在实施过程中发现一些问题,#11炉顺利通过96小时试运行,而10#炉则多次出现塔内结垢问题,经反复调试发现,CEMS在线分析系统和温度控制系统非常重要,其直接影响到加水量的多少,这是循环流化床是否产生结垢的关键,故对CEMS、雾化喷枪和调节阀进行了一些改进。

福建龙净于2001年10月引进了鲁奇公司干法技术,次年山东三融环保也引进了鲁奇技术,德国Wulff公司的技术于2002年转让给武汉凯迪。

福建龙净于2004年4月投运了当时最大的2×300MW干法机组(山西榆社,国产化试点项目),运行效果不是很好,后经过多次整改,于2006年基本运行正常。该公司目前承接了华能邯峰2×600MW机组(一炉两塔),目前正在实施。

山东三融的干法项目主要集中在河南和山东的中小型机组,包括焦作、聊城等项目,最大为聊城2×300MW机组。

武汉凯迪早期引进的Wulff技术应用并不理想,在广东实施的恒运项目基本是失败的,双方合作不是很好。北京紫泉公司在远达公司的技术支持下,与Wulff合作的山西河坡电厂2×100MW(两炉一塔)运行较为良好。

甘肃龙源与美国艾尼克公司合作的吉林四平电厂项目#3炉项目,历经2年,期间调试并不理想,后来增加了再循环烟道,基本运行正常。投资及运行成本分析

目前,国内干法脱硫EPC工程单位千瓦造价均在200元/KW以上(中小型机组居多),福建龙净公司正在实施的华能邯峰2×600MW电厂EPC工程造价为2.4亿元,单千瓦造价200元/KW(含硫率1.5%,一炉两塔);山东三融公司实施的山东聊城2×300MW循环流化床烟气脱硫工程EPC造价1.6亿元,单千瓦造267元/KW(含硫率1%,一炉一塔)。

下面以2×200MW机组为例,就某技改项目(干法脱硫)和某新建项目(湿法脱硫)的经济性作以下比较。

5.1 EPC工程造价比较

(1)干法项目EPC工程造价。项目概况:某电厂2×200MW技改工程,含硫率0.8%,低位发热量16MJ/kg,以下数据按二台一炉一塔方案进行计算,脱硫率90%。

EPC工程总造价9500万元(其中静电除尘器设备本体及相应建安工程共计约3030万元),单千瓦造价237.5元/KW。如果新建项目,主机除尘器采用双电场或单电场方式,可减少主机除尘器设备费用约600万元。折算到新建项目2×200MW干法脱硫EPC工程总造价为8900万元,单千瓦造价222.5元/KW。

(2)湿法项目EPC工程造价。项目概况:某新建项目一期工程2×200MW烟气脱硫工程,含硫率0.8%,低位发热量19MJ/kg,采用二炉一塔的湿法脱硫方式,脱硫率95%。

EPC工程总造价7500万元,千瓦造价187.5元/KW。

干法脱硫装置比湿法脱硫装置的EPC工程费用增加1400万,千瓦造价增加35元/KW。

5.2项目运行成本比较

(1)干法FGD项目的运行成本。年运行成本,2398.10万元,单位脱硫成本为:13.32元/MWh;

(2)湿法FGD项目的运行成本。年运行成本,2457.86万元,单位脱硫成本为:13.65元/MWh。

目前干法脱硫的初投资较湿法较高(因机组容量较小),运行成本较湿法脱硫略低。耗水量约为湿法的50%左右。结论 从干法脱硫装置的运行情况来看,技术比较成熟、运行可靠的干法脱硫技术是循环流化床干法脱硫工艺。参考文献

[1]程亮,刘宇,李华民.循环流化床脱硫技术在我国的应用[J].江西能源,2008(1):56-59.[2]麻瑜.循环流化床干法烟气脱硫技术分析[J].电力学报,2007(2):58-60.[3]王凤印,王翠苹.循环流化床烟气脱硫技术的研究现状[J].电力环境保护,2005(4):15-18.[4]王忠喜,高霞红.循环流化床烟气脱硫技术及其环境经济可行性探讨[J].污染防治技术,

干法脱硫工艺技术分析
TOP