首页 > 精品范文库 > 12号文库
纳米材料在高分子材料中的应用论文
编辑:烟雨迷离 识别码:21-547480 12号文库 发布时间: 2023-06-28 04:21:36 来源:网络

第一篇:纳米材料在高分子材料中的应用论文

纳米材料在高分子材料中的应用

近年来,纳米技术已成为科学研究的热点。由于纳米材料具有许多新的特性,如特殊的磁学特性、光学特性、电学特性和化学活性等,利用纳米粒子的这些特性对高分子材料进行改性,可以得到具有特殊功能的高分子材料。这不仅使高分子材料的性能更加优异,使其更加广泛地应用于微电子、化工、国防、医学等各个领域,同时还为高分子改性理论体系的奠定提供了基础,拓宽了高分子改性的理论。

研究发现,随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。对超微颗粒而言,尺寸变小,其比表面积则显著增加,从而产生特殊的光学、热学、磁学、力学化学、声学等一片列新的性质。另外,纳米粒子由于表面存在大量活性中心,在反应体系中可以起到高效催化的作用。目前通常是将纳米微粒与聚合物基材进行复合,利用其特殊性质来开发新产品,这比研究全新的聚合物材料投资少,周期短,生产成本低。但是通常纳米微粒粒径小,易于团聚,为增加材料与聚合物的界面结合力,提高复合材料的性能,需要对纳米微粒进行表面改性处理。与普通改性材料不同,纳米粒子具有特殊的表面效应、体积效应、量子尺寸效应以及宏观量子隧道效应等,这些效应的综合作用导致了改性后的高分子材料具有特殊性能。比如,纳米粒子巨大的比表面积产生的表面效应,可使经纳米粒子改性后的高分子材料的机械性能、热传导性、触媒性质、破坏韧性等均与一般材料不同,有的材料还具有了新的阻燃性和阻隔性。

利用纳米微粒的量子尺寸效应等可制成紫外线吸收材料。例如,防晒油等化妆品中现在普遍加入了纳米微粒,同时在具有强紫外吸收的纳米微粒表面包裹一层对身体无害的高聚物,这样既发挥了纳米颗粒的作用,又改善了防晒油的性能。再如,塑料制品在紫外线照射下很容易老化变脆,如果在塑料表面涂上一层含有纳米微粒的透明涂层吸收紫外线,这样就可以防止塑料老化。汽车、舰船的表面涂覆的油漆主要是由氯丁橡胶、双酚树脂或者环氧树脂为主要原料,在阳光的紫外线照射下很容易老化变脆,致使油漆脱落,如果在面漆中加入能强列吸收紫外线的纳米微粒就可起到保护底漆的作用。另外,将纳米微粒分散到树脂中制成膜,可用作半导体器件的紫外线过滤器。

在航空航天材料的加工生产中,纳米材料也有相当的优势,特别是由轻元素组成的纳米材料在航空隐身材料方面应用十分广泛。~些纳米复合粉体与高分子纤维结合,对中红外波段有很强的吸收性能,对红外探测器有很好的屏蔽作用。纳米磁性材料,特别是类似铁氧体的纳米磁性材料加入涂料中,既有优良的吸波特性,又有良好的吸收和耗散红外线的性能,甚至可以改变雷达波的反射信号,加之其比重轻,因此在隐身方面的应用上有明显的优越性。 纳米材料对光吸收和对静电屏蔽的特性,使其在日常生活和国防上也有着很重要的应用前景。发达国家已经开始用纳米复合粉添加的纤维制成军服,这种纤维不仅对人体释放的红外线有很好的屏蔽作用,而且对人体红外线有强吸收作用,可以增加保暖作用,减轻农服的重量。化纤衣物和地毯由于静电效应在摩擦时会产生放电,不仅有安全隐患,同时很容易吸附灰尘,给使用者带来很多不便。金属纳米微粒为解决这一问题提供了一个新的途径,只要在化纤制品中加入少量金属纳米微

粒,就会使静电效应大大降低。

在家电用高分子材料,纳米静电屏蔽材料的应用近来也开始得到了推广。电器外壳如果不能进行静电屏蔽,电器的信号就会受到外部静电的严重干扰。为了改善静电屏蔽涂料的性能,日本松下公司已研制成功具有良好静电屏蔽的纳米涂料,这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因面能起到静电屏蔽作用,同时氧化物纳米微粒颜色各异,可以通过复合控制静电屏蔽涂料的颜色。因此这种纳米静电屏蔽涂料不但有很好的静电屏蔽特性,而且也克服了炭黑静电屏蔽涂料只有单一颜色的单调性。

在医用高分子材料领域,日本东京大学日前通过结合纳米级的微小分子环和高分子材料开发出了凝胶状的新型医疗材料。这种新材料的可见光的通过率高达98 2%,而且即使拉长8倍,材料也能恢复原状,并不会受到任何破坏。这种性能优异的材料可望用来生产隐形眼镜以及其他医疗产品。而在医用化纤制品和纺织品中添加纳米微粒可以起到除味、杀菌、消毒的作用。

另外,一些聚酯/粘土矿物的纳米复合材料不仅提高了聚酯的力学性能,光学性能、阻隔性能等也有一定的提高,这种复合材料可以应用于汽车、包装等领域,其他潜在的应用前景也是非常诱人的。

纳米技术作为一项高新技术在高分子材料改性中有着非常广阔的应用前景,特别对开发具有特殊性能的高分子材料有着重要的实际意义。但由于对其微观结构认识的不足,纳米技术的发展还存在着较大的局限性,其理论和工程实践也也都比较缺乏。但即使如此,其广阔的市场与诱人的应用前景已初见端倪,纳米材料将成为新兴材料的主流。

高科技纤维又称特种纤维,按性能划分有五大类:耐强腐蚀含氟类纤维、耐高温纤维、阻燃纤维、高强高模纤维和功能纤维。其中,高强高模纤维特别是聚丙烯腈基碳纤维和对位或间位芳酰胺纤维(芳纶)最为重要。早在20世纪80年代初,以美、日为代表的发达国家对化纤的发展作了重要战略转移,开始把投资重点由传统化纤转向高科技纤维。21世纪发达国家高科技纤维的发展可望继续加速,一些通用化纤生产线不断转产高科技纤维,新工艺、新技术和新产品将不断涌现。而我国在这方面的研究开发落后于发达国家约20年。由于发展高科技纤维有着极其重要的战略意义,专家呼吁我国应重视高科技纤维特别是碳纤维的 科技攻关和产业化。其重要意义并不亚于纳米材料,对提升国民经济的整体素质和改造传统产业有着重要作用。

高科技纤维应用领域广泛高科技纤维是具有高附加值和高收益的产品。以美国为例,1984年高科技纤维产量占化纤总产量的1.6%,而产值却占12.6%;到1988年,其产量所占比例上升至2.4%,而产值却占化纤总产值的20.4%。尽管这些高科技纤维的前期开发投入较大,但后期回报。在前些年世界经济遭亚洲金融危机冲击的严峻形势下,传统化纤市场处于低迷状态,而高科技纤维却供不应求,成为支撑收益的中坚产品。

高科技纤维也是支撑高科技产业发展的重要基础材料,是运载火箭和导弹、各类航天器、宇宙站、人造卫星、宇航服、喷气式客机和战斗机、船舶、超高速列车、医学和生物工程等的关键材料。同时,也能满足许多传统产业特别是支柱产业更新换代的需要。例如,环保节能型新一代汽车,其高速飞轮转子、压缩天然气罐、高速子午胎、发动机耐热传感器、轻量传动轴、弹簧板以至车体,皆采用高性能纤维复合材料。在新型建材领域,高强高模纤维增强水泥、复合材料型材、混凝土结构物的加固修复用片材、大跨度斜拉桥和悬索桥用代钢索缆绳、拉挤成型代钢筋材料等,都采用高性能纤维。在电子和信息产业领域,柔性印刷线路板基板、光缆及其补强材料、塑料光纤计算网络、防辐射手机外壳、电磁波屏蔽材料、防尘防静电工作服、超净室高效空气滤材,都需要各种高性能纤维和功能纤维。对于现代国防来说,可以说任何高科技战争所需的现代化武器装备的制造,都要用到高性能纤维和功能纤维。

高科技纤维也是能源开发特别是新能源开发所必不可少的新材料。如抽油杆,千米以下深海油田开采平台所需升降机、输油管线、钻井套管等,大型风力发电叶片及其推进器,核电站耐辐射建材及其防护用品,含放射物冷却水回用滤材,海水吸铀高效吸附材料,铀同位素分离用高速转筒等,都需要各类高科技纤维。在环保方面其用途就更多了,如酸雨的防治、高温粉尘滤袋、含重金属离子等废水的处理等。就是在解决淡水资源短缺方面,也开始大规模使用中空纤维反渗透膜技术。如最近沙特阿拉伯和我国台湾省都分别引进了日本产世界最大的海水淡化装置,日产淡水高达12.8万吨。

高科技纤难的开发和应用,将使人类的衣着从“仿真”过渡到“超真”,使人们的服装具有各种特的功能,如光变色、冬暖夏凉、抗菌消臭和吸收远红外保温等功能。人工骨、关节、韧带、牙床、假眼、人工肺、人工肝、人工肾、人工脾、人造血管和皮肤等都可用高科技纤维制造。在尖端技术领域,由于解决了超低温绝缘材料,创造了磁悬浮列车的最高行驶纪录。由此可见,高科技纤维的应用领域可以说是无怕不包。

我国高科技纤维发展基础和现状

1996年起发展中国家化纤的总产量和产能超过了发达国家。其主要原因是,发达国家进行了化纤产业的结构调整,早已把投资重点由传统化纤转向高科技代纤上了,并大规模地将普通化纤的生产技术及全套设备向第三世界国家转移,将收益用于发展高新技术产业。目前发达国家尤其是美国和日本的高科技纤维已处于垄断地位。

我国已具备把投资重点转向发展高科技纤维的基本条件。近年来我国主要高科技纤维的市场需求增长很快,1995年聚丙烯腈基碳纤维的需求量只有60吨,到2000年已达1500吨;1995年芳纶纤维的需求量也只有60吨,到2000年已达到500吨;1995年超高分子量聚乙烯纤维需求量才20吨,2000年已超过500吨。我国高科技功能纤维随着人民生活的迅速提高和环保意识的增强,发展很快,需求成倍增长。仅中空纤维分离膜的生产厂家就达120多家,活性炭纤维生产厂家也有几十家,产品主要用于水处理等方面,市场需求量不断扩大。

我国发展高科技纤维存在的问题及发展建议

我国高科技纤维的应用研究和市场开发,为断取得进展,为持续快速发展奠定了基础。从20世纪80年代起,国家就安排了碳纤维和芳纶纤维科技攻关,也同时安排了一批应用研究项目,目前又有一批新应用领域正在开发,这些都是保证高科技纤维持续发展的基础。我国即将加入WTO,关税将逐步减少,市场准入将更加广泛,而我国的高科技纤维却处于小而散的状态,根本不具备国际竞争力,这种局面急待扭转。以上这些因素都使投资重点转移成为可能。目前,国内不少企业集团已出现引进高性能纤维生产线热潮,国家应加强对高科技纤维的宏观调控,防止复复引进和建设。如果不严加控制又会形成小而散的局面,很难形成有竞争力的规模经济。为了防止投资热点集中在碳纤维和芳酰胺纤维领域,国家应引导企业适当地把资金投向其他有前景的高科技纤维项目上来。如聚苯硫醚纤维及上述两大纤维的下游制品开发,因为聚苯硫醚纤维作为高温粉尘滤材和电绝缘材料等,其综合性能好。而碳纤维等复合材料制品的开发和生产,不仅有利于上游高性能纤维的发展,更重要的是风险和难度相对较小,经济效益更好。在对重大建设项目和引进项目审查时,国家有关部门应提高效率,因为久拖下去将会丧失机遇,给企业带来重大损失。

正是由于高科技纤维对提长一个国家的整体经济素质有举足轻重的作用,国家提出在“十五”期间加大对高科技纤维的投入,奠定主要高科技纤维的产业化基础,实现聚丙烯腈基碳纤维及其原丝、芳纶、超强聚乙烯纤维及主要功能纤维产业化,并在消化吸收国外引进技术和装置的基础上加以创新,逐步拥有自己的知识产权,实是明智之举。参考文献

[1] 夏和生,王琪.纳米技术进展[J].高分子材料科学与工程,2001,17(4):1-6.[2] Birringer R, Gletter H, Klein H P.Classification of nanometer materials and its basis[J].Phys Lett,1984,102A:365-369.[3] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000,(3):42-48.[4] 钱军民,李旭祥,黄海燕.纳米材料的性质及其制备方法[J].化工新型材料,2001,29(7):1-5.[5] 朱光明,钱得丰.聚合物基纳米复合材料的研究进展[J].化工新型材料,2001,29(9):16-21.[6] Brus L E.Electron-electron and electron hole interactions in small semiconductor crystallines[J].Chem Phys,1984,(80):4403-4409·

[7] 罗明良,蒲春生,卢凤纪,等.纳米技术及材料在环保中的应用与展望[J].化工新型材料 999,13(6):22-24.

第二篇:纳米材料在机械上应用 论文

纳米材料在机械上的应用

摘 要: 本文介绍纳米技术的兴起;纳米材料的特性;纳米技术在机械工程中的运用;与传统机械工程相比,纳米技术带来的优势;纳米加工的关键技术及其在微型机械和微型机电系统的应用。

关键词: 纳米技术;纳米材料;机械;纳米加工;微型机械

机械是现在社会的基础,是社会的一大支柱。机械的种类繁多,可以按几个不同方面分为各种类别,如:按功能可分为动力机械、物料搬运机械、粉碎机械等;按服务的产业可分为农业机械、矿山机械、纺织机械等;按工作原理可分为热力机械、流体机械、仿生机械等。

纳米技术的兴起

自从1990年7月在美国召开的第一届国际纳米科学技术会议上,正式宣布纳米材料科学为材料科学的一个新分支开始,纳米技术便一步一步进入人们的生活。纳米科技是研究由尺寸在0.1~100nm之间的物质组成的体系运动规律和相互作用,以及实际应用中的技术问题的科学技术。从材料的结构层次来说,它介于宏观物质和微观原子、分子的中间领域。

纳米技术不是一门单一的新型学科或者技术,它广泛应用于各类学科中,其中在机械工程中的应用对于机械工程学科的技术变革起到了不可估量的作用。纳米技术运用到机械方面尤其是产生了微型机械技术已经成为21世纪研究的核心技术,很多国家在纳米技术上开始了越来越多的研究,在机械工程方面对于纳米技术的应用也越来越多。

纳米材料的特性

1、力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强 度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

2、热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。

3、电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。

纳米技术的优势

相对于传统机械工程来说,也正是因为纳米技术有很多优势才能取得这样显著的成果。

1、纳米技术的尺寸效应

纳米技术的主要效果之一便是缩小了传统尺寸的单位,将毫米进化为纳米,一纳米相当于十亿分之一米。纳米技术应用在机械中,可以大大降低机械的体积,从而形成了新型机械——微型机械。这种不是传统机械单纯地在尺度上微小型化,而通常是指可以成批制作的集合微机构、微驱动器、微能源以及微传感器和控制电路、信号处理装置等于一体的微型机电系统。他们大部分都是运用纳米技术的成果,因而它远远超出了传统机械的概念和范畴,而是基于现代科学技术,并作为整个纳米科技重要组成部分和用一种崭新的思维方式与技术路线指导下的产物。

2、纳米技术使材料多元化,应用多元化

纳米技术是原材料形成更微小的形态,功能也更加强大,不仅能改良传统材料,又能源源不断地产生出新的材料。磁性液体密封技术便是证明,利用磁性液体可以被磁场控制的特性,将纳米单位的液体置于磁场之内,从而达到密封的效果。同时在材料运用中可将微量的元素融入到基础材料中,达到更好的效果。纳米复合氧化锆是成功应用在工业上的纳米材料,这种材料提高了材料的耐高温性能和导氧及储氧功能,因此广泛运用于汽车发动机系统中。

3、纳米材料摩擦性能

纳米技术最显著的特性就是其擦性能,在机械中,各种轴承等都存在着摩擦,但是纳米材料的出现,使得各类机械结构尺寸便小,同时对于过小的零件,摩擦力便显的尤为重要,摩擦力如果相对较大,则零件便会造成磨损。但是纳米技术也同样克服了这一问题,现已出现纳米材料几乎无摩擦的状态。美国科学家研制的这种微型纳米轴承可在运动是无磨损和撕裂,达到了理想的效果。

4、纳米技术节能效果

纳米技术实现了“小材大用”,带来的又一优势便是节能和环保。在纳米技术的应用中,产生了很多新型材料,它们减少了很多不必要的消耗,使得传统的机械工程中需要的大量材料迅速降低,对于原材料的节约起到了惊人的效果。德国不莱梅应用物理所已研制成功并且申请了一项专利,即用纳米Ag代替微米Ag制成导电胶,可节省Ag粉50%,用这种导电胶焊接金属和陶瓷,涂层不需太厚,而且涂层表面平整,效果理想。

微型纳米轴承

传统的轴承的体积比较大,其摩擦力也仅仅能够靠润滑来进行减少,但是,仍然不能够将摩擦力进行避免。美国的科学家对其进行了研究,并且研制出来一种没有摩擦的微型纳米轴承,微型纳米轴承主要包括以下两个特点:第一,微型。微型纳米轴承的直径仅仅为一根头发直径的万分之一,其应用到机电系统微型的轴承只有l nlTl,为微型机械千分之一的大小。第二,摩擦力极小。如果轴承的体积很小,那么,套在一起管子之间摩擦力就会将微型轴承弱点暴露出来,在其产生的摩擦力很大的时候,会导致微型轴承无法使用。通常制造的微型机械轴承与这种纳米轴承相比较,摩擦力仅仅是其最小值千分之一。

微型机器人

在工业制造领域,微型机器人可以适应精密微细操作.尤其在电子元器件的制造与面。美国迈特公刮最近设计出一种用于组装纳米制造系统的微型机器人,这种机器人的长度约为5mm,研究人员称.假设能利用纳米制造技术使这种机器人的体积不断缩小,其最终的体积不会超过灰尘的微粒。[j本三菱公司也开发了一种微型工业机器人,该机器人采用了5节闭式连杆机构.实现手臂的轻量化与高刚性,其动作速度及精度完全可以赶上专用机器人。往复上下方向25ram,水平方向100mm的拾取动作,所需时间缩短到0 28s。另外,通过采用闭式连杆机构与高刚性减速机,实现了比以往机器人高100*的位置重复精度(±5nm).可适应于精密微细操作。

纳米分子电动机

美国IBM公司瑞士苏黎士实验室与瑞士巴塞尔大学的研究人员发现DNA能够被用来弯曲直径不及头发丝的五卜分之一的硅原子构成的“悬臂”。他们装配的这种小“悬臂”一端固定.另一端则可以上下弯曲,顶端则粘有单股DNA链。DNA自然形成双螺旋结构,双链被分开后,它们会力图重新组合。当研究人员将带有单股DNA链的“悬臂”置于含有与之对应的单股DNA链的溶液中,这两个链就会自动配对结合在一起,小“悬臂”在这种力的作用下开始弯曲。研究人员利用这种生物力学技术制造带有纳米级阀门的微型胶囊(纳米分子电动机)。通过控制这种驱动力来控制阀门的开合,可以将精确剂量的药物传送到身体的需要部位来达到治疗的臼的。

合成永磁体

永磁材料是机械化学法最有前途的应用之一,许多稀土永磁合金可由元素粉合成。德国西门子公司用机械化学法制备出Nd15 fe77 B8永磁体 随后以金属为原材料利用机械化学法制备出SmCo5 Nd2 fe14Ca3C2 Sm2Co17等稀土永磁材料。大多数的工作是从Sm2 O3 SmCl 3或Smf 3前驱体与Co Ca 进行机械化学合成SmCo5 获得的组成是非晶的SmCo 相和副产品CaO 经热处理晶化成SmCo5 这是集精炼 合金化和粉末制造为一体的低温制造过程 是一种低成本制造稀土永磁的技术。

合成储氢材料

储氢材料作为一种新型的功能材料它能够储存氢并在需要的时候将氢释放出来 迄今为止研究人员已开发出了稀土系.Ti Fe 系.r 系和Mg 系等多个系列的储氢合金 机械化学法在制备金属纳米晶储氢材料方面有以下主要优点从原理上讲可以任意调配材料组成。合成许多难以用常规的熔炼或其他方法制备的新型纳米晶储氢合金材料 机械化学球磨过程能在氢气氛下完成直接获得储氢态合金材料能有效降低其后续吸放氢反应的活化能 工艺过程简单制备的储氢材料一般为超细粉末使用时不需再粉碎且在充放氢过程中的抗粉化能力好 因此关于机械合金化纳米晶储氢材料的研究近几年来相当活跃。由于机械化学对Mg 基储氢合金动力学性能的改善各国的许多研究人员继续致力于用机械化学法提高储氢合金特别是Mg 基储氢合金的性能 其中一个重要的方面是关于将Mg 基储氢合金用于Ni MH 电池 如能获得成功Ni MH 电池的水平将会大大提高近几年来哈尔滨工业大学在机械化学合成纳米晶Mg 基储氢材料方面也做了较多工作先后制备和研究了纳米晶Mg2 Ni Cu Mg 氧化物 Mg 氯化物等系列的新型储氢材料9 取得了较大研究进展。

纳米技术足近十多年来逐步发展起来的一门前沿、综台性交叉的新学科.它的迅猛发展将引发2l世纪的工业革命。因此,目前所有发达国家的政府和企业都在对纳米技术的研发进行大量的投入,试图抢占这21世纪科技战略制高点,从而在世界竞争中保持优势。最近,我国政府也明确提出了将新材料和纳米技术的进展作为“十五”规划中科技进步和创新的重要任务.这为我国2l世纪初纳米技术的快速发展奠定了重要基础。相信在21世纪,纳米产品将广泛应用于各个领域,它给人类生活方式和生活质量的全面提高所带来的影响将可能超过计算机给人类带来的影响。

纳米材料的应用前景展望

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米 科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

结束语

纳米材料在机械工程中改变甚至颠覆了传统模式的运转,显示了其强大的科技含量,但是在其运用中,我们仍有很多方面亟待解决如何准确表征纳米材料的各种精细结构;怎样从结构上分析、解释纳米材料的新特性;能否利用某种标准来预测微区尺寸减少到多大时,材料表现出特殊的性能等等。对于这些问题,我们仍需深入研究,以便纳米技术更好地服务于机械工程领域。

参 考 文 献

1)苑国良 纳米技术在机械中的应用 [期刊论文]-机械制造 2005(43)

2)闫超 纳米技术在机械工程中的应用浅谈 [期刊论文]-价值工程 2010(29)3)敖小宝,游誉林 纳米技术在微型机械中的应用 [期刊论文]-机械制造及自动化 2005(34)

4)王祥 纳米技术在制导、导航和控制领域应用的前景分析 [期刊论文]-国际太空 2004(4)5)李振波,李疆,刘北英 基于单片机的数字微加速度计静态测试平台设计 [期刊论文]-传感器与微系统 2009(2)

6)陈建农,方永耕 水轮机及辅助设备运行及维修 河海大学出版社 1991 7)张兰娣,温秀梅 纳米加工技术及其应用 [期刊论文]-河北建筑工程学院学报 2003(21)

8)吴拓 开发机械制造的新领域 [期刊论文]-西江大学学报 2000(2)9)袁哲俊,谢大刚 纳米技术的最新发展 [期刊论文]-2000(5)

10)蔡敢为,王文龙,刘平,朱从云 为机械动力学研究 [期刊论文]-湘潭矿业学院学报 2002(17)

11)杨元华,陈时锦,程凯 微结构光学元件的应用与制造 [期刊论文]-纳米技术与精密工程 2005(3)

第三篇:纳米材料在现实生活中的应用

纳米材料在现实生活中的应用

提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。著名的诺贝尔奖获得者 Feyneman在 20世纪 60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。

纳米是英文namometer的译音,是一个物理学上的度量单位,简写是nm,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。

纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。然而我们将就纳米技术在现实生活中的应用来看看纳米技术的应用前景。

关于纳米技术在显示生活中的应用主要就是纳米材料的应用,关于纳米材料有很多种,其在生活中的存在和应用也很普遍。纳米材料的莲花效应。莲花虽生长于池塘的淤泥中,但它露在水面上的莲花荷叶却出污泥而不染,美丽而洁净,它可说是运用自然的纳米科技来达成自我洁净的最佳实例。照理说荷叶的基本化学成分?多醣类的碳水化合物,有许多的羟基(-OH)、(-NH)等极性原子团,在自然环境中很容易吸附水分或污垢。但洒在荷叶叶面上的水却会自动聚集成水珠,且水珠的滚动把落在叶面上的尘埃污泥粘吸滚出叶面,使叶面始终保持干净。经过科学家的观察研究,在1990年代初终于揭开了荷叶叶面的奥妙。原来在荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。经过电子显微镜的分析,莲花的叶面是由一层极细致的表面所组成,并非想象中的光滑。而此细致的表面的结构与粗糙度??微米至纳米尺寸的大小。叶面上布满细微的凸状物再加上表面所存在的蜡质,这使得在尺寸上远大于该结构的灰尘、雨水等降落在叶面上时,只能和叶面上凸状物形成点的接触。液滴在自身的表面张力作用下形成球状,藉由液滴在滚动中吸附灰尘,并滚出叶面,这样的能力胜过人类的任何清洁科技。这就是莲花纳米表面「自我洁净」的奥妙所在。利用了莲花效应,中国是在世界上第一个做出仿荷叶结构的防水纳米布的国家,是中科院化学所做出来的。用颗粒大小为20纳米左右的聚丙烯水分散液,浸轧,光照。使颗粒粘结在纤维表面上,形成凸凹不平的表面结构,成为双疏材料,即疏水又疏油。用油或水往这种布上倒,都不会浸湿,也不会玷污。我们用这种材料做成衣服,就会防水。如果用这种材料处理玻璃,做成表面凸凹不平的结构,看起来没有任何问题,但不会结雾,不会沾水。可以从荷叶超强的疏水性,我们可以制作类似荷叶上有纳米材料的雨伞,就像“荷叶面”雨伞,撑雨疏水,抖水即干,不必担心带到室内会滴水了。

常见纳米材料

1、纳米阻燃剂。纳米阻燃剂可分为无机纳米微粒阻燃剂和纳米复合物阻燃剂两种。无机阻燃剂是应用最早的阻燃剂,它具有无毒、低烟、不产生腐蚀性气体、无二次污染的优点。无机阻燃剂通常通过填充方式添加到高分子材料中,制备成高分子阻燃材料。传统的无机阻燃剂的粒径较大,而且不均匀,直接影响其阻燃性和其他性能,因此,为更好地发挥阻燃效果,无机阻燃剂的超细化将是今后的发展方向。采用纳米技术将无机阻燃剂微粒细化,使其粒径在纳米级范围,使微粒的大小和形态都更均匀,就能大大地减少阻燃剂的添加量,从而减轻对织物性能的影响,克服无机阻燃剂的最大缺点。超细化的氢氧化镁、二氧化二锑以及氢氧化铝、硼酸锌等无机阻燃剂,均已广泛应用于阻燃材料中。用其做窗帘,墙纸,遇上着火,既不会燃烧,也可以防患与未然。

2、纳米技术电池。所谓的纳米技术电池,就是在电池的制造过程中,采用纳米技术材料或者制造工艺,生产制造出具有特别高性能的电池产品。随着电子技术的高速发展,人们对电池的需求量愈来愈多,人们总是希望得到一种容量大、功率高、性能优、价格廉的电池。但是,由于客观实际的限制,在现实中的电池总是无法全面满足人们的要求。电池界的专家学者在孜孜不倦的追求着电池性能的提高,经历了一代又一代人的不懈努力。纳米级的物质被应用在电池的制造中,就会产生显著的特性。强大的比表面活性能量和良好的导电性能,在参与电化学反应的时候,纳米颗粒物质在极板内部形成新的活性物基核,改善和增强电极结构,极大地提高电极的电化学反应表面,降低了电化学反应的能垒。因此,纳米技术材料的应用可以显著的降低蓄电池的内阻,抑制蓄电池在充放电过程中,因为温度和电极极化等原因而导致的极板饨化,从而有效的提高电池的性能,使得蓄电池电化学反应的可逆性更好、充放电效率更高、功率更大、电池更加容易均衡一致、低温性能限制改善。因此,采用纳米技术材料的蓄电池,其容量比常规电池的容量高,寿命比常规电池寿命长,大电流工作能力比常规电池强,低温性能比常规电池优。纳米技术电池的显著优点更主要集中表现在电池使用的中后期。一般情况,纳米技术电池前期对容量及功率的改善效果只是常规电池的5%-15%,中期对容量及功率的改善效果比常规电池高出20%-30%,后期对容量及功率的改善效果比常规电池高出可以达到50%以上。新太纳米技术电池的种类有:纳米技术型免维护中低倍率镉镍蓄电池;纳米技术型免维护烧结式超高倍率镉镍蓄电池;纳米技术型免维护阀控式密封铅酸电池;纳米技术型锌镍动力电池。

3、纳米塑料。通用塑料指聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)和丙烯酸类塑料等大塑料品种。对于这类塑料的改性,过去多是采用加入填充料的方式,首先是为了降低成本,后来是为了增加和增韧以得到工程塑料,并进一步向塑料功能化发展,通过添加料的方法得到具有导电、抗静电、热塑磁性和压敏等功能的塑料。纳米材料的出现,为天加型塑料提供了广阔的空间。通用塑料首当其冲,纳米技术最早就是用于通用塑料的改性。例如:纳米碳酸钙对高密度聚乙烯的改性,在加入碳酸钙的质量分数为20%以下时,其耐冲击强度随加入碳酸钙的增加而增加,拉伸和弯曲强度也有所提高。在此,填料有一个最大加入百分比,即有一个加入最大值,而且,该值和碳酸钙的表修饰类型有关。未经地表面修饰处理的纳米碳酸钙填充体系的冲击强度随碳酸钙用量呈逐渐增加趋势,碳酸钙用量越多,材料冲吉加度越大。经表面处理后,材料的冲击强度随碳酸钙用量变化规律已完全改变。材料在低纳米碳酸钙含量(约4%~6%)时即实现增韧目的,冲击强度提高接近一倍,增韧效果显著;当碳酸钙用量进一步增加时,材料的冲击强度呈缓慢下降。几种表面处理剂对拉伸弯曲性能的影响基本相同;与处理体系相比,表面处理后材料的拉伸、弯曲性能并无明显改善。由处理和未经处理的两种试样冲击断面和断抽图SEM照片可知,经过处理体系的冲击断面上有较多牵伸结构,拉丝较多;基体上无明显可见裂纹,基体发生明显的塑性变形,吸收了大量能量。脆断面的电镜表明纳米粒子分布均匀,附聚团粒小。未经处理体系的冲击断面上出现有许多断裂裂纹,是导致冲击强度较低的原因;且未经处理的试样,粒子分布不均,附聚颗粒较大。

4、可以抗紫外线的纳米材料。研究和开发防紫外线的功能性织物,是目前国际化纤纺织业的重点。目前,传统的抗紫外线纺织品主要采用共混熔融纺丝法,该方法将抗紫外添加剂与成纤聚合物共混并一同进行熔融纺丝,抗紫外添加剂多为有机化合物,存在一定的毒性和刺激性,容易造成皮肤化学性过敏。近年来无机紫外线遮蔽剂的研究突飞猛进,纳米TiO2是其中优秀代表。上海交大“纳米氧化钛(TiO2)抗紫外纤维”通过了上海市科委组织的专家鉴定,纳米TiO2具有较高的化学稳定性、热稳定性、无味、无毒、无刺激性,使用安全,尤其是吸收紫外线能力强,对UVA区和UVB区紫外线都有屏蔽作用,可见光透过率大。采用该项目具有自主知识产权的纳米氧化钛与聚酯原位聚合方法,制备纳米TiO2/聚酯复合材料,真正实现了纳米颗粒在高聚物中的纳米级分散,不仅提高了纺丝效率,而且使材料的力学、热学性能得到了较大提高,织物的紫外线屏蔽指数大于50,在280~400纳米波段紫外线屏蔽率大于95%,紫外线透过率小于3%。据悉,该项目成果可广泛应用于生产帐篷、遮阳伞、夏季女装、野外工作服、训练服、运动服、窗帘织物、广告布等。采用本技术的抗紫外织物还具有防暑、隔热、触感凉爽的性能,特别适宜织造高档T恤衫、运动服、训练服等夏季凉爽面料。据统计,世界功能性纺织品的需求量超过500亿米,我国功能纺织品的需求量近50亿米。纳米TiO2抗紫外纤维技术市场前景将非常广阔。

纳米材料的应用

一、生物学中。纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。如在金属铁的超细颗粒表面覆盖一层厚为5~20 nm的聚合物后,可以固定大量蛋白质,特别是酶,从而控制生化反应[8]。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。以纳米尺寸去认识生物大分子的精细结构及功能的联系,按人类的意愿进一步裁剪和嫁接,制造出具有特殊功能的生物大分子。生物基因工程由于纳米技术的运用而变得更加可控,人类可以自己控制所需要的生物产品,农、林、牧、副等行业以及人类的食品结构也会随之发生重要变革,用纳米生物工程、纳米化学工程合成的“食品”将极大丰富食品的数量和种类。

(2)医学中。研究人员发现,生物体内的RNA蛋白质复合体,其线度在15~20nm之间,并且生物体内的多种病毒也是纳米粒子。10nm以下的粒子比血液中的红血球还要小,因而可以在血管中自由流动。如果将超微粒子注入到血液中,输送到人体的各个部位,将可以作为监测和诊断疾病的手段。科研人员已经成功利用纳米SiO2微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。另外,利用纳米颗粒作为载体的病毒诱导物已经取得了突破性进展,现在已用于临床动物实验,估计不久的将来即可服务于人类。

研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。这样在不久的,将来被视为当今疑难病症的爱滋病、高血压、癌症等都将迎刃而解,从而将使医学研究发生一次革命。

二、纳米材料在环保方面的应用

纳米材料的控制污染源方面可起到关健性的作用。主要体现在它降低能源消耗和有毒物质的使用;减少水资深消耗;减少废物的产生;治理环境污染物及大气污染。

(1)在污水治理方面。污水中通常含有有毒有害物质、异味污染物、细菌、病毒等。传统的水处理方法效率低、成本高、存在二次污染等问题,纳米技术的发展和应用可以彻底解 决这一问题。纳米材料在环保中的应用主要与纳米粒子的化学催化和光催化特性有关。除已经提到的光催化降解废水的纳米材料以外,另有许多纳米材料可以用来治理有害气体和废水,并已走出实验室而进入实用阶段。利用纳米TiO2表面具有超亲水性和超亲油性的特点,在玻璃表面涂覆纳米TiO2可以制成自清洁外墙玻璃,具有防污、防雾、易洗、易干、自清洁等功能。

(2)在大气污染治理方面。大气污染一直是各国政府需要解决的难题。纳米技术及材料的应用将会为我们解决大气污染问题提供全新的途径。工业生产和汽车使用的汽油、柴油等,在燃烧时会产生二氧化硫气体,这是二氧化硫最大的污染源。复合稀土化物的纳米级粉体具有极强的氧化还原性能,是其它任何汽车尾气净化催化剂所不能比拟的。它的应用可彻底解决汽车尾气的污染问题。新装修房间的空气中有机物浓度高于室外,甚至高于工业区,目前已从空气中鉴定出几百种有机物质,其中有些是致癌物。研究表明,纳米二氧化钛可以很好地降解甲醛、甲苯等污染物,降解效果几乎可达到100%。

(3)城市固体垃圾处理方面。将纳米技术及材料应用与城市固体垃圾处理,主要表现在两个方面:一方面可以将橡胶制品、塑料制品、废印刷电路板等制成超微粉末,除去其中的异物,成为再生原料回收;另一方面,可以应用纳米二氧化钛加速城市垃圾的降解,其降解速度是大颗粒二氧化钛的10倍以上,从而可以缓解大量生活垃圾给城市环境带来的压力。

五、纳米材料在其他方面的应用

利用先进的纳米技术,在不久的将来,可制成含有纳米电脑的可人-机对话并具有自我复制能力的纳米装臵,它能在几秒钟内完成数十亿个操作动作。在军事方面,利用昆虫作平台,把分子机器人植入昆虫的神经系统中控制昆虫飞向敌方收集情报,使目标丧失功能。

利用纳米技术还可制成各种分子传感器。和探测器利用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等仿生纳米材料。将药物储存在碳纳米管中,并通过一定的机制来激发药剂的释放,则可控药剂有希望变为现实。另外,还可利用碳纳米管来制作储氢材料,用作燃料汽车的燃料“储备箱”。利用纳米颗粒膜的巨磁阻效应研制高灵敏度的磁传感器;利用具有强红外吸收能力的纳米复合体系来制备红外隐身材料,都是很具有应用前景的技术开发领域。

六、纳米材料的前景

纳米材料的研究,它使人类在改造自然方面进入了一个新的层次,即进入到原子、分子的纳米层次。纳米技术的核心是按人们的意志直接操纵单个原子、分子或原子团、分子团,制造具有特定功能的产品。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用 更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。在纳米材料的研究中,目前主要的工作有:一是用纳米材料替代传统材料改善产品品质与性能;另一方面是开发新材料。

纳米材料与纳米技术和我们的生活密切相关,纳米材料已成为当今世界各国研究者热衷的领域。随着研究的深入,纳米材料与纳米技术得到飞速的发展,可以想见,当我们可以自主的控制纳米材料时,我们的生活将发生极大的变化;激动人心的纳米时代已经到来,人们的生活即刻将发生巨大的变化,然而,我们也要清醒地看到,市场上真正成熟的纳米材料并不是很多中科院院士白春礼院士认为,“真正意义的纳米时代还没有到来,我们正在充满信心地迎接纳米时代的到来。” 白春礼说,“人类进入纳米科技时代的重要标志是纳米器件的研制水平和应用程度。”纳米科技发展到今天,距离纳米时代的到来还有多远呢,白春礼说,“纳米研究目前还有许多基础研究在进行中,在纳米尺度上还有大量原理性问题尚待研究,纳米科技现在的发展水平大概相当于计算机技术在20世纪50年代的发展水平,人类最终进入纳米时代还需要30到50年的时间,50年后纳米科技有可能像今天计算机技术一样普及。”

第四篇:纳米材料在污水处理中的应用

题目 本科课程论文

新纳米水净化技术去除饮用水中微污染物

院(系)

化学学院 专

化学教育

课 程

绿色化学 学生姓名

学 号

指导教师

二○一三年六月

新纳米水净化技术去除饮用水中微污染物

摘要:“应用纳米技术去除饮用水中微污染物的基础研究”和纳米试剂盒技术,可快速检测并清除污染物。这套包括新型纳米材料及配套处理程序的技术对控制饮用水源砷、氟等污染具有重要意义。关键词:纳米材料、饮用水、微污染物、检测、净化

在本学期的《绿色化学》课程的学习中,有一次老师专门提到了水污染,并且对饮用水的净化作了强调。我印象最为深刻的是老师的这句话:虽然平常在对水进行净化时,已经做到了除去颗粒,臭味,一些重金属以及有机物或无机物,但是,这远远是不够的,我们所饮用的水中仍然有很多含有大量微生物或者含有氯元素的物质,其在净化过程中并未完全除去,没有达到其标准。这时,我听着感觉毛骨悚然,一想到其中含有大量微生物,就有些后怕,所以在本次论文中,我收集了很多关于除去微生物的技术,主要是纳米技术。

污水中一般都含有细菌病毒、有毒有害的物质、悬浮物质、异味污染物等污染物,并对人们的生活和健康造成不良影响。因此,污水处理就是去除污水中的污染物,使得污水得到净化。

由于传统的污水处理方法不仅效率低,运行费用高,并且还存在二次污染的问题,因此污水处理问题一直没有达到理想的解决效果。

1、饮用水中微污染物的的种类、来源、危害

饮用水中的微污染物包括无机微污染物和有机微污染物。其中,无机微污染物主要有Pb(II)、As(Il1)、Hg(II)、Cu(II)、Cr(V)等金属离子和氟离子。饮用水中的重金属离子来源广泛,包括矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属离子废水,以及天然地质结构中缓慢溶出的重金属离子等。矿山工业产生的废水主要是采矿和选矿废水,其中含有各种矿物质悬浮物和有关重金属离子。有色冶金、加工业排出的废水中,多含有汞、砷、铬等元素。此外,一些轻工业和化学工业排出的废水也含有汞、铅、砷等重金属离子。若上述废水未经处理或处理不完全便流人江河,就对饮用水源造成了污染。饮用水中只要含有微量的重金属离子即可产生毒性效应,且具有持续性和放大作用,经过生物累积可以在人体内逐渐富集,长期危害人体健康。

有机微污染物也被发现在饮用水中广泛存在,可分为两大类:天然有机物(NOM)和人工合成有机物(soc)。NOM 是动植物在自然循环过程 中经腐烂所产生的物质,主要包括腐殖质、微生物分泌物、溶解的动植物组织及动物的废弃物等。SOC大多为有毒有机污染物,其中有些种类是致癌物或诱变剂等,是饮用水致突变活性增强的重要起因,如三氯甲烷、多氯联苯、杀虫剂、卤代脂肪烃、多环芳烃等。长期饮用含有微污染物的水,通过生物累积作用,可对人体产生致癌、致畸致突变等效应

有研究显示,自来水中有机污染物在一定剂量范围内可对细胞产生不同程度的DNA损伤作用。如果动物长期暴露于高剂量氯化消毒副产物中(例如三氯甲烷),可以导致肝癌和肾癌。另外,饮用水氯化消毒产生的呋喃酮也会对人体产生毒害,是强致突变物质之一研究了瑞典婴儿的出生缺陷影响因素,发现饮用水中的三氯甲烷可以增加先天性心脏病的患病几率。另一项针对挪威全国新生儿的流行病学调查也显示,心脏病和呼吸系统的出生缺陷与饮用水中有机微污染物有着重要关联。与有机微污染物类似,无机微污染物(如重金属离子)也对人体健康产生长期的严重危害。一些重金属离子(如铅、砷、氟、镉等)通过饮用水进人人体并在体内积累,可导致机体代谢途径受阻,进而危害人体健康,甚至造成特殊的地方病。其中,砷已被美国疾病控制中心和国际防癌研究机构确定为第一类致癌物。

2、纳米技术在污水处理中的应用

纳米技术在污水处理中的应用主要为光催化氧化技术、纳滤技术和絮凝技术三种。

1)光催化氧化技术。光催化氧化技术可以有效处理氰化物、金属粒子及各种有机酸等物质,使污水中的污染物最终氧化降解生成H2O和CO2,据有关统计,已发现数百种有机污染物质可以通过光催化氧化技术进行处理。而这种技术作用的关键在于其光氧化催化剂,TiO2 被认为是目前最有效的光氧化催化剂。

由于纳米TiO2,光催化氧化技术具有无二次污染的特点,不仅降解效率高、无选择性,而且其氧化反应的条件温和,因此几乎适用所有的污水处理。

2)纳滤技术。纳滤(NF)是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80-1000的范围内,孔径为几纳米,因此称纳滤。纳滤技术属于压力推动的膜工艺,这种技术作用的关键在于纳滤膜。纳滤膜可以取代电化学和吸附的方法,对制浆和造纸工业废水中的污染物进行处理,可除去来自木浆漂白过程中产生的氯化物和深色物质。另外,纳滤膜也可用于纤维加工过程中漂白水的处理,以控制污染物的排放量。纳滤膜法水处理技术以其特殊的优势,获得了世界各国的水处理工作者的普遍关注,在水处理技术的研究和开发领域取得了可喜的成绩。纳滤原理: 源水 →源水泵 →机械过滤器 →活性炭过滤器 →精密过滤器 →高压泵 →纳滤主过滤系统

3)纳米絮凝技术。纳米絮凝技术是以纳米絮凝剂(如SiO2)代替传统的絮凝剂,由于纳米颗粒具有强大的吸附能力,因此通过吸附架桥、卷扫网捕等絮凝作用,可以除去传统絮凝法无法除去的污染物质,并且相关的沉淀物质具有易脱水的特点。

3、纳米材料在污水处理中的应用

纳米材料由纳米微粒组成,具有吸附、催化等多种新的特性,目前应用最为普遍的纳米材料为TiO2。在污水处理方面,TiO2 扮演着非常重要的角色。

其中,由于纳米TiO2,具有很强的还原能力,因此在有机污水处理中,能将高氧化态银、铂等贵重金属离子吸附于材料的表面,通过光电子产生的强还原能力,将金属粒子还原为细小的金属晶体,不仅除去了污水的毒性,还利于贵重金属的回收。而在无机污水处理中,纳米TiO2作为光催化剂。在阳光下,它能催化氧化污水中的有机污染物质,使其迅速、完全降解为水、CO2 等无害物质。据相关统计,纳米TiO2,能处理80多种有机有毒物质。

4、纳米技术在污水处理中的新前景

来自英国科学家发明了一种纳米多孔材料制备新方法——共渗透振动法,该方法有望应用于水净化和化学感应器等诸多领域。

通常,制备纳米多孔材料时,多重金属组分是必要的。当移除较小组分时,小的纳米孔就产生了。但是,由于要移除较小组分必须布满材料内外,因此制备纳米多孔材料受到制约。而COS法则更高效灵活,就像如何释放装满盐水的气球里的盐分一样。只需要把它放在清水;里,通过渗透力,让清水不断进入气球直至气球破裂,从而释放出所有盐分。最后将一系列碎片连起来,就得到纳米多孔材料。

5、展望

饮用水的安全卫生是21世纪人类面临的最富有挑战性的问题之一。针对饮用水中微污染物的检测与去除开展研究,具有重要的科学价值和社会意义。

1)饮用水中微污染物的检测与净化,是一个普遍性课题,与每个人自身的健康息息相关。因此,发展新型纳米材料与技术的同时,也应考虑其成本、简易性、便携性与普适性。

2)纳米材料具有高活性的同时,也极易受到各种杂质的影响,甚至引起中毒失活。在纳米材料应用过程中配套以相应的预处理和后处理措 施,是保障纳米材料长期稳定起效的必要环节。3)基于纳米材料与技术较传统的饮用水净化体系的不同之处,建立相应的检测规范与评价标准,是未来一段时间内需要提上议事日程的新

参考文献

[1]马荣萱,李继忠.纳米技术及材料在环境保护中的应用[A].环境科学与技术.2006(7):29(7).

[2]覃爱苗,廖雷.纳米技术及纳米材料在环境治理中的应用[A].中山大学学报.2004(6):43.

[3]丁明洁等.用纳米技术处理造纸工业废水的研究进展[A].中国造纸学报.2007年(3);102—105 [4]张建江,马永红,杨林.饮用水中有机污染物的“三致”作用研究进展[J】.现代预防医学,2007,34(18):3474—3475. [5]向伦辉,鲁文清,吴志刚,等.武汉市饮用水中有机提取物对HepG2细胞DNA 的损伤作用[J].职业与健康,[6]周敏.饮用水氯化消毒副产物对人体健康的影响[J]_职业与健康,2010,26(23):2866—2867.

[7]刘金云,万玉腾,刘锦准,付向前,张晓嫚,黄行九,纳米材料与饮用水中微污染物的检测和去除

[8]匡婷.纳米技术及材料在污水处理与空气净化中的应用

第五篇:高分子复合材料在各种航空航天工具中应用

高分子复合材料在各种航空航天工具中应用

多种高性能的高分子复合材料目前已经用于各种航空航天工具中。例如,碳纤维复合材料不久前还只在军用飞机上用做主结构如机身和机翼。但是,近年来先进复合材料已开始用于大型民航客机上用做主结构,玻纤增强塑料也大量使用在一些较为次要的部位。

在美国,碳纤维复合材料主要用于航空航天工业;在欧洲,碳纤维复合材料在航空航天领域的使用量达到33%,仅次于其他工业用途。例如,无人驾驶飞机上,目前已经大量使用碳纤维复合材料。

新近推出的波音公司新型民航客机7E7和空中客车公司A380,都开始采用航空航天复合材料作飞机的主结构。这是因为复合材料能提供目前制铝工业所能提供的铝合金大致相同的性能,而且复合材料还能进一步降低成本。此外,复合材料还有耐久性好,所需保护少,零部件可以整合,耐腐蚀性强,通过利用智能纤维材料和嵌入式传感器进行结构监测等优点。

7E7客机绝大多是用复合材料制造的,将需要约25吨增韧碳纤维增强环氧树脂叠合材料和夹层材料。A380也使用通常的复合材料结构,例如机翼包皮的40%采用碳纤维增强塑料,减轻质量1.5t,减轻全装配结构11.6t。尾翼的大部分包括尾翼的安定面是碳纤维复合材料,仿照老式空中客车客机。未增强的后机身由连接到复合材料机架上的复合材料与合金架的组合体上的碳纤维蒙皮构成。总计复合材料将占机架质量的大约16%,减轻同种规模的全金属结构(空飞机的总质量将约为170t)。

纳米材料在高分子材料中的应用论文
TOP