第一篇:数学证明题证明方法
数学证明题证明方法(转)
2011-04-22 21:36:39|分类:|标签: |字号大中小 订阅
2011/04/2
2从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。
要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:
(1)按照题意画出图形;
(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;
(3)在“证明”一项中,写出全部推理过程。
一、直接证明
1、综合法
(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.2、分析法
(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二、间接证明
反证法
1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:
反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:
对原结论否定的假定的提出,相当于增加了一个已知条件.4反证法主要适用于以下两种情形:
(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;
(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形
第二篇:数学证明题解题方法
数学证明题解题方法
第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。
第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
第三步:逆推。从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。
第三篇:数学证明方法
数学证明方法 直接证明法
从正面证明命题真实性的证明方法叫做直接证法.凡是用演绎法证明命题真实性的都是直接证法.它是中学数学中常用的证明方法.综合法、分析法、分析综合法、比较法。
(1)综合法:从已知条件入手,运用已经学过的公理、定义、定理等进行一步步的推理,一直推到结论为止.这种思维方法叫综合法.这种方法是“由因导果”,即从已知到可知,从可知到未知的思维过程.
(2)分析法:从问题的结论入手,运用已经学过的公理、定义、定理,一步步寻觅使结论成立的条件,一直“追”到这个结论成立的条件就是已知条件为止.可见分析法是“执果求因”的思维过程,它与综合法的思维过程相反.分析法属于逻辑方法范畴,它的严谨体现在分析过程步步可逆。
分析法的步骤为未知需知已知。在操作中“要证”、“只要证”、“即要证”这些词语也是不可缺少的。分析法的书写形式一般为“因为......,为了证明......,只需证明......,即......,因此,只需证明......,因为......成立,所以‘......(结论)’成立”。(3)分析综合法:把分析法和综合法“联合”起来,从问题的两头向中间“靠拢”,从而发现问题的突破口.这种思维方法叫做分析综合法.对于比较复杂的题目,往往采用这种思维方法.在证明的过程中,往往分析法、综合法常常是不能分离的。分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。分析的终点是综合的起点,综合的终点又成为进一步分析的起点。
(4)比较法 间接证明法
不是直接证明论题的真实性,而是通过证明论题的否定论题的不真实,或者证明它的等效命题成立,从而肯定论题真实性的证明方法,叫做间接证明法.反证法、同一法、归纳法(不完全归纳法、完全归纳法、数学归纳法)、类比法、换元法、放缩法、判别式法、函数法(1)反证法:反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。实施的具体步骤是:
第一步,反设:作出与求证结论相反的假设(即结论的否定成立);
第二步,归谬:从否定结论出发,逐层进行推理,得出与公理或前述的定理、定义或题设条件,或与临时假设等自相矛盾(即说明结论不能否定);
第三步,结论:根据排中律,说明反设不成立,从而肯定原命题成立。(2)同一法:两个互逆或互否的命题不一定是等效的,只有当一个命题的条件和结论都唯一存在,且它们所指的概念是同一概念时,该命题与其逆命题才等效,这个原理叫做同一原理.对符合同一原理的命题,当直接证明有困难时可以改证与它的等效的逆命题,这种证明方法叫做同一法.
1当命题的条件与结论所含事项都唯一存在时,先作出符合命题结论的所有图形;同一法的步骤:○2证明所作图形符合已知条件;3根据唯一性,4最后肯定○○确定所作图形或所作图形与已知图形重合;○原命题成立.
(3)不完全归纳法:从一个或几个(但不是全部)特殊情况作出一般性结论的归纳推理。不完全归纳法又叫做普通归纳法。
(4)完全归纳法:是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法。
(5)数学归纳法
第四篇:数学证明方法
数学证明方法
摘要:数学证明是数学学习中非常重要的一部分,数学证明有核实作用,理解作用,发现作用和思维训练作用,数学证明常用的方法有综合法、分析法、反证法、数学归纳法等等。
关键词:数学证明;意义;方法
数学是研究现实世界空间形式和数量关系的科学,它的应用非常广泛,是学习现代科学技术必不可少的基础学科。学习数学,就离不开数学证明,这是由数学证明在数学发展中所起的作用决定的。什么是数学证明呢?许多人认为数学证明是根据相应的公理,法则等来说明结论是正确的一种活动。数学证明是数学学习中非常重要的一部分,在不同的情境中,数学证明有不同方法。
数学证明的方法
(一)综合法和分析法
综合法是从命题的条件出发,经过逐步的逻辑推理,最后达到要证的结论的方法。分析法则是从要证的结论出发,一步一步的搜索下去,最后达到命题的已知条件的方法。
1cossin
例1 求证sin=1cos
sin2sin
方法1: 左边 =sin(1cos)=1cos=右边
所以得证。
sin(1cos)sinsin(1cos)
2方法2:右边=1cos=(1cos)(1cos)=1cos sin(1cos)1cos
sin2= =sin=左边
所以得证。
2sin2sincos21cos2sincos22=tan2=方法3:sin=2cos
2sin=1cos
所以得证。
1cossin
方法4:要证sin=1cos只需要证(1cos)(1cos)sinsin
22即要证1cossin,显然,这个命题成立,故得证。
上述例题的四种解法中,前三种是用综合法解的,而第四种解法是用分析法解的。在证明的过程中,我们用到了同角三角函数的关系,半角公式等等。所以,通过数学证明我们不仅理解了这道命题的正确性,还知道了为什么正确,同时还增进了对同角三角函数的关系,半角公式等等的理解。
从例1我们可以看出,综合法的特点是从“已知”逐步推向“未知”,其逐步推理,实际是要寻找它的必要条件。分析法的特点是从“需知”逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件。
综合法和分析法各有其优缺点。从寻求解题思路来看,综合法是由已知的寻找未知的,即直接由条件证明结论。但是由条件容易导出许多其它的结论,因而不容易有效。分析法由未知的推向已知的,即由结论慢慢推出所需要的条件,这样比较容易解决问题。就表述证明的过程而论,综合法的形式比较简洁,条理清晰,分析法由于倒过来叙述,因而比较繁琐,文辞冗长。这也就是说,分析法有利于思考解决问题,综合法宜于表达问题。因此在解题时,可以把分析法和综合法结合起来使用,先以分析法为主,寻找解题思路,再用综合法有条理的表述
证明过程。
(二)反证法
通过证明论题的否定命题不真实,从而肯定论题真实性的方法叫做反证法。
反证法的一般步骤如下:
假设命题的结论不成立,即结论的否定命题成立。
从否定的结论出发,逐层进行推理,得出与公理或前述的定理,定义或题设条件等自相矛盾的结论,即说证明结论否定不成立。
据排中律,最后肯定原命题成立。
反证法有归谬法与穷举法两种。在应用反证法时如果与原命题结论相矛盾的方面只有一种可能情况,只要把这种情况推翻,就能肯定结论成立,这种反证法叫做归谬法。如果与原命题相矛盾的方面不止一种情况,就必须把矛盾方面的所有可能的情况一一驳倒,才能肯定结论成立,这种反正法叫做穷举法。
例 2求证2是无理数。p2p
2qq2证明:假设是有理数,且为既约分数,(p>0,q>0),则=2,p22q2,由此可见p是偶数,记为2r。同理又可得q也是偶数,这p与q是既约分数相矛盾。从而2是无理数。在这道题目中,2只有两种可能,是无理数或者不是无理数。所以,命题的否定方面只有一种可能情况。因而,我们可以假即设其为有理数,然后推出矛盾证得该题。
例 3在四边形ABCD中,BADBCD。AC和BD相交于点O,已知OB=OD,求证:四边形ABCD是平行四边形。证明:如图,假设四边形ABCD不是平行
四边形,则由于OB=OD,所以必有OAOC,即OA
若OA 如果OAOC,同理可证,这也是不可能的。 所以,四边形ABCD是平行四边形。 在该题中,命题的否定方面有两种可能OA 通过这道题的证明,可以增进人们对平行四边形特征的理解,使自己的思维更加严谨,缜密。 反证法是一种重要的证明方法,不但在初等数学中有很多的应用,就是在高等数学中也有着很重要的应用,数学中的一些重要的结论,从最基本的性质,定理到某些难度较大的世界难题,往往是用反证法得到的。 在证明该题的过程中,用到了勾股定理,全等三角形的知识。所以,通过该题,也可以使人们加强对勾股定理以及三角形全等方面的知识的理解。 需要指出的是,同一法和反正法的适用范围是不同的,同一法的局限性较大,通常只适用于符合同一原理的命题,反证法则普遍适用,对于能够用同一法证明的命题一般都能用反证法证明。 (三)数学归纳法 我们采用记号p(n)表示一个与自然数n有关的命题,把它们都写出来 p(1),p(2),p(3)„„ 事实上,如果满足下面两个条件: (1)p(1)成立(即当n1时命题成立) (2)只要假设p(k)成立(归纳假设),由此就可得p(k1)也成立(k是自然数)就能保证这一大串(无数多个)命题p(1),p(2),p(3)„„都成立。 我们把此叫做数学归纳法原理。 根据数学归纳法原理,我们在证明时可以相应的按照以下两步进行: (1)验证p(1)是成立的。 (2)假设p(k)成立,证明出p(k1)也成立。 由(1),(2)可得对于任意的自然数n,命题p(n)都成立。 这是数学归纳法最基本的形式,通常称作第一数学归纳法。 例5 证明1+3+5+„„+(2n1)=n 2 证明:(1)当n=1时,左边=1,右边=1=1等式成立。2 2(2)假设当n=k(k1)时等式成立,即1+3+5+„„+(2k1)=k 则n=k+1时1+3+5+„„+(2n1)=1+3+5+„„+(2k1)+[2(k1)-1] =1+3+5+„„+(2k1)+(2k1) 2=k+(2k1)=(k1)2 所以,当n=k+1时,等式也成立。 由(1),(2)可知,对于任意自然数n,等式都成立。所以得证。总之,一个数学命题往往可以有不同的思路来思考证明,思路不同,所产生的影响不同,证明方法也不同,对于不同的数学命题的证明也可以有许多不同的思路,不同的方法。 参考文献 [1] 李士锜PME:数学教育心理学华东师范大学出版社 [2] 蒋文蔚杨延龄数学归纳法北京师范大学出版社 [3] 侯敏义数学思维与数学方法论东北师范大学出版社 考研数学证明题三大解题方法 纵观近十年考研数学真题,大家会发现:几乎每一年的试题中都会有一个证明题,而且基本上都是应用中值定理来解决问题的。但是要参加硕士入学数学统一考试的同学所学专业要么是理工要么是经管,同学们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致数学考试中遇到证明推理题就发怵,以致简单的证明题得分率却极低。除了个别考研辅导书中有一些证明思路之外,大多数考研辅导书在这一方面没有花太大力气,本人自认为在推理证明方面有不凡的效绩,在此给大家简单介绍一些解决数学证明题的入手点,希望对有此隐患的同学有所帮助。 一、结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。 知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。 二、借助几何意义寻求证明思路 一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。 三、逆推 从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要证的不等式。 对于那些经常使用如上方法的同学来说,利用三步走就能轻松收获数学证明的12分,但对于从心理上就不自信能解决证明题的同学来说,却常常轻易丢失12分,后一部分同学请按“证明三步走”来建立自信心,以阻止考试分数的白白流失。第五篇:考研数学证明题三大解题方法