首页 > 精品范文库 > 13号文库
毕业实践调研报告(出租车计价器)
编辑:琴心剑胆 识别码:22-913435 13号文库 发布时间: 2024-02-17 00:56:29 来源:网络

第一篇:毕业实践调研报告(出租车计价器)

无锡职业技术学院

调研报告

1.选题的原因

随着我国经济的发展,城市化进程逐步加快,生活水平逐步提高,人们也不再满足于衣食住的享受,出行的舒适已受到越来越多人的关注。于是,在日常出行上,出租车以高质低价赢得越来越多人的青睐。伴随着出租车也在各个城市越来越多,随之带来的关于出租车的买卖纠纷也时有发生,比如:出租车起步价有时在全市不统一、个别出租车乱收费。而与这两个问题息息相关的是出租车计价器,只有在全市的出租车上使用统一规范的出租车计价器,才能从根源上解决问题。使用改良的出租车计价器为市民带来优质低价的服务,而且,具有良好性能的计价器对出租车司机是很有必有的。

从另一方面来考虑,出租车计价器还是有着不错的市场潜力。各大中小城市出租车的数量每年都在增加,购买出租车计价器对于出租车公司来说是一笔较大的投资,质优价廉的计价器一定能快速的占据市场。

2.选用单片机设计的原因

*用单片机做出租车计价器简洁明了,灵活性强,功能易实现;

*软硬件的配合让计价器的功能会相对强大;

*比起传统的数字电路的模拟电路,按键能少,能有效的减少损耗,使计价器的使用寿命更长;

*软件编程带来更多的附加功能;

*对于企业来说,单片机等硬件相对低廉,用较少的材料去换取比较可观的利益,符合企业的价值。3.出租车计价器的构成*LED数码管:由多个发光二极管组的“8”字型器件,引线已在内部完成。用驱动电路驱动数码管的各个段码,从而显示出我们需要的数字。价格便宜,在电器特别是家用电器方面应用极为广泛。

*里程传感器:采集车速信号(霍尔效应),车速信号为脉冲信号,采集脉冲信号的频率就可以得到车速,可以用芯片的定时器来捕获。如果车速大于一定的值,采用公里计算价格;如果车速小于这个值,可以用时间来计算。用芯片计算公里数,用定时器确定时间。用数码管显示公里数、时间以及价格。

*空车牌:提供计价的信号。

*单片机:MCS-51系列单片机的由中央处理器(CPU)、内部数据存储器RAM、内部程序存储器ROM、并行I/O端口、串行口、定时/计数器、中断系统、时钟电路。

*打印机:打印机打印乘客所需要的票据,通过排线连接计价器的主机。上述五部分通过电路连接组成出租车计价器。

4.我国的出租车计价器生产批发厂商

出租车计价器在我国生产厂家众多,竞争激烈,主要有:广州市阿佩斯电子科技有限公司、北京聚丽科技有限公司、江苏省徐州市华统电脑设备有限公司、上海天峰电子有限公司、福州诚市交通设备有限公司、杭州萧山集英电子器材厂、无锡拥成商贸公司、广州中澳电子科技有限公司、南京通用电器材研发部、南京通用电气有限公司、广州华泽科技有限公司、余姚市家用电器有限公司、上海良标智能终端股份有限公司,等等。

众多公司的各种出租车计价器功能有强有弱,自然价格不一。

5.出租车计价器的发展历史

第14页 / 共66页

无 锡 职 业 技 术 学 院

毕业实践调研报告

我国的第一家生产计价器企业是重庆市起重机厂,最早的计价器全部采用机械齿轮结构,只能完成简单的计程功能,可以说早期的计价器就是一个里程表。

随着科学技术的发展,产生了第二代计价器。它采用了手摇计算机与机械结构相结合的方式,实现了半机械半电子化。此时它在计程的同时还可以完成计价的工作。

大规模集成电路的发展又产生了第三代计价器,也就是全电子化的计价器。它的功能也在不断完善.当单片机出现并应用于计价器后,现代出租车计价器的模型也就基本具备了,它可以完成计程,计价,显示等基本工作。单片机以及外围芯片的不断发展促进了计价器的发展。

6.出租车计价器的重要性

计价器是出租汽车的经营者和乘坐出租汽车的消费者之间用于公平贸易结算的工具,因而计价器计价准确与否,直接关系到经营者和消费者的经济利益。依据国家有关法律、法规,出租汽车计价器是列入国家首批强制检定的工作计量器具之一,也是近年来国家质量技术监督部门强化管理的六类重点计量器具之

一。在出租车是城市交通的重要组成部分,行业健康和发展也获得越来越多的关注。汽车计价器是乘客与司机双方的交易准则,它是出租车行业发展的重要标志,是出租车中最重要的工具。它关系着交易双方的利益。具有良好性能的计价器无论是对广大出租车司机朋友还是乘客来说都是很必要的。

7.出租车计价器的功能

五屏显示:同时显示 金额、单价、计时、里程和时钟;

状态显示:低速、夜间、空贴、往返、暂停;

语音报价:播放服务用语、车费等;

自动打印:按规定的格式打印路单发票;

税控功能:按税务部门规定日期用 IC卡交税

存储功能:可储存 100次营运路单供查询统计,存储数据掉电保存十年。IC 卡:强大的加密功能,数据安全可靠

司机卡:路单存储、数据管理、一机一卡;

管理卡:设置参数、周期检定、逾期停机;

税控卡:确保税收、限期纳税、逾期停机;

时距分离、时距并行、等候收费等方式任选;

永久时钟:不掉电永久实时时钟,自动转换日夜收费;

通用程序:具有25项可设置参数,方便设置;

公司管理:营运数据用 IC卡传递到计算机中,便于管理。

第15页/共66页

第二篇:出租车计价器

基于单片机的出租车计价器设计

摘要

出租车计价器的数字系统的设计正是基于一些专用的芯片,才发挥其有效特性,从而实现出租车的计价功能。此数字系统主要分为三个单元,即里程计数及显示单元、价格计数及显示单元、脉冲产生。本设计是一个基于单片机AT89C51的出租车自动计费设计,附有复位电路,时钟电路等。关键词:出租车计费器;单片机;控制

Abstract Taximeter design digital system is based on some special chip, to play their effective characteristics, thus realizing the taxi valuation function.This system is mainly pided into there modules, namely the mileage counting and display unit, and display unit price counting, pulsing.The design is based on a single chip AT89C51taxis design, a reset circuit, clock circuit.Keywords:taximeter,a single-chip microcomputer,control

1引言

1.1 设计目的

近几年来,出租汽车行业在各地得以蓬勃发展,但采用模拟电路和数字电路设计的计价器整体电路的规模较大,用到的器件多,造成故障率高,难调试。而采用单片机进行的设计,相对来说功能强大,用较少的硬件和适当的软件相互配合可以很容易地实现设计要求,且灵活性强。

1.2 功能要求

(1)用前4位数码管实时显示里程数,单位为千米,最后一位为小数位;用后4位数码管时时显示金额数,单位为元,最后一位为小数位。

(2)规定出租车里程小于2千米收费5元,超过2千米收费为8*(way-20)/5。

1.3 设计方法

本设计采用AT89C51单片机为主控器,并用频率信号发生器模拟车速,利用AT89C51的定时器工作在方式1下定时实现对出租车的计价设计,输出采用共阴极的集成8位7段数码显示管。设计方案及原理

2.1 设计方案

采用AT89C51单片机为主控器,并用频率信号发生器模拟车速,利用AT89C51的定时器/定时器T1工作在方式1下定时实现对出租车的计价设计,输出采用共阴极的集成8位7段数码显示管。本电路设计的计价器不但能实现基本的计价,而且

单片机原理及系统课程设计报告

还能根据里程来调节单价。

2.2 设计原理

出租车计价是根据车所行驶的路程以及乘客乘车的里程综合决定的。出租车行驶总路程可以通过车轮的周长乘车轮旋转圈数得到。即可计算得到车轮旋转几周出租车能行驶一公里的路程。通过计数接收到的脉冲个数,计算出当前所行驶的路程。同时,通过数码管显示当前的行驶里程和需支付的车费。出租车计价器用于记录里程、起步公里数与价格的关系。模拟出租车计价器能根据总里程数、起步公里数的情况作出相应报价等。这个系统以AT89C51单片机为主控器,单片机的计数器/定时器T1工作在方式1下来对外部脉冲计数,最后通过集成的8位7段LED数码管显示里程数和价钱。总体模块框图如图1所示。

总金额显示单价显示AT89C51脉冲产生动态扫描数码管显示

图1 总体框图 硬件设计

对于AT89C51的计数器/定时器T1,通过对寄存器TCON的设置,即使它的M1M0=01,计数器/定时器T1工作在方式1下,构成16位计数器/定时器。此时TH0、TL0都是8位加法计数器。此设计中,T1为计数工作方式,计数范围为1~2^16=1~65536(个外部脉冲)。当计数溢出时则置位并申请中断,进入中断服务 执行中断程序。

通过74HC138接P20、P21、P22输出来对8位7段的智能扫描LED进行段选,并且通过P1口对LED进行位选,最后将结果显示在LED上。硬件设计图如图2所示。

74HC138是三八译码器,在工作之前,使74HC138的使能端有效,再使74HC138的A、B、C接P20、P21、P22的输出达到对LED位选线的控制,使相应的位显示相应的结果。硬件总设计图如图2所示。

第三篇:出租车计价器调试报告

出租车计价器调试报告

本设计可分为单片机主控模块、键盘、显示器、温度检测、状态指示、时钟日历、语音收录播报、分频器电路、脉冲信号发生器等9部分。仔细分析系统的工作原理,分别按照模块在系统中的作用,对各个模块分别单独调试,最后形成该系统的用户程序,实现功能要求。

一、接通电源

调试要求:1.首先仔细检查该系统板的电源和地是否有短路问题,在未接入电源轻快下,使用万用表检验电源和地检查是否短路,如果没有短路,再仔细核查电源极性后予以通电,观察电源指示灯D1是否点亮。如果电源指示的灯不亮应立即关闭电源,并用手触摸各个芯片,检查是否用某芯片发热。如果没有发热的器件,很可能是电源指示二极管极性安装错误,或者是该发光二极管的串联电阻阻值偏大。

2.黑板上调试要求:(1)焊接好电路板加电前,用万用表测量板上Vcc 和

GND之间的电阻,应大于1KΩ

(2)加电后测量电路板上各电压,应大于4.2V 调试结果:1.经万用表检验,电路板无短路问题。

2.通电后,D1指示灯点亮。

3.测量Vcc 与 地之间的电阻,1.14KΩ > 1KΩ

4.测量Vcc与 地之间的电压:4.28V > 4.20V

二、测试状态指示

本系统中状态指示二极管共有3个,它们分别是D1、D2、D3。D1是指示电源的,可以在电源接通时直接看到,D2用于指示语音芯片的工作状态,留作语音模块调试时观察。D3是可以由单片机的引脚控制的。

编写测试D3的程序: #include #include

sbit a_c=P1^0;extern serial_initial();

main(){ serial_initial();a_c=0;while(1);}

测试结果: 1.2.三、脉冲信号发生器测试

测试要求:该模块由5G555芯片构成一个多谐振荡器,使用示波器观察该芯片的第3引脚的波形,并调节电位器W1,观察输出波形及频率变化。

测试结果:

调整W1前,f=147.1Hz

调整W1后,f=130.5Hz

四、分频电路测试

测试要求:该模块由一个4位二进制计数器74HC161和一个多路选择器74HC153构成。调试时可以利用由5G555芯片构成一个多谐振荡器的输出,或信号发生器作为计数器74HC161的计数输入信号。值得注意的是控制多路选择器74HC153的S0、S1与单片机调试时所使用的引脚复用,要采取特殊措施才能正确试验检测。

测试结果:利用函数信号发生器生成一个方波,周期/频率如图:

其在输出端输出的波形为:

f1=3.881kHz

f2 =1.235kHz 分频功能无误。

五、键盘测试

测试要求:本系统相对比较简单,仅有5个按键,其中4个为系统功能键,它们分别是S1、S2、S3、S4,另一个是系统复位按键S6。对于系统复位按键S6可以在上电之后,使用万用表予以检查,按下该按键,单片机的第9脚应该为高电平,释放后应该为点电平。

对于系统功能键,编写如下程序予以测试检查:

#include #include #include #include #define SEGMENT XBYTE[0x0c000]

#define BIT_LED XBYTE[0x0a000] void display();sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;unsigned char a;unsigned

char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};void delay(unsigned int i);main(){ while(1){ if(k1==0)a=0x06;if(k2==0)a=0x5b;if(k3==0)a=0x4f;if(k4==0)a=0x66;display();} } 测试结果:对于复位键S6,按下前应为低电平,按下后应为高电平

按下前

按下后

对于S1—S4,按下前为高电平,按下后为低电平。其测试结果均符合预期。

六、动态数码管测试

测试要求:本系统中的数码管的原理采用的是动态扫描方式,即某一时刻只用一个数码管在显示,利用人的视觉暂留特性,让数码管高速轮流显示,达到完整显示的目的。

编写如下程序进行测试: #include #include #include #include #define SEGMENT XBYTE[0x0c000]

#define BIT_LED XBYTE[0x0a000] void displayhello();sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;unsigned char a;unsigned char table[]={0x06,0x06,0x3f,0x3e,0x79,0x6e,0x3f,0x3e,0x7f,0x67,0x40,0x00,0x63,0x39,};void delayms(unsigned int i);main(){ while(1){ displayhello();} }

void displayhello(){

unsigned char BIT=1;

unsigned int i;

BIT_LED=1;

for(i=0;i<=7;i++)

{

SEGMENT=table[i];

BIT_LED=BIT;

BIT=BIT<<1;

delayms(1);

}

} void delayms(unsigned int i){ unsigned int n;while(i--){

for(n=0;n<125;n++);

} }

测试结果:显示“I love you”

由于是动态显示,所以按下复位键后,只有一个数码管点亮

七、温度传感器测试

测试要求:本系统使用的是一款单线温度传感器(DS18B20),可将温度穿换成12的数字量,以表示温度。

编写如下程序予以测试检查: #include #include #include #include #define SEGMENT XBYTE[0x0c000]

//段码寄存器地址 #define BIT_LED XBYTE[0x0a000]

//位码寄存器地址 #define fosc 11.0592

unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};//分别显示0 1 2 3 4 5 6 7 8 9-o C

unsigned char table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};//分别显示0.1.2.3.4.5.6.7.8.9.unsigned char table2[]={0x76,0x79,0x38,0x38,0x3f};sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;unsigned char data display_buffer[13];unsigned char bdata data_ds1302;

unsigned char disbuf[]={0,0,0,0};sbit k4=P1^3;

sbit TMDAT=P3^4;

//温度入口

void dmsec(unsigned int count);void tmreset(void);

//ds18b20 reset void tmstart(void);

// void tmrtemp(void);void Disbuf(unsigned int temper);void displaytemper();void delay(unsigned int);main(){ display_buffer[0]=0x01;

display_buffer[1]=0x00;

display_buffer[2]=0x00;display_buffer[3]=0x08;

display_buffer[4]=0x05;

display_buffer[5]=0x00;display_buffer[6]=0x01;

display_buffer[7]=0x04;

display_buffer[8]=0x00;display_buffer[9]=0x05;

display_buffer[10]=0x00;

display_buffer[11]=0x01;

display_buffer[12]=0x04;while(1){ tmstart();

tmrtemp();

displaytemper();} }

void tmreset(void){

unsigned int i;

TMDAT = 0;

i = 103;while(i>0)i--;

TMDAT = 1;

i = 4;while(i>0)i--;}

void tmpre(void){

unsigned int i;

while(TMDAT);

while(~TMDAT);

i = 4;while(i>0)i--;}

bit tmrbit(void){

// ds1820

// Reset TX

unsigned int i;

bit dat;

TMDAT = 0;i++;

TMDAT = 1;i++;i++;

dat = TMDAT;

i = 8;while(i>0)i--;

return(dat);}

unsigned char tmrbyte(void){

unsigned char i,j,dat;

dat = 0;

for(i=1;i<=8;i++){

j = tmrbit();

dat =(j << 7)|(dat >> 1);

}

return(dat);}

void tmwbyte(unsigned char dat){

unsigned int i;

unsigned char j;

bit testb;

for(j=1;j<=8;j++){

testb = dat & 0x01;

dat = dat >> 1;

if(testb){

TMDAT = 0;

i++;i++;

TMDAT = 1;

i = 8;while(i>0)i--;

}

else {

TMDAT = 0;

i = 8;while(i>0)i--;

TMDAT = 1;

i++;i++;

}

} }

void tmstart(void){

tmreset();

tmpre();

// ds1820

displaytemper();//delay(100);

tmwbyte(0xcc);

tmwbyte(0x44);

}

void tmrtemp(void){

unsigned char a,xiao,b,y1,y2,y3;

tmreset();

tmpre();

delay(1);

tmwbyte(0xcc);

tmwbyte(0xbe);

a = tmrbyte();

b = tmrbyte();

xiao=a&0x0f;//小数部分

y1=a>>4;

y2=b<<4;

y3=y1|y2;if((b&0x0f8)==0x0f8)

{y3=~y3+1;

disbuf[0]=10;//显示符号

disbuf[1]=y3/10;

disbuf[2]=y3%10;

disbuf[3]=xiao*10*0.0625;} else

disbuf[0]=11;//不显示

disbuf[1]=y3/10;

disbuf[2]=y3%10;

disbuf[3]=xiao*10*0.0625;}

void displaytemper()

//温度显示函数

{ unsigned int i;unsigned char e=0x01;//<<1;for(i=1;i<6;i++)

{ switch(i)

{

case 1:{SEGMENT=table[disbuf[1]];BIT_LED=e;break;}

case 2:{SEGMENT=table1[disbuf[2]];BIT_LED=e;break;}

case 3:{SEGMENT=table[disbuf[3]];BIT_LED=e;break;}

case 4:{SEGMENT=table[12];BIT_LED=e;break;}

case 5:{SEGMENT=table[13];BIT_LED=e;break;}

}

e=e<<1;

delay(80);

}

BIT_LED=0;

}

void delay(unsigned int i)

//delay函数 {

while(i--);}

测试结果:

经传感器及数码管延时,温度重新显示

八、时钟日历测试

测试要求:本系统使用了时钟日历专用芯片,该芯片是以串行方式实现控制和数据传输的。

编写如下程序进行测试: #include #include #include #include #define SEGMENT XBYTE[0x0c000]

//段码寄存器地址 #define BIT_LED XBYTE[0x0a000]

//位码寄存器地址 #define fosc 11.0592

unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};unsigned char table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};unsigned char table2[]={0x76,0x79,0x38,0x38,0x3f};sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;//利用开关量实现切换

//频率变量及子函数预定义 void displayfreq();void read_freq();unsigned char tcount=0,timecount=0;unsigned long freq=0.0;bit freqflag=0;unsigned char fr[6];unsigned int i=0,x=0;

//日期变量及子函数预定义 sbit SCL_ds1302=P2^0;sbit IO_ds1302=P2^1;sbit RST_ds1302=P2^2;

unsigned char data display_buffer[13];unsigned char bdata data_ds1302;

//传输符

unsigned char disbuf[]={0,0,0,0};void open_write_bit();void initial_ds1302();unsigned char read_ds1302(char command);void close_write_bit();void read_time();void set_time();void delay(unsigned int i);void delayms(unsigned int i);void displaytime();void displaydate();main(){ initial_ds1302();

//上电走时

read_time();

//读取当前时间,放到数组中

display_buffer[0]=0x01;

display_buffer[1]=0x05;

display_buffer[2]=0x01;display_buffer[3]=0x07;

display_buffer[4]=0x04;

display_buffer[5]=0x00;display_buffer[6]=0x01;

display_buffer[7]=0x06;

display_buffer[8]=0x00;display_buffer[9]=0x05;

display_buffer[10]=0x00;

display_buffer[11]=0x01;

display_buffer[12]=0x04;

set_time();

//设置时间

while(1){

if(k1==0)

{

while(1){

read_time();

displaytime();

if(k2==0)break;

}

}

read_time();

displaydate();} }

void close_write_bit()//close write { unsigned int i;

SCL_ds1302=0;

_nop_();

RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;

for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=(data_ds1302&0x01);

_nop_();

SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} data_ds1302=0x80;

IO_ds1302=0;for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=(data_ds1302&0x01);

_nop_();

SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} }

void open_write_bit()//open write { unsigned int i;SCL_ds1302=0;_nop_();

//打开写保护//关闭写保护

RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} data_ds1302=0x00;

//0x00,书上为0x80 IO_ds1302=0;for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} }

void initial_ds1302()

//初始化函数 { unsigned int i;SCL_ds1302=0;_nop_();RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;

for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} IO_ds1302=0;data_ds1302=0x00;

for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} RST_ds1302=0;SCL_ds1302=0;_nop_();RST_ds1302=1;_nop_();_nop_();data_ds1302=0x90;

for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}

data_ds1302=0x0a4;

for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;} RST_ds1302=0;_nop_();SCL_ds1302=0;_nop_();RST_ds1302=1;

data_ds1302=0x8e;

for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}

data_ds1302=0x80;

for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;} RST_ds1302=0;_nop_();SCL_ds1302=0;}

unsigned char read_ds1302(char command)

//read函数 { unsigned int i;data_ds1302=command;SCL_ds1302=0;_nop_();RST_ds1302=1;for(i=1;i<=8;i++){

SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}

SCL_ds1302=1;for(i=1;i<=8;i++){

SCL_ds1302=0;

if(IO_ds1302)data_ds1302=(data_ds1302>>1)|0x80;

//送入到data_ds1302中,准备送出

else data_ds1302>>=1;SCL_ds1302=1;} RST_ds1302=0;_nop_();SCL_ds1302=0;return(data_ds1302);}

void write_ds1302(unsigned char address,unsigned char numb){

unsigned int i;

SCL_ds1302=0;

RST_ds1302=0;

RST_ds1302=1;

data_ds1302=address;for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

//送入写地址

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} data_ds1302=numb;for(i=1;i<=8;i++){

SCL_ds1302=0;

IO_ds1302=data_ds1302&0x01;

_nop_();SCL_ds1302=1;

data_ds1302=data_ds1302>>1;} } void read_time(){ unsigned char second,minte,hour,d,date,month,year,zhou;second=0x81;

//读秒

d=read_ds1302(second);display_buffer[5]=d&0x0f;display_buffer[4]=d>>4;minte=0x83;

//读分

d=read_ds1302(minte);display_buffer[3]=d&0x0f;display_buffer[2]=d>>4;hour=0x85;

//读时

d=read_ds1302(hour);display_buffer[1]=d&0x0f;display_buffer[0]=d>>4;year=0x8d;

//读年

d=read_ds1302(year);display_buffer[7]=d&0x0f;display_buffer[6]=d>>4;month=0x89;

//读月

d=read_ds1302(month);display_buffer[9]=d&0x0f;display_buffer[8]=d>>4;

//送入写的内容

zhou=0x8b;

//读周d=read_ds1302(zhou);display_buffer[12]=d;date=0x87;

//读日期

d=read_ds1302(date);display_buffer[11]=d&0x0f;display_buffer[10]=d>>4;}

void set_time(){ unsigned char data temp;unsigned char data hour_address=0x84,minte_address=0x82,second_address=0x80,date_address=0x86,month_address=0x88,zhou_address=0x8a,year_address=0x8c;//各个时间量的地址

open_write_bit();

temp=(display_buffer[0]<<4)|display_buffer[1];write_ds1302(hour_address,temp);

//写小时

temp=(display_buffer[2]<<4)|display_buffer[3];write_ds1302(minte_address,temp);

//写分钟

temp=(display_buffer[4]<<4)|display_buffer[5];write_ds1302(second_address,temp);

//写秒

temp=(display_buffer[6]<<4)|display_buffer[7];write_ds1302(year_address,temp);

//写年

temp=(display_buffer[8]<<4)|display_buffer[9];write_ds1302(month_address,temp);

//写月

temp=display_buffer[12];write_ds1302(zhou_address,temp);

//写周temp=(display_buffer[10]<<4)|display_buffer[11];write_ds1302(date_address,temp);

//写日期

close_write_bit();

}

void delay(unsigned int i)

//delay函数 {

while(i--);}

void delayms(unsigned int i){ unsigned int n;while(i--){

for(n=0;n<125;n++);

} }

void displaytime(){ unsigned char e=0x01;unsigned int i;BIT_LED=0;

for(i=0;i<=5;i++){

if(i==5||i%2==0||i==11)

SEGMENT=table[display_buffer[i]];

else

SEGMENT=table1[display_buffer[i]];

BIT_LED=e;

e<<=1;

delayms(1);

}

}

void displaydate(){ unsigned char e=0x01;unsigned int i;BIT_LED=0;

for(i=6;i<=13;i++){

if(i==7||i==9)

SEGMENT=table1[display_buffer[i]];

else if(i==12)

SEGMENT=table[10];

else if(i==13)

SEGMENT=table[display_buffer[i-1]];

else

SEGMENT=table[display_buffer[i]];

BIT_LED=e;

e<<=1;delayms(1);

}

}

测试结果:

S1,S2实现年月日周与时分秒的切换

九、语音收录播报测试:

测试要求:本系统中使用的是语音专用芯片IDS1760芯片,该芯片是以串行方式实现控制和数据传输的。

编写如下程序进行测试: #include #include #include #define uchar unsigned char #define uint unsigned int

unsigned char bdata SR0_L;unsigned char bdata SR0_H;unsigned char bdata SR1;unsigned char APCL=0,APCH=0;unsigned char PlayAddL=0,PlayAddH=0;unsigned char RecAddL=0,RecAddH=0;

sbit CMD=SR0_L^0;sbit FULL=SR0_L^1;sbit PU=SR0_L^2;sbit EOM=SR0_L^3;sbit INTT=SR0_L^4;sbit RDY=SR1^0;sbit ERASE=SR1^1;sbit PLAY=SR1^2;sbit REC=SR1^3;

unsigned char ISD_SendData(unsigned char dat);void ISD_PU(void);void ISD_Rd_Status(void);void ISD_WR_APC2(unsigned char apcdatl,apcdath);void ISD_SET_PLAY(unsigned char Saddl,Saddh,Eaddl,Eaddh);void ISD_SET_Rec(unsigned char Saddl,Saddh,Eaddl,Eaddh);void ISD_SET_Erase(unsigned char Saddl,Saddh,Eaddl,Eaddh);

sbit SS=P1^4;sbit SCK=P1^7;sbit MOSI=P1^5;sbit MISO=P1^6;

void Cpu_Init(void);void ISD_Init(void);void delay(unsigned int t);

void main(){ Cpu_Init();ISD_Init();

while(1){ ISD_SET_Erase(0,0,9,0);ISD_SET_Rec(0,0,9,0);ISD_SET_PLAY(0,0,9,0);} }

void Cpu_init(void){ P0=P1=P2=P3=0xff;TMOD=0x01;EA=0;} void ISD_Init(void){ uchar i=2;SS=1;SCK=1;MOSI=0;do { ISD_PU();//上电 delay(50);ISD_Rd_Status();//读取状态

}while(CMD||(!PU));

//if(CMD_Err==1||(PU!+1))则再次发送上电指令 ISD_WR_APC2(0x40,0x04);//将0x0440写入APC寄存器

do { ISD_Rd_Status();}while(RDY==0);do { delay(300);delay(300);i--;}while(i>0);}

//向cpu读回或发送数据

unsigned char ISD_SendData(unsigned char dat){ unsigned char i,j,BUF_ISD=dat;SCK=1;SS=0;for(j=4;j>0;j--){;}

for(i=0;i<8;i++){ SCK=0;for(j=2;j>0;j--){;} if(BUF_ISD&0x01)

{MOSI=1;} else

{MOSI=0;} BUF_ISD>>=1;if(MISO)

{BUF_ISD|=0x80;} SCK=1;for(j=6;j>0;j--){;} } MOSI=0;return(BUF_ISD);} void ISD_PU(void){

ISD_SendData(0x01);

ISD_SendData(0x00);

SS=1;} void ISD_Rd_Status(void){ unsigned char i;ISD_SendData(0x05);ISD_SendData(0x00);ISD_SendData(0x00);SS=1;for(i=2;i>0;i--){;} SR0_L=ISD_SendData(0x05);SR0_H=ISD_SendData(0x00);SR1=ISD_SendData(0x00);SS=1;}

void ISD_WR_APC2(unsigned char apcdatl,apcdath){ ISD_SendData(0x65);ISD_SendData(apcdatl);ISD_SendData(apcdath);SS=1;}

void ISD_SET_PLAY(unsigned char Saddl,Saddh,Eaddl,Eaddh){ ISD_SendData(0x80);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;}

void ISD_SET_Rec(unsigned char Saddl,Saddh,Eaddl,Eaddh){

ISD_SendData(0x81);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;}

void ISD_SET_Erase(unsigned char Saddl,Saddh,Eaddl,Eaddh){ ISD_SendData(0x82);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;} void delay(unsigned int t){ for(;t>0;t--){ TH0=0xfc;TL0=0x18;TR0=1;while(TF0!=1){;} TF0=0;TR0=0;} }

测试结果:需要在程序中设置断点,完成录音,放音再录音放音的循环操作。

测试功能正常。

十、单片机模块调试

测试要求:该模块的调试很复杂,牵扯面也很多。其实通过前面各个模块的调试,已经大部分得到了间接地验证。例如在“动态数码管测试”和“串行通讯测试”中就是用到了定时器。

如有必要可以再编写一些测试程序。例如检测单片机的某一口线的功能是否正常、测试某段程序运行时间,等等。

测试结论:因单片机大部分功能在前调试方案中大部分已使用过,此处不再进行其余调试。

第四篇:出租车计价器设计

出租车计价器课程设计(1)

(202_-07-20 12:10:25)

转载

标签: 杂谈 分类:技术资料

目录

前言

1、系统工作原理 1.1 功能说明 1.2 基本原理

2、硬件设计

2.1 单片机最小系统单元 2.2 A44E霍尔传感器检测单元 2.3 AT24C01存储单元 2.4 键盘调整单元 2.5 显示单元

3、软件设计 3.1 系统主程序 3.2 中断程序

3.2.1 里程计数中断程序 3.2.2 中途等待中断程序 3.3 计算程序 3.4 显示程序 3.5 键盘程序

4、总结 参考文献

附录A 系统原理图 附录B 系统源程序

前言

随着出租车行业的发展,出租车已经是城市交通的重要组成部分,从加强行业管理以及减少司机与乘客的纠纷出发,具有良好性能的计价器对出租车司机和乘客来说都是很必要的。而采用模拟电路和数字电路设计的计价器整体电路的规模较大,用到的器件多,造成故障率高,难调试。而采用单片机进行的设计,相对来说功能强大,用较少的硬件和适当的软件相互配合可以很容易地实现设计要求,且灵活性强,可以通过软件编程来完成更多的附加功能。本设计采用AT89S52单片机为主控器,以A44E霍尔传感器测距,实现对出租车的多功能的计价设计,并采用AT24C01实现在系统掉电的时候保存单价等信息,输出采用8段数码显示管。本电路设计的计价器不但能实现基本的计价,而且还能根据白天,黑夜和中途等待来调节单价。

第一章 系统工作原理

1.1 功能说明

出租车计价器根据乘客乘坐汽车行驶距离和等候时间的多少进行计价,并在行程中同步显示车费值。从起步价开始,当汽车程行驶未满3公里时,均按起步价计算。过3公里后,实现每1公里单价收费,中间遇暂停时,计程数不再增加,开始计时收费,测距收费和测时收费的和便构成了一位乘客的车费。同时,白天和夜晚价格不同,可以进行切换。白天单价、夜晚单价、等待单价和起步价格都可通过独立键盘进行调节。(默认起步价为5元/3公里,里程单价白天为1.5元/公里,夜晚为1.8元/公里,等待计时单价为0.5元/5分钟)

1.2 基本原理

计数器系统主要由五部分组成:A44E霍尔传感器、AT89S52单片机、独立键盘、EEPROM AT24C01和显示数码管。

霍尔传感器安装在车轮上,主要检测汽车行进的公里数,并产生一系列相应的脉冲输出,脉冲送到单片机进行处理,单片机根据程序设定通过计算脉冲数换算出行驶公里数,再根据从EEPROM中读取的价格等相关数据进行金额的计算,计算好的金额、里程和单价都实时地显示在数码管上。独立键盘可以调节价格等相关数据,按下相应的按钮,产生信号交由单片机处理并实时显示出来,调节好的数据存储到EEPROM中,掉电后可以使调好的数据不丢失,下次得电后直接从EEPROM读到单片机,系统结构图如图1。

图1 系统结构图

第二章 硬件设计

2.1 单片机最小系统单元

主控机系统采用了Atmel 公司生产的 AT89S52单片机,它含有256 字节数据存储器,内置8K 的电可擦除FLASH ROM,可重复编程,大小满足主控机软件系统设计,所以不必再扩展程序存储器。复位电路和晶振电路是AT89S52 工作所需的最简外围电路。单片机最小系统电路图如图2所示。

图2 单片机最小系统图

AT89S52 的复位端是一个史密特触发输入,高电平有效。RST端若由低电平上升到高电平并持续2个周期,系统将实现一次复位操作。在复位电路中,按一下复位开关就使在RST端出现一段时间的高电平,外接11.0592M 晶振和两个30pF 电容组成系统的内部时钟电路。

2.2 A44E霍尔传感器检测单元

A44E 属于开关型的霍尔器件,其工作电压范围比较宽(4.5~18V),其输出的信号符合TTL电平标准,可以直接接到单片机的IO 端口上,而且其最高检测频率可达到1MHZ。A44E 集成霍耳开关由稳压器A、霍耳电势发生器(即硅霍耳片)B、差分放大器C、施密特触发器D和OC门输出E五个基本部分组成。

在输入端输入电压Vcc,经稳压器稳压后加在霍尔电势发生器的两端,根据霍尔效应原理,当霍尔片处在磁场中时,在垂直于磁场的方向通以电流,则与这二者相垂直的方向上将会产生霍尔电势差VH输出,该VH信号经放大器放大后送至施密特触发器整形,使其成为方波输送到OC门输出。当施加的磁场达到工作点(即Bop)时,触发器输出高电压(相对于地电位),使三极管导通,此时OC门输出端输出低电压,三极管截止,使OC门输出高电压,这种状态为关。这样两次电压变换,使霍尔开关完成了一次开关动作。A44E霍尔传感器原理如图3所示。

图3 A44E霍尔传感器原理

里程计算是通过安装在车轮上的霍尔传感器检测到的脉冲信号,送到单片机产生中断,单片机再根据程序设定,计算出里程。其原理如图4所示。

图4 传感器测距示意图

本系统选择了将A44E的脉冲输出口接到P3.3口外部中断1作为信号的输入端(这样可

以减少程序设计的麻烦),车轮每转一圈(设车轮的周长是1米),霍尔开关就检测并输出信号,引起单片机的中断,对脉冲计数,当计数达到1000次时,即1公里,单片机就控制将金额自动增加,如图5。

图5 A44E霍尔元件接线图

2.3 AT24C01存储单元

存储单元的作用是在电源断开的时候,存储当前设定的单价信息。AT24C01 是Ateml公司的1KB的电可擦除存储芯片,采用两线串行的总线和单片机通讯,电压最低可以到2.5V,额定电流为1mA,静态电流10uA(5.5V),芯片内的资料可以在断电的情况下保存40年以上,而且采用8 脚的DIP 封装,使用方便。AT24C02芯片引脚配置如图6所示。

存储单元电路连接如图7所示。

图 7 存储单元电路原理图

图中R4、R5 是上拉电阻,其作用是减少AT24C01 的静态功耗。由于AT24C01的数据线和地址线是复用的,采用串口的方式传送数据,所以只用两根线SCL(时钟脉冲)和SDA(数据/地址)与单片机P2.2和P2.3口连接,进行传送数据。

每当设定一次单价,系统就自动调用存储程序,将单价信息保存在芯片内;当系统重新上电的时候,自动调用读存储器程序,将存储器内的单价等信息,读到缓存单元中,供主程序使用。

2.4 键盘调整单元

当单价等信息需要进行修改时,就要用到键盘进行修改。由于调节信息不多,故采用4个独立键盘即可,分别实现清零、切换、增大、减小和功能等作用。电路原理如图8所示。

图8 键盘调整单元接线图

S1:接P1.0口,对上一次的计费进行清零,为下次载客准备

S2:接P1.1口,实现白天和夜晚单价的切换;当功能键S4按下时,S2可对数据进行增大。S3:接P1.2口,当功能键S4按下时,S3可对数据进行减小。

S4:接P1.3口,按1次,进入调整白天单价;按2次,进入调整夜晚单价;按3次,进入调整等待单价;按4次,进入调整起步价;按5次,返回。

2.5 显示单元

显示单元由7个8段共阳数码管组成,采用动态扫描进行显示。前三个数码管分别接P3.0、P3.1和P3.2,用于显示总金额;中间两个分别接P3.4和P3.5,用于显示里程;后边两个分别接P3.6和P3.7,用于显示单价。电路如图9所示。

图9 数码管显示图

第三章 软件设计

3.1 系统主程序

在主程序模块中,需要完成对各参量和接口的初始化、出租车起价和单价的初始化以及中断、计算、循环等工作。另外,在主程序模块中还需要设置启动/清除标志寄存器、里程寄存器和价格寄存器,并对它们进行初始化。然后,主程序将根据各标志寄存器的内容,分别完成启动、清除、计程和计价等不同的操作。

当汽车运行起来时,就启动计价,根据里程寄存器中的内容计算和判断行驶里程是否已超过起步价公里数。若已超过,则根据里程值、每公里的单价数和起步价数来计算出当前的总金额,并将结果存于总金额寄存器中;中途等待时,无脉冲输入,不产生中断,当时间超过等待设定值时,开始进行计时,并把等待价格加到总金额里,然后将总金额、里程和单价送数码管显示出来。程序流程如图10所示。

图10 主程序流程图 图11 计算程序流程图

3.2 中断程序

3.2.1 里程计数中断程序

每当霍尔传感器输出一个低电平信号就使单片机中断一次,当里程计数器对里程脉冲计满1000次时,进入里程计数中断服务程序中,里程变量加一。主函数中总金额也相应地变化。

3.2.2 中途等待中断程序

在中途等待中断程序中,每1ms产生一次中断,将当前里程值送入某个缓存变量,每5分钟将缓存变量中的值和当前里程值比较,当汽车停止,霍尔传感器5分钟没有输出信号,当前里程值和缓存变量内的值相同,则进入等待计时,每5分钟记一次价格。

3.3 计算程序

计算程序根据里程数分别进入不同的计算公式。如果里程大于3公里,则执行公式:总金额=起步价+(里程-3)*单价+等待时间*等待单价;否则,执行公式:总金额=起步价+等待时间*等待单价。程序流程图如图11所示。

3.4 显示程序

显示程序利用定时器每1ms产生一次中断,相应变量置位,点亮一个数码管,显示一位数据,利用主函数内的循环,实现动态扫描显示,同时根据数码管余辉和人眼暂留现象,即可实现显示。

3.5 键盘程序

键盘采用查询的方式,放在主程序中,当没有按键按下的时候,单片机循环主程序,一旦右按键按下,便转向相应的子程序处理,处理结束再返回。流程图如图12。

图12 键盘程序流程图

第四章 总结

经过这些天有关于出租车计价器的课程设计,使我对单片机的应用有了更深的了解。在课程设计的过程中,还是碰到了许多的问题。比如,对于数码管动态扫描显示和键盘的延时防抖的综合编程不能较好地解决;对于代码的前后顺序及调用掌握得还不够好;对于一些相关的应用软件没能熟练掌握。通过这几天晚上的苦想和反复调试,以及参考网上的程序,最终还是把问题解决了。

通过这次课程设计,我最大的收获就是自己的动手能力和独立解决问题的能力得到了很大的提高,也充分体会到了自己设计东西的乐趣、学会查阅资料和对别人的东西融会变通的重要性,也明白了很多知识光靠趴在书本上学是学不到其中的精髓的,必须亲自去试着实践,亲自去经历才能对它们真正的掌握,凡事都要自己去动下手,去实践一下,遇到困难,永远不要沮丧气馁。在动手的过程中,不仅能增强实践能力,而且在理论上可以有更深的认识;这次设计给了我极大的鼓舞和信心,相信在以后的学习中可以通过不断的摸索和实践来提高其他方面的知识。

参考文献

[1] 马淑华,王凤文,张美金编著.单片机原理与接口技术(第二版).北京:北京邮电大学出版社,202_.[2] 谭浩强著.C程序设计(第三版).北京:清华大学出版社,202_.源程序

#include #include

#define uchar unsigned char #define uint unsigned int #define delayNOP();{_nop_();_nop_();_nop_();_nop_();_nop_();};

uchar code table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90};

sbit exter=P3^3;//外部中断

sbit key0=P1^0;//清零 sbit key1=P1^1;//切换/+ sbit key2=P1^2;//-sbit key3=P1^3;//功能键

sbit p30=P3^0;//数码管各位控制 sbit p31=P3^1;sbit p32=P3^2;sbit p34=P3^4;sbit p35=P3^5;sbit p36=P3^6;sbit p37=P3^7;sbit SDA=P2^3;//IIC引脚 sbit SCL=P2^2;

uint inter,aa,bb,temp,temp1;uint zongjine,licheng,dengdai;uint key3num,qiehuantemp,delaytemp;uchar danjia1,danjia2,danjia3,danjia,qibu;

void delay(uint x)//延时时基为1ms { int i,j;for(i=x;i>0;i--)for(j=340;j>0;j--);}

void start()//IIC开始位 { SDA = 1;SCL = 1;delayNOP();SDA = 0;delayNOP();SCL = 0;}

void stop()// IIC停止位 { SDA = 0;delayNOP();SCL = 1;delayNOP();SDA = 1;}

void respons()//IIC{ uchar i;SCL=1;delayNOP();while((SDA==1)&&(i<250))i++;SCL=0;delayNOP();}

uchar read_byte()// { uchar i,j;for(i=0;i<8;i++){ SCL=1;j<<=1;

应答位 从EEPROM读到MCU j|=SDA;SCL=0;} return(j);}

void write_byte(uchar date)// { uchar i,temp;temp=date;for(i=0;i<8;i++){ temp=temp<<1;SCL=0;delayNOP();SDA=CY;delayNOP();SCL=1;delayNOP();} SCL=0;delayNOP();SDA=1;delayNOP();}

从MCU写到EEPROM void write_data(uchar addr, uchar date)// 在指定地址addr处写入数据date { start();write_byte(0xa0);respons();write_byte(addr);respons();write_byte(date);respons();stop();}

uchar read_data(uchar addr)// { uchar date;start();write_byte(0xa0);respons();write_byte(addr);respons();start();write_byte(0xa1);respons();date=read_byte();stop();return date;

在指定地址addr读取数据 }

void display(uint zongjine0,uint licheng0,uint danjia0)//数码管显示 { uint jbai,jshi,jge,lshi,lge,dshi,dge;uint numwei,numshu;//数码管位置分配

jbai=zongjine0/100;jshi=zongjine0%100/10;jge=zongjine0%100%10;lshi=licheng0/10;lge=licheng0%10;

dshi=danjia0/10;dge=danjia0%10;

//数码管动态显示 if(aa){ aa=0;numshu++;if(numshu==7)numshu=0;P3=0xff;switch(numwei){ case 0:p30=0;P0=table[jbai];break;case 1:p31=0;P0=table[jshi]&0x7f;break;case 2:p32=0;P0=table[jge];break;case 3:p34=0;P0=table[lshi];break;case 4:p35=0;P0=table[lge];break;case 5:p36=0;P0=table[dshi]&0x7f;break;case 6:p37=0;P0=table[dge];break;} numwei++;if(numwei==7)numwei=0;} }

void keyscan()//键盘扫描 { if(key3==0)//功能键调节 { delay(5);if(key3==0){ key3num=1;while(!key3);delay(5);while(!key3);while(key3num){ if(key3num==1)//调白天单价

{ if(key1==0){ delay(5);if(key1==0){ danjia1++;if(danjia1==100)danjia1=0;while(!key1);delay(5);while(!key1);} } if(key2==0){ delay(5);if(key2==0){ danjia1--;if(danjia1==-1)danjia1=99;while(!key2);delay(5);while(!key2);} } display(1,0,danjia1);}

if(key3num==2)//调夜晚单价

{ write_data(1,danjia1);

if(key1==0){ delay(5);if(key1==0){ danjia2++;if(danjia2==100)danjia2=0;while(!key1);delay(5);while(!key1);} } if(key2==0){ delay(5);if(key2==0){ danjia2--;if(danjia2==-1)danjia2=99;while(!key2);delay(5);while(!key2);} } display(2,0,danjia2);} if(key3num==3)//调等待单价

{ write_data(2,danjia2);

if(key1==0){ delay(5);if(key1==0){ danjia3++;if(danjia3==100)danjia3=0;while(!key1);delay(5);while(!key1);} } if(key2==0){ delay(5);if(key2==0){ danjia3--;if(danjia3==-1)danjia3=99;while(!key2);delay(5);while(!key2);} } display(3,0,danjia3);}

if(key3num==4)//步价

{ write_data(3,danjia3);

if(key1==0){ delay(5);if(key1==0){ qibu++;if(qibu==100)qibu=0;

调起 while(!key1);delay(5);while(!key1);} } if(key2==0){ delay(5);if(key2==0){ qibu--;if(qibu==-1)qibu=99;while(!key2);delay(5);while(!key2);} } display(4,0,qibu);}

if(key3num==5)//功能键

{ write_data(4,qibu);

退出 key3num=0;}

if(key3==0){ delay(5);if(key3==0){ key3num++;while(!key3);delay(5);while(!key3);} } } } } }

void init(){ SDA=1;SCL=1;

zongjine=0;licheng=0;dengdai=0;

danjia1=read_data(1);danjia2=read_data(2);danjia3=read_data(3);qibu=read_data(4);

aa=0;//数码管动态扫描的定时器时基个数 bb=0;//判断是否等待的时基个数 inter=0;

EA=1;//开总中断 EX1=1;//开外部中断1 IT1=1;//触发方式下降沿

TMOD=0x01;TH0=(65536-1000)/256;TL0=(65536-1000)%256;ET0=1;//开定时器T0中断 TR0=1;//开定时器T0

P3=0x08;P0=table[0];} void jisuan(){ if(licheng>3)zongjine=qibu+(licheng-3)*danjia+dengdai*danjia3;//金额计算 else zongjine=qibu+dengdai*danjia3;//计算 }

void qiehuan(){ if(key1==0)// { delay(5);// if(key1==0)qiehuantemp=!qiehuantemp;while(!key1);delay(5);while(!key1);} if(qiehuantemp==0)danjia=danjia2;if(qiehuantemp==1)danjia=danjia1;}

起步公里内金额白天夜晚切换 键盘防抖

void main(){ init();qiehuantemp=1;key3num=0;while(1){ qiehuan();//晚单价

jisuan();//额

display(zongjine,licheng,danjia);keyscan();if(key0==0)// init();} }

void inter1()interrupt 2 //脉冲中断 { delay(5);// if(exter==0)// { // IT1=1;inter++;

切换白天夜计算总金清零键 if(inter==5){ inter=0;licheng++;} } // while(!exter);// delay(5);// while(!exter);// }

void timer0()interrupt 1 { TH0=(65536-1000)/256;TL0=(65536-1000)%256;aa++;bb++;temp1=licheng;// if(bb==10000)//10s { bb=0;if(temp=temp&temp1)dengdai++;temp=licheng;} }

测试是否进入等待 无反应进入等待计费

矩阵键盘及程序

(202_-08-20 22:40:21)

转载

标签: 杂谈 分类:技术资料

自己做了一个矩阵键盘,初次做,焊得还是比较丑和简陋的。矩阵键盘程序是从一个大的函数中截取的,基本思路可以看明白 //P1.0-P1.3是行线,P1.4-P1.7是列线 uchar keyscan(){ uchar cord_h,cord_l,key_code;P1=0x0f;//行线输出全为0 if((P1&0x0f)!=0x0f){ delay(10);if((P1&0x0f)!=0x0f){ cord_h=P1&0x0f;P1=cord_h|0xf0;//输出当前列线值 cord_l=P1&0xf0;key_code=cord_h|cord_l;delay(20);} } else key_code=0xff;return key_code;//返回键值 }

void get_code(uchar key_code){ switch(key_code){ case 0xee: key_temp='1';unit_price=read_price(1);break;//1 case 0xde: key_temp='2';unit_price=read_price(7);break;//2 case 0xbe: key_temp='3';unit_price=read_price(13);break;//3 case 0x7e: key_temp='4';unit_price=read_price(19);break;//4 case 0xed: key_temp='5';unit_price=read_price(25);break;//5 case 0xdd: key_temp='6';unit_price=read_price(31);break;//6 case 0xbd: key_temp='7';unit_price=read_price(37);break;//7 case 0x7d: key_temp='8';unit_price=read_price(43);break;//8 case 0xeb: key_temp='9';unit_price=read_price(49);break;//9 case 0xdb: key_temp='0';unit_price=read_price(55);break;//0 case 0xbb: key_temp='a';unit_price=read_price(61);break;//a case 0x7b: key_temp='b';unit_price=read_price(67);break;//b case 0xe7: key_temp='c';unit_price=read_price(73);break;//c case 0xd7: key_temp='d';break;//d case 0xb7: key_temp='e';break;//e case 0x77: key_temp='f';break;//f default : break;}

第五篇:出租车计价器设计范文

平顶山工业职业技术学院

目录

目录......................................................................................................................................................1 前言......................................................................................................................................................2 第一章 系统工作原理........................................................................................................................2 1.1 功能说明..............................................................................................................................2 1.2 基本原理..............................................................................................................................2 第二章 硬件设计...............................................................................................................................3 2.1 单片机最小系统单元..........................................................................................................3 2.2 A44E霍尔传感器检测单元................................................................................................4 2.3 AT24C01存储单元..............................................................................................................6 2.4 键盘调整单元......................................................................................................................7 2.5 显示单元..............................................................................................................................8 第三章 软件设计...............................................................................................................................8 3.1 系统主程序..........................................................................................................................8 3.2 中断程序..............................................................................................................................9 3.2.1 里程计数中断程序...................................................................................................9 3.2.2 中途等待中断程序.................................................................................................10 3.3 计算程序............................................................................................................................10 3.4 显示程序............................................................................................................................10 3.5 键盘程序............................................................................................................................10 第四章 总结.....................................................................................................................................11 参考文献............................................................................................................................................12

平顶山工业职业技术学院

算出行驶公里数,再根据从EEPROM中读取的价格等相关数据进行金额的计算,计算好的金额、里程和单价都实时地显示在数码管上。独立键盘可以调节价格等相关数据,按下相应的按钮,产生信号交由单片机处理并实时显示出来,调节好的数据存储到EEPROM中,掉电后可以使调好的数据不丢失,下次得电后直接从EEPROM读到单片机,系统结构图如图1。

图1 系统结构图

第二章 硬件设计

2.1 单片机最小系统单元

主控机系统采用了Atmel 公司生产的 AT89S52单片机,它含有256 字节数据存储器,内置8K 的电可擦除FLASH ROM,可重复编程,大小满足主控机软件系统设计,所以不必再扩展程序存储器。复位电路和晶振电路是AT89S52 工作所需

平顶山工业职业技术学院 的最简外围电路。单片机最小系统电路图如图2所示。

图2 单片机最小系统图

AT89S52 的复位端是一个史密特触发输入,高电平有效。RST端若由低电平上升到高电平并持续2个周期,系统将实现一次复位操作。在复位电路中,按一下复位开关就使在RST端出现一段时间的高电平,外接11.0592M 晶振和两个30pF 电容组成系统的内部时钟电路。

2.2 A44E霍尔传感器检测单元

A44E 属于开关型的霍尔器件,其工作电压范围比较宽(4.5~18V),其输出的信号符合TTL电平标准,可以直接接到单片机的IO 端口上,而且其最高检测频率可达到1MHZ。

A44E 集成霍耳开关由稳压器A、霍耳电势发生器(即硅霍耳片)B、差分放大器C、施密特触发器D和OC门输出E五个基本部分组成。

在输入端输入电压Vcc,经稳压器稳压后加在霍尔电势发生器的两端,根据霍尔效应原理,当霍尔片处在磁场中时,在垂直于磁场的方向通以电流,则与这二者相垂直的方向上将会产生霍尔电势差VH输出,该VH信号经放大器放大后送至施密特触发器整形,使其成为方波输送到OC门输出。当施加的磁场达到工作点(即Bop)时,触发器输出高电压(相对于地电位),使三极管导通,此时OC门输出端输出低电压,三极管截止,使OC门输出高电压,这种状态为关。这样两次电压变换,使霍尔开关完成了一次开关动作。A44E霍尔传感器原理如图3所示。

平顶山工业职业技术学院

图3 A44E霍尔传感器原理

里程计算是通过安装在车轮上的霍尔传感器检测到的脉冲信号,送到单片机产生中断,单片机再根据程序设定,计算出里程。其原理如图4所示。

图4 传感器测距示意图

本系统选择了将A44E的脉冲输出口接到P3.3口外部中断1作为信号的输入端(这样可以减少程序设计的麻烦),车轮每转一圈(设车轮的周长是1米),霍尔开关就检测并输出信号,引起单片机的中断,对脉冲计数,当计数达到1000次时,即1公里,单片机就控制将金额自动增加,如图5。

图5 A44E霍尔元件接线图

平顶山工业职业技术学院

2.3 AT24C01存储单元

存储单元的作用是在电源断开的时候,存储当前设定的单价信息。AT24C01 是Ateml公司的1KB的电可擦除存储芯片,采用两线串行的总线和单片机通讯,电压最低可以到2.5V,额定电流为1mA,静态电流10uA(5.5V),芯片内的资料可以在断电的情况下保存40年以上,而且采用8 脚的DIP 封装,使用方便。AT24C02芯片引脚配置如图6所示。

存储单元电路连接如图7所示。

图 7 存储单元电路原理图

图中R4、R5 是上拉电阻,其作用是减少AT24C01 的静态功耗。由于AT24C01的数据线和地址线是复用的,采用串口的方式传送数据,所以只用两根线SCL(时钟脉冲)和SDA(数据/地址)与单片机P2.2和P2.3口连接,进行传送数据。

平顶山工业职业技术学院

每当设定一次单价,系统就自动调用存储程序,将单价信息保存在芯片内;当系统重新上电的时候,自动调用读存储器程序,将存储器内的单价等信息,读到缓存单元中,供主程序使用。

2.4 键盘调整单元

当单价等信息需要进行修改时,就要用到键盘进行修改。由于调节信息不多,故采用4个独立键盘即可,分别实现清零、切换、增大、减小和功能等作用。电路原理如图8所示。

图8 键盘调整单元接线图

S1:接P1.0口,对上一次的计费进行清零,为下次载客准备

S2:接P1.1口,实现白天和夜晚单价的切换;当功能键S4按下时,S2可对数据进行增大。

S3:接P1.2口,当功能键S4按下时,S3可对数据进行减小。

S4:接P1.3口,按1次,进入调整白天单价;按2次,进入调整夜晚单价;按3次,进入调整等待单价;按4次,进入调整起步价;按5次,返回。

平顶山工业职业技术学院

2.5 显示单元

显示单元由7个8段共阳数码管组成,采用动态扫描进行显示。前三个数码管分别接P3.0、P3.1和P3.2,用于显示总金额;中间两个分别接P3.4和P3.5,用于显示里程;后边两个分别接P3.6和P3.7,用于显示单价。电路如图9所示。

图9 数码管显示图

第三章 软件设计

3.1 系统主程序

在主程序模块中,需要完成对各参量和接口的初始化、出租车起价和单价的初始化以及中断、计算、循环等工作。另外,在主程序模块中还需要设置启动/清除标志寄存器、里程寄存器和价格寄存器,并对它们进行初始化。然后,主程序将根据各标志寄存器的内容,分别完成启动、清除、计程和计价等不同的操作。当汽车运行起来时,就启动计价,根据里程寄存器中的内容计算和判断行驶里程是否已超过起步价公里数。若已超过,则根据里程值、每公里的单价数和起步价数来计算出当前的总金额,并将结果存于总金额寄存器中;中途等待时,无脉冲输入,不产生中断,当时间超过等待设定值时,开始进行计时,并把等待价格加到总金额里,然后将总金额、里程和单价送数码管显示出来。程序流程如图10所示。

平顶山工业职业技术学院

图10 主程序流程图

图11 计算程序流程图

3.2 中断程序

3.2.1 里程计数中断程序

每当霍尔传感器输出一个低电平信号就使单片机中断一次,当里程计数器对里程脉冲计满1000次时,进入里程计数中断服务程序中,里程变量加一。主函数中总金额也相应地变化。

101112-

毕业实践调研报告(出租车计价器)
TOP