第一篇:初中数学:三角形中垂线性质证明及练习题(附答案)
三角形中垂线性质及相关练习题(附答案)
三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。
首先我们证明这个问题。
已知:如图8-21所示,PD、NE、MF是△ABC的3条边上的中垂线。求证:PD、NE、MF交于一点O。
思路:先作两条边AB、AC上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。然后再证明D是BC的中点。
证明:作AB、BC边上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。
∵MF⊥AB于F,AF=FB;
∴OA=OB;
∵NE⊥AC于E,AE=EC;
∴OA=OC;
∴OB=OC;
∵OD⊥BC于D;
∴ POD是BC边上的中垂线。
∴ NE、MF、PD交于一点O;即,三角形的三条中垂线交于一点。
结论:该证法采用直接证法,简单明了,其中运用了中垂线的性质定理和判定定理。
第1页(共4页)
相关练习题:
一、判断题
1、三角形三条边的垂直平分线必交于一点
2、以三角形两边的垂直平分线的交点为圆心,以该点到三角形三个顶点中的任意一点的距离为半径作圆,必经过另外两个顶点
3、平面上只存在一点到已知三角形三个顶点距离相等
4、三角形关于任一边上的垂直平分线成轴对称
二、填空题
5、如左下图,点P为△ABC三边中垂线交点,则PA__________PB__________PC.6、如右上图,在锐角三角形ABC中,∠A=50°,AC、BC的垂直平分线交于点O,则∠1_______∠2,∠3______∠4,∠5______∠6,∠2+∠3=________度,∠1+∠4=______度,∠5+∠6=_______度,∠BOC=_______度.7、如左下图,D为BC边上一点,且BC=BD+AD,则AD__________DC,点D在__________的垂直平分线上.8、如右上图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B__________∠1,∠C__________∠2;若∠BAC=126°,则∠EAG=__________度
.9、如左下图,AD是△ABC中BC边上的高,E是AD上异于A,D的点,若BE=CE,则△__________≌△__________(HL);从而BD=DC,则△________≌△_________(SAS);△ABC是__________三角形.10、如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交BC于D,则∠ADB=_________度.三、作图题
11、(1)分别作出点P,使得PA=PB=PC
(2)观察各图中的点P与△ABC的位置关系,并总结规律:
当△ABC为锐角三角形时,点P在△ABC的__________;
当△ABC为直角三角形时,点P在△ABC的__________;
当△ABC为钝角三角形时,点P在△ABC的__________;
反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.四、类比联想
12、既然任意一个三角形的三边的垂直平分线交于一点,那三角形的三边上的中线是否也交于一点;三个角的平分线是否也交于一点;试通过折纸或用直尺、圆规画图验证这种猜想.答案:
一、1.√2.√3.√4.×
二、1.==2.===505080100
3.=AC4.==72° 5.BEDCEDBADCAD等腰6.60°
三、1.略(2)内部斜边的中点外部
四、类比联想:略
第二篇:初中数学三角形证明(范文)
1.如图△ABC,∠AFD=
158°,求∠EDF的度数。
2.如图,∠C
=48°,∠E=25°,∠BDF=140°,求∠A与∠EFD的度数。
3.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC
4.如图,在△ABC中,已知AD是△
ABC角平分线,DE是△ADC的高线,∠B=60,∠C=45,求∠ADB和∠ADE的度数.
5.如图△ABC的周长为18
cm,BE、CF
分别为AC、AB边上的中线,BE、CF相交于点O,AO的延长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.解题思路:
(1)求角度问题要考虑:角平分线、三角形内角和定理、两内角之和等于第三角的外角
(2)先列等式,然后根据题目要求去掉无关信息,最后采用“消元法”的思路转换解决,求出未知
(3)对于某些题要结合外围图形和条件,比如四边形、三角形全等、直线关系(平行、相交)来解答。
00第八讲三角形证明
(一)6.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADEC DAB7.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,F 求证:∠1=∠2E A8.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C AB A9.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:EAE=AD+BEBDC10如图所示,已知∠1=∠2,EF⊥AD于P,交BC延长线于M,求证:2∠M=(∠ACB-∠B)解题思路:(1)三角形的证明一般思路是证全等和相似(八年级)(2)分析题目先看求什么?然后考虑求未知必须先求什么?需证明那些量相等,或哪个三角形相等然后找出已知条件所能得出的结论,然后看它们能不能证出所要的关系(3)如果不能证出数量关系要考虑添加辅助线来“凑出”条件,然后在证明
11.如图,A,F,E,B四点共线,ACCE,BDDF,AEBF,A
17.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求ACBD。求证:ACFBDE。较难
12.如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。求证:21C
13.已知如图,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,求证:DE=BD+CE.14.在△ABC中,ACB90,ACBC,直线MN经过点C,且ADMN于D,BEMN于E求证:ADC≌CEB
15.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由
16.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE
证:∠C=2∠BCD
BF
18.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平
A
E
分线,BD的延长线垂直于过C点的直线于E,直线CE交 D
BA的延长线于F.BC
求证:BD=2CE.Q
A
E
19.已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定 P
AP与AQ的数量关系和位置关系B
C
20.△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在 AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明 理由.
(附加题)如图①,E、F分别为线段AC上的两个动点,且DE⊥ AC于E,BF⊥AC于F,若AB=
CD,AF=CE,BD交AC于点 M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上 述结论能否成立?若成立请给予证明;若不成立请说明理由.
第三篇:全等三角形练习题(证明)
全等三角形练习题(8)
一、认认真真选,沉着应战!
1.下列命题中正确的是()
A.全等三角形的高相等B.全等三角形的中线相等
C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列各条件中,不能做出惟一三角形的是()
A.已知两边和夹角B.已知两角和夹边
C.已知两边和其中一边的对角D.已知三边
4.下列各组条件中,能判定△ABC≌△DEF的是()
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周长= △DEF的周长
D.∠A=∠D,∠B=∠E,∠C=∠F
5.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()
A.1:2B.1:3C.2:3D.1:
46.如图,∠AOB和一条定长线段A,在∠AOB内找一点P,使P到OA、OB的距离都等于A,做法如下:(1)作OB的垂线NH,使NH=A,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.
其中(3)的依据是()
A.平行线之间的距离处处相等
B.到角的两边距离相等的点在角的平分线上
C.角的平分线上的点到角的两边的距离相等
D.到线段的两个端点距离相等的点在线段的垂直平分线上
7. 如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条 角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰
58.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三个为条件,ANCA
C F 余下的一个为结论,则最多可以构成正确的结论的个数是()
A.1个B.2个C.3个D.4个
9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上 取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在同 一条直线上,如图,可以得到EDCABC,所以ED=AB,因
E
此测得ED的长就是AB的长,判定EDCABC的理由是()A.SASB.ASAC.SSSD.HL
10.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()
A.80°B.100°C.60°D.45°.
二、仔仔细细填,记录自信!
11.如图,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=_____.
12.已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF的边中必有一条边等于______.
13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为_____________.
14. 如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_____个.
BE
BCDE
分别是锐角三角形ABC和锐角三角形ABC中BC,BC边上的高,且15. 如图,AD,ADB,ABAAD
D若使△ABC≌△ABC,请你补充条件___________.(填写一个你认为适A.
当的条件即可)
C
'
'
B D D
17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关
'
C
'
系是__________.
19. 如右图,已知在ABC中,A90,ABAC,CD平
分ACB,DEBC于E,若BC15cm,则△DEB 的周长为cm.
E
C
20.在数学活动课上,小明提出这样一个问题:∠B=∠C=900,E是
BC的中点,DE平分∠ADC,∠CED=350,如图,则∠EAB是多少 度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.
三、平心静气做,展示智慧!
21.如图,公园有一条“Z”字形道路ABCD,其中
AB∥CD,在E,M,F处各有一个小石凳,且BECF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
22.如图,给出五个等量关系:①ADBC ②ACBD ③CEDE ④DC⑤DABCBA.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
23.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C. 求证:点C在∠AOB的平分线上.
A
B
B
如图,已知△ABC和△DEC都是等边三角形,∠ACB=∠DCE=60°,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.2.已知:如图点C是AB的中点,CD∥BE,且CD=BE.求证:∠D=∠E.3.已知:E、F是AB上的两点,AE=BF,又AC∥DB,且AC=DB.求证:CF=DE。
4.如图,D、E、F、B在一条直线上,AB=CD,∠B=∠D,BF=DE。求证:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。
1、已知:如图,∠1=∠2,∠B=∠D。求证:△AFC≌△DEB4、已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。
求证:(1)AB=CE; 5、已知:AB=AC,BD=CD
求证:(1)∠B=∠C
(2)DE=DF
6.已知:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E。7.已知:如图,AB=CD,DA⊥CA,AC⊥BC。
求证:△ADC≌△CBA
求证:(1)AB=CE;
参考答案
一、1—5:DCDCD6—10:BCBBA
二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略
16.1AD5 17. 互补或相等 18. 180 19.15 20.350
三、21.在一条直线上.连结EM并延长交CD于F' 证CFCF'. 22.情况一:已知:ADBC,ACBD
求证:CEDE(或DC或DABCBA)
证明:在△ABD和△BAC中 ∵ADBC,ACBD
ABBA
∴△ABD≌△BAC
∴CABDBA∴AEBE
∴ACAEBDBE
即CEED
情况二:已知:DC,DABCBA
求证:ADBC(或ACBD或CEDE)证明:在△ABD和△BAC中DC,DABCBA∵ABA B
∴△ABD≌△BAC
∴ADB C
23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴点C在∠AOB的平分线上.
四、24.(1)解:△ABC与△AEG面积相等
过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,则
AMCANG90
四边形ABDE和四边形ACFG都是正方形
BAECAG90,ABAE,ACAGBACEAG180
EAGGAN180BACGAN△ACM≌△AGN
D
CMGNS△ABC
ABCM,S△AEG
12AEGN
S△ABCS△AEG
(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和
这条小路的面积为(a2b)平方米.
第四篇:七年级数学初一下(三角形证明练习题)
几何证明
(一)1、如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;
(2)OB=OE.BDOECA2、如图所示,已知正方形ABCD的边BC、CD上分别有点E、点F,且BE+DF=EF,试求∠EAF的度数.
ADF
B
EC
3、如图所示,已知AB=CD,AD=BC,DE=BF,试说明∠E=∠F.
E
4、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。
FBADCAFBEMC
5、已知:如图5-129,△ABC的∠B、∠C的平分线相交于点D,过D作MN∥BC交AB、AC分别于点M、N,求证:BM+CN=MN。
6、如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE求∠ABC+∠ADC的度数。
1(ABAD),2
7、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明。
图①
图②
图③
第五篇:初中数学证明三角形全等找角
初中数学证明三角形全等找角、边相等的方法
【摘要】“全等三角形的证明”是初中平面几何的重要内容之一,是研究图形性质的基础,而且在近几年的中考中时有出现,新课标的要求是“探索并掌握两个三角形全等的条件”,因此掌握三角形全等的证明及运用方法对初中生来说至关重要。证明三角形全等找角、边相等是最关键的步骤。如何找对应角、对应边相等,做如下总结。
【关键词】全等三角形相等角相等边
我们在初中课本上学过的三角形全等的证明方法有“SAS”、“ASA”、“AAS”、“SSS”,对于直角三角形还有“HL”。在做题的过程中我们时常发现,全等的条件往往隐藏在复杂的图形中,要找的条件就是相等的角、相等的边,初中阶段找相等的角、相等的边有以下几种情况。
一、相等的角
1、利用平行直线性质
两直线平行的性质定理:1.两直线平行,同位角相等
2.两直线平行,内错角相等
例、如图一所示,直线AD、BE相交于点C,AB∥DE,AB=DE
求证:△ABC≌△DBC
此题知道AB∥DE,根据平行线的性质可得
∠A=∠D ,∠B=∠E(两直线平行,内错角相等)
由ASA可证全等。图一
2、巧用公共角
要点:在证两三角形全等时首先看两个三角形是不是有公共交点,如果有公共交点,在看他们是否存在公共角。
例、如图二所示,D在AB上,E在AC上,AB=AC, ∠B=∠C.求证:△ABE≌△ADC
此题∠A是公共角,利用ASA可证全等。
3、利用等边对等角图二 要点:注意相等的两条边一定要在同一个三角形内才能利
用等边对等角
例.、如图三在△ABC中,AB=AC,AD是三角形的中线
求证:△ABD≌△ACD
此题已知AB=AC,由等边对等角可得
∠B=∠C.4、利用对顶角相等图三 例、已知:如图四,四边形ABCD中, AC、BD交于O点,AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.
求证:AB=CD图四 此题利用对顶角相当可得∠AOB=∠DOC.利用AAS
可得△AOB≌△COD,再根据全等三角形对应边相等得到
AB=CD5、利用等量代换关系找出角相等
(1)∠A+公共角=∠B+公共角
例1.已知:如图五,AE=AC,AD=AB,∠EAC=∠DAB,求证:△EAD≌△CAB.
由图形可知:
∠DAE=∠EAC+∠DAC A ∠BAC=∠DAB+∠DAC
因此可得∠DAE=∠BAC图五
利用SAS可证△EAD≌△CAB
例
2、已知:如图六,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE
由图形可知:
∠DAB=∠BAC-∠DAC
∠EAC=∠DAE-∠DAC
因此可得∠DAB=∠EAC
利用SAS可证△BAD≌△CAE图六
(2)同角(等角)的补角相等;同角(等角)的余角相等
已知:如图,∠1=∠2,BC=EF,AC=DE,E、C在直线BF上.
求证:∠A=∠D
由图形可知:图七 B
由等角的补角相等可得∠DEC=∠ACE
利用SAS可得△ABC≌△DEF
(3)同角(等角)的余角相等 D
在直角三角形中常用到同角(等角)的余角相等得到相等的角。例:如图八△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作
B图八 ECF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于
D.求证:AE=CD;
由图形中可以看出:
∠D+∠BCD=90°;∠CAE+∠BCD=90°
由同角的余角相等得到∠D=∠CAE,利用AAS可得△BCD≌△CAE6、结合旋转和对称图形的性质。
例1.如图九,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD•交于点F.图九
求证:△ABF≌△EDF;
根据对称的性质我们可以得到∠A=∠E=90°,利用AAS可以证明△ABF≌△EDF。
二、相等的边
1、利用等角对等边 ADAC
3CB
(注意:必须在同一个三角形中才能考虑)
例、如图十,已知∠1=∠2,∠3=∠4,求证:AB=CD
已知∠3=∠4,根据等角对等边可得OB=OC
利用AAS证明出△ABO≌△DCO。
2、利用公共边相等图十 A
(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)
D例、如图十一,已知AB=AC,DB=DC,求证:∠BAD=∠CAD CB由图形可知AD是△ABD和△ACD的公共边,利用SSS可得 AB△ABD
≌△ACD
F3、利用等量代换
图十一 F
AB+公共边=DE+公共边
例,如图十二:AB=CD,AE=DF,CE=FB。求证:∠B=∠C
E图中:BE=BF+EF;CF=CE+EF.因此可以得到BE=CF
利用SSS可证△ABE≌△DCF因此得到∠B=∠C CD4、利用线段中点或三角形中线定理,或者等边三角形的性质
例、如图十三:∠B=∠C,ME⊥AB,MF⊥AC,垂足
图十二
分别为E、F,M是BC的中点。求证:ME=MF
M是BC的中点,则可以得到BM=CM;利用AAS可得△BME≌△CMF
C例题、如图十四,△ABE和△ACF是等边三角形,求证:CE=BF图十三 F △ABE和△ACF是等边三角形,则AE=AB,AC=AF
∠EAC=∠BAE+∠BAC;∠BAF=∠CAF+∠BAC.则∠EAC=∠BAF
那么△AEC≌△ABF,则可得CE=BF
C
图十四
5、利用三角形角平分线定理
(三角形角平分线上的点到角两边的距离相等)
注意、必须是角平分线上的点
例题、如图十五,在ΔABC中,AD平分∠BAC,DE垂直AB,DF垂直AC,垂足分别为E、F。求证:AE=AF
AD平分∠BAC, DE垂直AB,DF垂直AC,则根据角平分线
性质可得到DE=DF,那么Rt△ADE≌Rt△ADF(HL)
则可得到AE=AF
图十五 例题、已知:如图十六,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD
于M,•PN⊥CD于N,判断PM与PN的关系.
A由题意知△ABD≌△CBD(SAS)可得BD也是∠AD的角平分线,PM⊥AD,PN⊥CD,由角平分线的性质
可得PM=PN
全等三角形的证明是初中数学几何证明中最重要的一部分,是证明线段相等和角相等最常用的方法。结合全等三角形的判定,全等的条件一般隐藏在已知当中,以上是证明全等隐藏条件的方法总结。