首页 > 精品范文库 > 14号文库
系统动力学课程论文
编辑:夜色温柔 识别码:23-767717 14号文库 发布时间: 2023-10-25 03:46:29 来源:网络

第一篇:系统动力学课程论文

基于系统动力学对企业效率与员工之间关系的研究

南昌航空大学-文刀刘

摘要;企业效率不高的原因主要有:员工报酬不合理、工作量的多少、考核制度不规范、员工工作上的应付心理、企业成员之间间目标的不一致等。提高企业工作效率,要分清工作的轻重缓急;鼓励工作效果,兼顾工作过程;让员工了解工作的全部;进行企业薪酬体系设计,实现福利和薪酬;提高员工的精神激励,使工作效率在员工价值实现的过程中得以提高

关键词:系统动力学;企业效率;薪资变化;企业与员工;工作意识

1.研究背景。

提高企业工作效率就是要以最少的人力物力资源实现既定目标,在激烈的市场竞争中,提升企业市场竞争力。调查表明,我国企业员工实际的工作效率不足他们能达到的 50%,只是干满他们的工作时间,而没有尽力发挥他们的智慧去高效工作企业员工身上有很大的潜能可挖,员工能够比他们现在做得更好。如何提高员工的工作效率,使高效率地工作成为员工的工作习惯,已成为每一个企业管理实践中经常遇到的问题,这些的理论基础和经济背景各不相同,但有一个共同的核心思想或基本假设:员工的劳动效率与工资水平呈正向关系,生产率高的员工会得到高工资。工资依赖于员工的生产率,员工的生产率也依赖于工资,工资的高低可以影响企业员工的人数、辞职率、工作士气和对企业的忠诚等,追求利润最大化的企业存在很强的愿望去按生产率来选择效率员工。怎样把员工薪资与企业员工的绩效管理有机结合,相互促进,提出新思路和新建议,为提高企业效率,提升员工绩效管理水平提供思路和建议。

2.建立企业员工工作效率的流率基本入树模型 2.1确定流位流率系

在研究整个系统的的基础上,更具系统动力学级控制原理,按企业与员工之间的关系将主要影响因素将系统分为人口变化量、员工薪资、产工作量、企业效率、企业福利。并设计五个流位流率如下(其中,Li(t)(i=1、2…5)表示流位变量,Rj(t)(j=1、2…..5)表示留联系变量)。

人口数子系统:L1(t)、R1(t)人口数及其改变量 员工薪资子系统:L2(t)、R2(t)员工薪资及其改变量 工作量子系统:L3(t)、R3(t)工作量及其改变量 企业效率子系统:L4(t)、R14(t)企业效率及其改变量 企业福利子系统:L5(t)、R5(t)企业福利及其改变量 从而得到整个系统的流位流率系:

{ [L1(t),R1(t)],[L2(t),R2(t)],[L3(t),R3(t)],[L4(t),R4(t)],[L5(t),R5(t)。

2.2 建立二部分图及建立流率基本入树模型

在对系统中所有流位和流率变量之间的内在关系进行定性分析的基础上,根据系统动力学流位变量控制流率变量的建模思想,得到流位控制流率的定性分析二部分图

图2-1(1)在本系统中,员工薪资、工作量、企业福利提高均能促进人口数的增多。故人口变化量R1(t)受到员工薪资L2(t)、工作量L3(t)、企业福利L5(t)共同控制。

(2)在本系统中,工作量和企业效率提高均能促员工薪资增加。员工薪资变化量变化量R2(t)受到工作量平L3(t)、政企业效率L4(t)共同控制。

(3)在本系统中,人口数、员工薪资、企业效率提高均能提高工作量的变化量。故工作量变化量R3(t)受到人口数L1(t)、员工薪资L(t)、企业效率L4(t)共同控制。

(4)在本系统中,人口数、工作量、企业效率提高均能促进政企业效率增强。故企业效率变化量R4(t)受到人口数平L1(t)、工作量L3(t)、企业福利L5(t)共同控制。

(5)在本系统中,工作量、企业效率提高均能促进企业福利的增加。故企业福利R5(t)受到企业效率L4(t)、工作量L3(t)共同控制。

2.3建立流率基本入树模型

根据系统动力学的流率基本入树建模法,借助中间辅助变量,对流位变量控制流率变量的路径进行分析,得到各个子系统的流率基本入树模型。

(a)人口数变化量流率R1(t)基本入树模型T1(t)(b)员工薪资变化量流率R2(t)基本入树模型T2(t)

(c)工作量变化量流率R3(t)基本入树模型T3(t)(d)企业效率变化量R4(t)基本入树模型T4(t)

(e)企业福利变化量R5(t)基本入树模型T5(t)

3.极小基模分析生成管理对策

要分析企业效益与员工的关系,可以对系统的极小基模进行分析研究,极小基模可以反映整体的基本组成结构。利用极小基模分析可以找出系统的关系的,并得出具体可行的管理方针。下文对极小基模进行分类的研究。

3.1 二阶极小基模计算与分析

第一步 求一阶极小基模 对于每一棵树Ti(t),寻找一阶极小基模。T1(t),T2(t),…,T5(t),的树尾皆不含基本树对应的L1(t),L2(t),…,L5(t)流位,故自嵌运算不存在一阶极小基模。

第二步 求二阶极小基模(1)T1(t):T1(t)入树尾中,含L2(t)和L3(t)与L5(t)。而T2(t)入树尾中不含L1(t),T5(t)入树尾中不含L1(t),有且只有G13= T1(t)T3(t),二阶极小基模1:G13= T1(t)U T2(t)。二阶极小基模 G13(t)的流图结构如图

图3.1

在二阶极小基模G13(t)(图3.1)中,由人口数和工作量由两个子系统组成。当人口数增多,工作量变大,从而提高了企业的生产效率,反之减弱。

(2)T2t):T(t)入树尾中,含L3(t)和L4(t)。而T4(t)入树尾中不含L2(t),T3(t)入树尾中含L2(t),有且只有G23= T2(t)T3(t),二阶极小基模2:G23= T2(t)U T3(t)。二阶极小基模 G23(t)的流图结构如图

图3.2 在二阶极小基模G23(t)(图3.2)中,由工作量和员工薪资两个子系统组成。当工作量增多,企业效率好,从而会增加员工资,工作量会提升员工薪资,反之减弱。

(3)T3(t):T3(t)入树尾中,含L1(t)和2(t)与L3(t)。而T1(t)与T2(t)入树尾中不含L3(t),T4(t)入树尾中含L3(t),有且只有G34= T3(t)T4(t),二阶极小基模3:G34= T3(t)U T4(t)。二阶极小基模 G34(t)的流图结构如图

图3.3 在二阶极小基模G34(t)(图3.3)中,由企业效率和工作量两个子系统组成。当企业效率变好时,工作效率大,从而提高工作量,企业效率促进工作量变化,反之减弱。

(4)T4t):T4(t)入树尾中,含L1(t)和L3(t)与L5(t)。而T1(t)与T3(t)入树尾中不含L5(t),T(5)入树尾中含L4(t),有且只有G45= T4(t)T5(t),二阶极小基模4:G45T5t)U T5(t)。二阶极小基模 G45(t)的流图结构如图

图3.4 在二阶极小基模G45(t)(图3.4)中,由企业效率和企业福利两个子系统组成。当企业效率提高,企业提供的福利就变好,从而提高了企业福利,企业效率提高会促进企业福利的提高,反之减弱。

3.2 三阶极小基模计算与分析

T1(t)UT3(t)UT5(t)

图3.5 分析:基模G135(t)(图3.5)构成工作量、人口数、企业福利三方共促三阶正反馈环。人口数多,工作量多,企业福利好,员工工作意识变好,企业效率跟上,很好的提高了其业务的效率。基模G135(t)生动形象地刻画了人口数、工作量、企业福利三方互相促进,不断推动三方共同发展的现象。3.3基于基模分析生成管理对策

由基模的正负关系可以看出,可以通过增强有利因素,削弱不利因素来增强企业的效率,这样才能使企业能够持续经营,并且不断发展壮大,所以可以通过以下管理对策来提高企业的经营能力和管理水平:由基模的正负关系可以看出,可以通过增强有利因素,削弱不利因素来增强高校超市经营管理能力,这样才能使高校超市在高校中持续经营,并且不断发展壮大,所以可以通过以下管理对策来提高高校超市的经营能力和管理水平:

(1)可以通过招聘的方式选拔企业人才,建立严格的人才招聘制度,以公开化、制度化和透明化的模式选择企业工作能力强、实际管理经验丰富的人才。其次是人才的培养上,对员工进行培训,并且制定完整的考核制度,以选拔优秀员工。

(2)员工工作的目的就是为了薪资,所以提高员工的工作与福利,可以有效的激励员工,使其能更努力的工作,增加工作量,从而增加企业的效率。每一个员工都希望有一个公平的分配制度和晋升机制,并与他们的工作效率相对应。所以,许多企业员工的工作效率与报酬之间有直接的关系。

(3)企业人口数增加,每个员工工作量员工工作量会减少,对应企业效率也会降低,所以应当适当的控制企业的人数,保持企业人数的平衡。企业对员工进行福利激励时,应该考虑员工除了经济福利也需要精神福利,但作为社会人而言,首先是物质生活得到满足。因此,企业首先要做到是满足员工的基本薪资。比如,达到一定绩效后,进行精神上的鼓励。拉近公司与员工之间的距离。充分发挥企业福利福利的作用。利用企业福利来提高员工满意度,员工满意度高了,工作积极性增强,工作效率受到影响也会得到提升,得到自己应得的每个月的薪水与年终的福利。同样也增加员工的工作意识。5参考文献

[1]吴俊超,提高煤炭企业工作效率的几点措施,企业管理研究,2009(08)

[2]林青松,李实.,企业效率理论与中国企业的效率.经济研究 , 1996,(7): 73-80.[3]方舒.工业社会工作与员工福利.华东理工大学学报.2010-12-15.[4]范如国,员工效率工资与企业的管理效率分析,2009(12)

[5]张丽梅.基于员工关系管理的薪酬结构设计[J].国际商务研究,2006,(6)

第二篇:系统动力学

基于系统动力学下的城市公交系统发展分析及其对策

10090109 汪玲

摘 要:本文针对城市公交系统复杂、非线性、延迟性等特点,采用定性与定量相结合的系统动力学方法,建立城市公交系统模型,并通过对模型的分析提出针对城市公交系统的相应的政策性建议,以求改善城市公交系统现状。

关键词:系统动力学;公交系统;模型

一、建模背景和目标

城市交通是城市社会、经济活动的动脉和纽带,对城市经济发展和人民生活水平的提高起着非常重要的作用。根据国内外城市交通发展的经验,优先发展公共交通是解决城市交通问题的根本途径之一。但是,目前我国各城市在进行公共交通系统建立的工作中,普遍遇到的一个问题是:大量的城市基础要素与交通信息未被充分的表达出来,给城市的现代化管理带来了诸多困难。如何充分利用现有的城市道路基础设施,使车与车、车与路、车与乘客相互协调,提高公交车辆的营运效率,为市民提供便捷的查询及管理系统,是现代公共交通发展急需解决的问题。

城市公交系统是以固定班次、固定线路、固定、站牌服务城市居民的运输系统,本质上是一种公用服务事业。一个城市的人口、经济、文化、环境等都与城市公交系统有着密切联系,而城市公交系统却与公交服务水平、公交车辆数、道路拥堵程度、私家小汽车数量等因素有关,而且各因素之间存在复杂的相互作用关系。纯粹的定量分析或定性分析难以对其进行准确全面的分析。本文采用系统动力学方法,建立公交系统动力学模型,对城市公交系统服务水平的影响因素进行分析。

二、流率基本入树模型

2.1流位流率系

按定性分析问题主要建立5个流位流率系:

1、流位:公交系统服务水平L1(t)(百分制)流率:服务水平变化量R1(t)(百分制/天)

2、流位:公交车辆数L2(t)(辆)

流率:公交车辆数变化量R2(t)(辆/天)

3、流位:道路拥堵程度L3(t)(百分制)

流率:道路拥堵程度变化量R3(t)(百分制/天)

4、流位:小汽车数量L4(t)(辆)

流率:小汽车数量变化量R4(t)(百分制/天)

5、流位:公交专用道数L5(t)

流率:公交专用道数变化量R2(t)该模型的流位流率系为: {(L1(t),R1(t)),(L2(t),R2(t)),(L3(t),R3(t)),(L4(t),R4(t)),(L5(t),R5(t))} 2.2二部分图

通过实际系统分析,得到图2-1所示的5个流位变量控制流率变量的定性分析二部分图。R1(t)R2(t)R3(t)R4(t)R5(t)L1(t)L2(t)L3(t)L4(t)L5(t)

图2-1 5个流位变量控制流率变量的定性分析二部分图:

(1)由于线路上的公交车辆数L2(t)的增加,发车的班次密度则会增加,乘客出行时的候车时间就会减少,这就代表公交客运服务水平的提高。与此同时,公交司机的驾驶的技术水平的高低以及公车专用道的覆盖率的多少会影响公交的平均车速,从而影响乘客乘坐公交的安全性,而公交专用道数量的增加,可以使公交车的行驶速度加快,道路拥堵程度L3(t)的不确定性也会直接影响R1(t),所以流位L2(t)、L3(t)、L5(t)共同控制着公交系统服务水平变化量R1(t)流率的变化。

(2)由于公交车辆数L2(t)的增加,使得营运收入的增加,在公交公司资金充足时,有能力购置更多的公交车,公交服务水平L1(t)的提高,会使得公交的吸引力增加,公交客运量就会增加,从而也会使得公交营运收入的增加;所以流位L1(t)、L2(t)共同控制着公交车辆数变化量R2(t)流率的变化。

(3)由于公交数量L2(t)和小汽车数量L4(t)的不断增加,会使得道路上的车辆数越来越多,从而使得道路变得越来越拥堵,随着公交服务水平的提高,公交吸引力增加,公交的客运量会增加,会使得道路上拥挤的人群减少,从而使得道路拥挤程度减少,同时,公交专用道的增加会使得非公交专用道上的车辆数减少,从而使道路拥堵程度降低,所以流位L1(t)、L2(t)、L4(t)、L5(t)共同控制着道路拥堵程度变化量R3(t)流率的变化。

(4)由于公交系统服务水平L1(t)不断提高,会使得出行乘客的候车时间减少,使得公交吸引力提高,从而抑制着小汽车数量的增加。由于公交车辆数L2(t)的增加,公交的营运收入增加,票价会调低,再次使得公交吸引力增加;同时,道路拥堵程度L3(t)的恶化,会使得线路上的小汽车数量逐渐减少,然而,随着经济发展水平的提高,小汽车的数量会不断增加,所以流位L1(t)、L2(t)、L3(t)共同控制着小汽车数量变化量R4(t)流率的变化。

(5)由于公交车辆数的不断增加,以及道路拥堵程度的加剧会使得对道路的需求增加,所以流位L2(t)、L3(t)共同控制着公交专用道数变化量R5(t)流率的变化。

2.3流率基本入树模型

通过流位变量控制流率变量的路径分析,建立下述5个基本入树模型,如图2-3((a)T1(t)、(b)T2(t)、(c)T3(t)、(d)T4(t)、(e)T5(t)):

公交系统服务水平L1(t)公交车数量L2(t)服务水平变化率R1(t)--+候车时间--公交车辆数变化率R2(t)+营运收入++公交客运量+公交吸引力+服务水平L1(t)安全水平+班次密度平均车速++公交车辆数L2(t)公交专用道数L5(t)技术水平道路拥堵程度L3(t)

(a)公交系统服务水平变化量基本入树T1(t)

(b)公交车辆数变化量基本入树T2(t)

小汽车数量L4(t)道路拥堵程度R3(t)-+-+公交客运量+公交吸引力+服务水平L1(t)道路拥堵程度L3(t)小汽车数量变化量R4(t)+-公交吸引力-+票价-公交服务水平L1(t)营运收入+公交车辆数L2(t)非公交专用道上的车辆数-经济发展水平公交车辆数L2(t)小汽车数量L4(t)公交专用道数L5(t)

(b)道路拥堵程度变化量基本入树T3(t)

(b)小汽车数量变化量基本入树T4(t)

专用车道数L5(t)专用车道数变化量R5(t)+道路需求++道路拥堵程度L3(t)公交车辆数L2(t)

(b)人均基本空间标准基本入树T5(t)

图2-2

三、基于基模分析生成管理对策

3.1 G12(t),G13(t)基模的生成

从入树T1(t)出发求二阶极小基模, 考察T1(t)U Ti(t)(i=2,3,4,5,6),又因为入树T2,T3中含流位L1(t),因此从入树T1出发的二阶极小基模有 G12(t)=T1(t)U T2(t), G13(t)=T1(t)U T3(t)。G12(t),G13(t)的流图结构如下(图3-1):

公交车辆数L2(t)公交车辆数R2(t)+道路拥堵程度L3(t)++-小汽车数量L4(t)道路拥堵程度R3(t)-公交客运量++公交吸引力++班次密度-候车时间-平均车速+公交专用道L5(t)-公交服务水平R1(t)+安全水平+技术水平+营运收入+公交客运量+公交吸引力+公交服务水平L1(t)-道路拥堵程度L3(t)非公交专用道上的车辆数-平均车速-<公交车辆+-公交专用数L2(t)>道L5(t)候车时间-班次密度+公交车辆数L2(t)-公交服务水平R1(t)+安全水平+技术水平公交服务水平L1(t)

G12(t)公交服务水平与公交车辆

G13(t)公交服务水平受道路拥堵

数增长二阶极小基模

程度制约二阶极小基模

图3-1

(1)二阶极小基模G12(t)揭示了要改善公交服务水平,首先得提高公交车辆数,只有公交车辆数增加了,才能直接有效增加班次密度,减少乘客的候车时间,从而达到了公交服务水平的提高。

根据对基模的分析,可以得到管理方针为:

 公交公司可以通过增加公交车辆数来实现公交服务水平的提高。

(2)二阶极小基模G13(t)揭示了若道路拥堵程度严峻,会导致乘客到达目的地的时间加长,也会使得乘客心里焦虑不安,让乘客感到不满意,说明了公交服务水平的降低。根据对基模的分析,可以得到管理方针为:

 可以通过加强对交通道路的疏通管理来使道路拥堵程度降低,也可以通过对公交司机的培训,当道路拥堵时能够安抚乘客们焦急的心情,从而来实现服务水平的提高。3.2 G35(t)基模的生成

从入树T3(t)出发求二阶极小基模, 考察T3(t)U Ti(t)(i=2,3,4,5,6),又因为入树T5中含流位L3(t),因此从入树T3出发的二阶极小基模有G35(t)=T3(t)U T5(t)。G35(t)的流图结构如下(图3-2): 公交专用道L5(t)-非公交专用道车辆数-道路拥堵程度变化量R3(t)++-公交客运量+公交吸引力+公交服务水L1(t)公交车辆数L2(t)公交专用道变化量R5(t)—+道路需求++道路拥堵程度L3(t)<公交车辆数L2(t)>小汽车数量L4(t)

图3-2: G35(t)道路拥堵程度受公交专用道数制约二阶极小基模

(1)二阶极小基模G35(t)说明道路拥堵程度会随着公交专用道数的增加而降低。

根据对基模的分析,可以得到管理方针为:  通过增设公交专用道,让更多的公交车从公交专用道上行驶,可以使得非公交专用道上的车辆减少,从而减轻了道路拥堵的程度。3.3 G134(t)基模的生成

综合分析二阶极小基模集,只有小汽车数量入树T4(t)未进入二阶极小基模,而小汽车数量入树T4(t)的尾中含公交服务水平流位L1(t)和公交车辆数L2(t),而含L1(t)对应公交服务水平入树T1(t)的二阶极小基模有G12(t), G13(t),但只有公交服务水平受道路拥堵程度制约二阶极小基模G13(t)中的道路拥堵程度变化率R3(t)受小汽车数量流位L4(t)控制,则G13(t)U T4(t)产生出三阶极小基模:G134(t)= G13(t)U T4(t)。G134(t)的流图结构如下(图3-3): 道路拥堵程度L3(t)<小汽车数量L4(t)>++-道路拥堵程度R3(t)-+非公交专用道上的车辆-数<公交车辆数L2(t)>公交专用道L5(t)-平均车速+-候车时间-班次密度+-公交车辆数L2(t)公交服务水平R1(t)+安全水平+技术水平+小汽车数量L4(t)公交客运量-小汽车数量+变化量R4(t)公交吸引力-+公交服务票价水平L1(t)-营运收入+<公交车辆数L2(t)>

图3-3:G123(t)服务水平、道路拥堵与小汽车数量增长三阶基模

(1)三阶基模G123(t)揭示了道路拥堵程度的加剧会制约车辆的行驶速度,从而增加了乘客们的候车时间,使得公交服务水平降低;随着公交服务水平的降低使得公交吸引力降低,会导致线路上小汽车数量增加;然而,当线路上的小汽车数量增加时会导致道路拥堵程度加剧,从而形成了一个正反馈环。

根据对基模的分析,可以得到管理方针为:

 小汽车数量的增加会导致道路拥挤程度的增长,而简单地限制小汽车数量增长有可能阻碍经济的发展。因此,比较合理的方法是减少进入内环线的车辆数量,加大内环线上公共交通的便捷性。要达到这一目标,可以结合公共交通枢纽站与轨道交通车站设置低价位或免费停车设施,方便私人汽车停放以换乘公交进入市区。

四、结束语

4.1总结

公共交通系统是复杂庞大的客运系统,信息对整个系统高效运行发挥着至关重要的作用,整合公交系统现有信息资源,建立公交基础信息平台,统一信息管理标准是公交系统信息化工作重点,也是智能公交系统建设的基础。我国部分城市已同程度的开发了公交基础信息平台,相关领域的研究工作也逐渐起步。希望能有更多的人进行研究。本系统运用系统动力学方法建立了关于公交系统的动力学模型,分析了影响公交系统服务水平的因素以及各因素之间存在的各种复杂的相互作用关系。此次分析过后发现:由于系统动力学模型是一种结构模型,适合反映个变量间错综复杂的因果关系,可以得到难以用数学分析得到的系统特性参数和调整的合理模式,所以不失为研究城市公交系统的一种有力工具。4.2参考文献

[1]张国伍.交通运输系统分析[M].四川:西南交通大学出版社.

[2]张国伍.交通运输系统动力学[M].成都:西南交通大学出版社. [3]王其藩.高级系统动力学[M].北京:清华大学出版社.

[4]王大淼,杨忠海,滕春贤.公路客运系统动态模拟Ⅱ[J].哈尔滨商业大学学报,2005,21(2):261-262.[5]郑晨辉,杨国利,王大淼.城市公交系统动态模拟Ⅱ[J].哈尔滨商业大学学报,2004,20(2):255-257.[6]吴克文,柯伟.基于复杂供应链库存管理策略的系统动力学研究Ⅱ[J].物流技术,2006,(4):39-42.

第三篇:动力学论文

《结构动力学》小论文

利用对称性求解动力问题

组员姓名:

专业班级:

土木班

指导老师:

完成时间:2014年X月

《结构动力学》小论文

——动力计算中对称性的运用问题

一、摘要

用柔度法计算对称结构的振动频率和周期时,选取半结构可以简化计算。学习之初,对如何建立等效的半结构模型存在一些疑问,通过老师的讲解以及自己的摸索,逐渐形成了一个比较清晰的概念,这篇小论文将就这一问题和如何选取对称结构进行一个小结。

二、对称法理论分析简介

1.利用对称性求解多自由度体系的自振频率及其相应的主振型

(a)

结构对称,质量分布也对称。该类结构不仅可以利用对称性求自振频率和主振型;而且应充分的利用对称性进行简化计算。

图(1)

图1为一对称结构,质量分布也对称,其自由振动的微分方程为

yi=-j=14mjyjδij

(i=1,2,3,4)

(a)

由于对称性,有:

m1=m4,m2=m3

δ11=δ44,δ22=δ33,δ13=δ42,δ21=δ34

根据位移互等定理,有δij=δji(i不等于j)。将式(a)的第一式和第四式相加,第二式和第三式相加,分别得:

y1’=-m1y1’δ11‘-m2y2’δ12’

(b)

y2’=-m1y1’δ21‘-m2y2’δ22‘

(b)

式中:

y1’=y1+y4,y2’=y2+y3

δ11,=δ11+δ14,δ22,=δ22+δ23

δ12,=δ21,=δ12+δ13=δ21+δ24

再将式(a)的第一式减去第四式,第二式减去第三式,分别可得:

y1‘’=-m1y1‘’δ11‘’-m2y2‘’δ12‘’

(c)

y2‘’=-m1y1‘’δ21‘’-m2y2‘’δ22‘’

(c)

式中:

y1‘’=y1-y4,y2‘’=y2-y3

δ11‘’=δ11-δ14,δ22‘’=δ22-δ23,δ12‘’=δ21‘’=δ12-δ13=δ21-δ24

至此,把一组四元二阶方程式(a)简化为两组二元二阶微分方程式(b)和(c),也就是说,求四个自由度体系的频率和主振型简化成求两个自由度体系的频率和主振型。

利用对称性计算频率和主振型时,通常可取半边结构计算。图1所示体系,其主振型不外乎图2,3和4,5所示的四种形式。图2,3为对称振型,图4,5为对称振型。它们分别可取图6和7所示的半边结构进行计算.下面给一算例:

例:求图示结构的自振频率及相应的主振型,EI为常数

图一

图二

对称结构,计算正对称振型时,B截面既不能转动,又不能移动,如图二,可取半边结构如下图三

图三

图四

计算反对称振型时,振型如图五,B截面只能转动,不能移动,可取半边结构如图六

图六

图五

图七

两种振型见图二和图五,由计算结果可知,该结构反对称主振型为第一主振型,其对应频率为第一主频率。

因此不管是静定结构还是超静定结构,是计算静态问题还是动态问题,对称结构在计算时通常可以简化,我们应充分利用对称性,使求解得以简化,以加快解题速度,达到更好的效果。

但对称法中还有很多值得商榷的小问题,以例题的形式开始讨论:

三、建立等效半结构模型

1、自由振动时半结构的选取

例1

试求图示刚架的自振频率。

L

EI

EI

EI

L

m

m

解:(1)结构对称,可取半结构。计算简图如下:

根据柔度系数的定义,在质量m处作用单位力,画出结构的弯矩图,图乘即得到柔度系数。

EIE

EI

EI

L

L/2

半结构计算简图

弯矩图

需注意,由于取了半结构,在计算自振频率时,质量应由原来的2m变为m进行计算。

(2)求整个结构的柔度系数,计算简图如下:

计算简图

弯矩图

绘弯矩图时,由于结构对称,可取半结构进行计算。但最终对整个结构进行图乘。

注意,此题实际上并没有取半结构,因此计算频率时质量仍为2m,虽然柔度系数为取半结构计算时的二倍,但与质量相乘可以约分,所得结果与取半结构计算是一样的。

(3)结论:

计算对称结构的自振频率时,如果取半结构,则质量应为原来的二分之一;对于半结构求柔度系数,应按柔度系数的定义在结构上施加单位力,绘出半结构的弯矩图并图乘,即所有的计算都是基于半结构的;

若仅仅对于绘弯矩图阶段取半结构,则单位力应变为原来的二分之一,求出整个结构的弯矩图并图乘,即计算是基于整个结构的,因此最后求频率时质量不变,实际上对于整个题目而言并没有取半结构;

2、受迫振动时半结构的选取

例2

图示结构在柱顶有电动机,试求电动机转动时的最大水平位移和柱端弯矩的幅值。已知电动机的质量集中于柱顶,W=20kN,电动机水平离心力的幅值,电动机转速,柱的线刚度。

h=6m

W

I=∞

解:(1)此题结构对称,仍可取半结构计算。根据结构的振动形式(水平振动),其半结构的选取以及弯矩图如下所示。

半结构计算简图

弯矩图

图乘,得:

注意,由于取了半结构,质量变为原来的一半(),外力幅值也应取原来的二分之一,即。

(2)求整个结构的柔度系数,仅在绘弯矩图时取半结构。则与例1相同,求柔度系数时施加在半结构的单位力变为,但结构的质量与施加在结构上的外力大小不变。计算过程如下。

弯矩图

图乘得:

注意,解法二实际上仍是基于整个结构的,仅仅在绘弯矩图时应用了对称性,因此质量与外力均不变。

(3)结论:

受迫振动时,有外力作用于对称结构上,如果选取半结构进行计算,则不仅质量变为原来一半,外力幅值也应变为原来的二分之一。但外力的频率不变。

四、总结

如何选取半结构(如什么时候该用滑动支座和铰支座),选取半结构之后各物理量应如何做出相应变化(如,求柔度系数时单位力是否变为原来一半,外力幅值是否变化等),以及如何避免计算结果与正确值相差二倍。对此,我们组经过讨论以及在做题的过程中也思考了很多。其实,现在看来,这个问题就变得很简单了,只要明白,如果一开始就利用对称性取了半结构,那么后面的求解都是基于半结构的;而如果仅仅在求柔度系数绘弯矩图时取半结构,那么计算还是基于整个结构的,这样就能明白到底哪些量应变为原来的一半,哪些不用变了。最后感谢龙老师对我们的谆谆教诲,让我们对结构有了更深的了解。

第四篇:系统动力学成本控制论文

1施工企业成本控制系统动力学模型

在项目实施的过程中,受内外部因素变化的影响,实际输出的成本、进度、质量会偏离原计划目标,而成本控制就是在成本的形成过程中,对生产经营所消耗的人力、物资、费用开支等进行指导、监督、调节和限制,把各项费用都控制在计划成本范围之内,保证成本目标的实现。以往学者们在研究系统动力学与成本控制问题时,都将研究重点放在工程项目成本上,本文则从施工企业角度全面系统分析,辅助企业管理人员的决策行为。

1.1施工企业成本控制系统结构模型

根据施工企业成本构成内容及企业价值活动,本文用因果关系图表示了包含外部关联、企业辅助活动以及项目实施三个基本结构的施工企业成本控制系统结构模型。此模型主要目的是用来帮助施工企业管理人员从宏观角度掌握施工企业在建筑市场这一大环境中所处的位置及相应的成本活动。循环1和2反映了目前施工企业所面临的“僧多粥少”的竞争局面;循环9和10从战略角度分析了政治、经济、市场大环境的影响,当企业发展情况不乐观时,势必影响到企业相关管理活动,如企业技术开发和人力资源,也会对项目的实施产生负面作用,因此这种情况也刺激了企业获得项目的渴望度;循环3、4、5、7、8表示了施工企业与其他市场主体发生的交易活动,产生了交易成本,具体表现在搜集信息、寻找目标、合同谈判、争议协调与解决等环节。交易成本并不创造实际的价值,却构成企业成本的一部分,因此对于施工企业来讲,如何在不降低生产效率的前提下有效地降低交易成本,提高企业的核心竞争力就显得极其重要。施工企业若想获得持续发展,可以从有过合作关系的供应商中选择具有互补优势的,与其建立长期合作伙伴关系,建立起信任机制,减少谈判次数和冲突发生的频率,降低交易成本,实现双方共赢。循环6则说明施工企业充分掌握各项成本产生动因,并且采取有效措施来控制成本,最终会形成企业的核心竞争力,有利于市场竞争。

1.2项目成本控制系统结构模型

在图2的基础上进一步对项目实施过程的成本控制展开研究。本文借助于系统动力学,建立了工程项目成本控制系统结构模型,包含了返工循环、变更循环、波及效应、控制反馈回路四个基本结构。通过此图,可以清晰地掌握模型中各个变量之间的因果关系以及各个环路的性质,可以帮助决策人员加深对成本系统内部反馈结构与动态行为关系的认识和研究,帮助管理人员更好地进行成本控制。

1.2.1返工循环返工循环是系统动力学项目模型中最重要的结构,学者们在研究项目管理问题时都会研究这一循环。它反应了工作任务的执行过程,由于项目的复杂性和不确定性,工作中不可避免地出现错误,错误发生的比例受工程质量控制。返工既耗费工时又花费成本,还伴随着工作任务相互之间的撞击效应的产生,恶化质量、进度、成本等问题。图3中表现为循环1、4、10。

1.2.2变更循环对于任何一个工程项目而言,工程变更也是不可避免的,工程变更主要包括工程范围、施工条件、工程设计、技术标准的变更。变更的提出方可以是施工企业,也可以是业主和设计单位,它往往会导致工期延误、成本失控,甚至对劳动生产率产生负面的影响。作为施工企业管理人员要加强对工程变更的控制,发生变更时要及时做好现场签证,估算变更成本,更新进度计划,收集索赔资料等。在工程初始阶段,要经常和业主沟通协调,尽可能把变更控制在设计阶段初期,将变更带来的损失压缩到最小。

1.2.3波及效应波及效应是一个动态变化过程原本是指某条供应链上某个成员因某种行为的发生,导致某变量数量上的变动,该变量的变动又会通过供应链成员之间、供应链与供应链之间的相互联系对整个产业链产生极大影响。在本系统中,它表现为成本控制带来的副作用,是客观存在的,但在实践中很少受到重视。借助系统动力学可以如实地反应这种副作用给整个成本系统带来的影响,它使系统问题变得更加复杂,有经验的项目经理也不能保证对该类问题系统的思考和分析,由此可见系统动力学分析模型的优势所在。

1.2.4控制反馈回路成本控制实现的是对项目成本的管理,保证成本、质量、进度三大目标实现最优化。为了最终实现计划目标,管理人员要密切关注项目实际发生情况,及时收集相关的各种成本数据信息,与计划目标做对比,发生偏离时及时采取纠偏措施,或调整资源计划或调整目标投入,以确保项目的顺利进行。

2结语

成本管理是施工企业管理的重中之重,只有具备了低成本竞争优势,企业才能获得更广阔的利润空间。本文将系统动力学这个宏观分析工具引入到施工企业成本控制系统这一领域,以系统的观点分析了施工企业内外部的成本管理活动,并构建了企业成本控制系统模型和项目成本控制系统模型。本文弥补了以往研究的不足,为企业管理者实现成本动态管理提供了决策依据。通过分析研究成本控制系统内部的反馈结构环和动态行为关系,找出其相互作用的规律,以最终制定满意的成本控制策略,降低企业成本,从而形成企业核心竞争优势,在建筑市场中获得持续发展。

第五篇:系统动力学原理

5.1 系统动力学理论

5.1.1 系统动力学的概念

系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。

5.1.2 系统动力学的特点

系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]:

(1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。

(2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。系统中所包含的变量是随时间变化的,因此运用该模型可以模拟长期性和周期性系统问题。

(3)系统动力学模型是一种结构模型,不需要提供特别精确的参数,着重于系统结构和动态行为的研究。它处理问题的方法是定性与定量结合统一,分析、综合与推理的方法。以定性分析为先导,尽可能采用“白化”技术,然后再以定量分析为支持,把不良结构尽可能相对地“良化”,两者相辅相成,和谐统一,逐步深化。

(4)系统动力学模型针对高阶次、非线性、时变性系统问题的求解不是采用传统的降阶方法,而是采用数字模拟技术,因此系统动力学可在宏观与微观层次上对复杂的多层次、多部门的大系统进行综合研究。

(5)系统动力学的建模过程便于实现建模人员、决策人员和专家群众的三结合,便于运用各种数据、资料、人们的经验与知识、也便于汲取、融汇其他系统学科与其他科学的精髓。5.1.3 系统动力学的结构模式[9-10]

系统动力学对系统问题的研究,是基于系统内在行为模式、与结构间紧密的依赖关系,通过建立数学模型,逐步发掘出产生变化形态的因、果关系。系统动力学的基本思想是充分认识系统中的反馈和延迟,并按照一定的规则从因果逻辑关系图中逐步建立系统动力学流程图的结构模式。

图1 因果关系图

图2 SD流程图

(一)因果关系图

因果箭:连接因果要素的有向线段。箭尾始于原因,箭头终于结果。因果关系有正负极之分。正(+)为加强,负(—)为减弱。

因果链:因果关系具有传递性。在同一链中,若含有奇数条极性为负的因果箭,则整条因果链是负的因果链,否则,该条因果链为极性正。因果反馈回路:原因和结果的相互作用形成因果关系回路(因果反馈回路)。是一种封闭的、首位相接的因果链,其极性判别如因果链。

反馈的概念是普遍存在的。以取暖系统产生热量温暖房间为例,屋内一个和它相连的探测器将室温的信息返回给取暖系统,以此来控制系统的开关,因此也控制了屋内的温度。室温探测器是反馈装置,它和炉子、管道、抽风机一起组成了一个反馈系统。

(二)流程图

流程图是系统动力学结构模型的基本形式,绘制流程图是系统动力学建模的核心内容。

(1)流(Flow):系统中的活动和行为,通常只区分实物流和信息流;(2)水准(Level):系统中子系统的状态,是实物流的积累;

(3)速率(Rate):系统中流的活动状态,是流的时间变化;在SD中,R表示决策函数;

(4)参数量(Parameter):系统中的各种常数;

(5)辅助变量(Auxiliary Variable):其作用在于简化R,使复杂的决策函数易于理解;

(6)滞后(Delay):由于信息和物质运动需要一定的时间,于是就带来愿意和结果、输入和输出、发送和接受等之间的时差,并有物流和信息流滞后之分。5.1.4 系统动力学的建模步骤

(一)明确研究目标

充分了解需要研究的系统,通过资料收集、调查统计,根据系统内部各系统之间存在的矛盾、相互影响与制约作用,以及对应产生的影响,确立矛盾与问题。

(二)确立系统边界、因果关系分析

对研究目标产生的原因形成动态假设(Dynamic Hypothsis),并确定系统边界范围。由于系统的内部结构是多种因素共同作用的结果,因此,系统边界的范围直接影响系统结构和内部因素的数量。

结合研究目标的特征,将系统拆分成若干个子系统,并确定各子系统内部结构,以及系统与各子系统之间的内在联系和因果关系。

(三)构建模型 绘制系统流程图,并建立相应的结构方程式。其中绘制系统流程图是构建系统动力学模型过程中的核心部分,它将系统变量与结构符号有机结合起来,明确表示了研究对象的行为机制和量化指标。

(四)模型模拟

基于已经完成的系统流程图,在模型中输入所有常熟、表函数及状态变量方程的初始值,设定时间步长,然后进行模拟。得到预测数值及对应的图表,再根据研究目标,对系统边界、内部结构反馈调整,能够实现完整的系统模拟。

(五)结果分析

对模型进行测试,确保现实中的行为能够再现于计算机模型系统,并对模拟结果进行分析,预测、设计、测试各选择性方案,减少问题,并从中选定最优化方案。

明确研究目标调查统计资料分析确立矛盾与问题确立系统边界确立系统边界边界范围影响边界范围影响内部因素数量内部结构因果关系分析内在联系系统拆分子系统子系统内部结构核心内容模型构建模型构建机制、量化系统流程图结构方程式模型模拟模型模拟反馈调整反馈调整预测数值对应图表结果分析结果分析合理性分析可靠性分析最优方案确定最优方案确定

图5.3系统动力学的建模步骤

5.1.5 系统动力学建模软件

(一)软件介绍[11-13] 系统动力学可以与其他软件结合进行仿真模拟,本文选用的是VENSIM软件。VENSIM仿真软件是一款由美国Ventana Systems公司研发,通过文本编辑器和图形绘制窗口,实现人机对话,集流程图制作、编程、反馈分析、图形和表格输出等为一体的多功能软件。

(二)VENSIM软件主要有以下几个特点:(1)界面友好,操作便捷

VENSIM采用标准的Windows界面,能够建立友好的人机对话窗口,不仅支持菜单和快捷键外,还提供多个工具条或图标,能够提供多种数据输入和输出方式。

(2)提供多种分析方法

VENSIM提供两类分析工具:结构分析工具和数据集分析工具。

结构分析工具包含原因树(cause tree)功能、使用树(Uses Tree)和循环图(loops)。原因树(cause tree)功能:建立一个使用过变量的树状因果图,能够将所有工作变量之间的因果关系用树状的图形形式表示出来;使用树(Uses Tree)功能:建立一个使用过变量的树状因果图;循环图(loops)功能可以将模型中所有反馈回路以列表的形式表示出来。

数据集分析工具,如结果图(graph)功能可以以图形的形式直观地模拟整个周期内数值的变化情况,并作出准确预测;横向表格(Table)功能可以横向显示依据时间间隔所选择变量值的表格;模拟结果比较(Run Compares)功能可以比较第一次与第二次仿真执行数据集的所有lookup与常数的不同。

(3)真实性检验

对于我们所研究的系统,对于模型中的一些重要变量,依据常识和一些基本原则,我们可以预先提出对其正确性的基本要求,这些假设是真实性约束。将这些约束加到建好的模型中,专门模拟现有模型在运行时对这些约束的遵守情况或违反情况,就可以判断模型的合理性和真实性,从而调整结构或参数。

系统动力学课程论文
TOP