首页 > 精品范文库 > 15号文库
滤波电路教案
编辑:浅唱梦痕 识别码:24-1062612 15号文库 发布时间: 2024-07-05 19:00:45 来源:网络

第一篇:滤波电路教案

课题:电容滤波

滤波电路

滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器,或与负载串联电感器,滤波是指当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。老师:滤波电路的作用是什么?

学生:叫脉动直流中的交流滤除,减少交流成分,增加直流成分经过整流后,输出电压在方向上没有改变,但输出电压起伏很大,这样的直流电源如作为电子设备的电源大都会产生不良影响,甚至不能工作。为了改善输出电压的脉动性,必须采用滤波电路。

老师:滤波电路的作用是什么?

学生:叫脉动直流中的交流滤除,减少交流成分,增加直流成分。

经过整流后,输出电压在方向上没有改变,但输出电压起伏很大,这样的直流电源如作为电子设备的电源大都会产生不良影响,甚至不能工作。为了改善输出电压的脉动性,必须采用滤波电路。

课型:讲练结合 一.课程知识:

1.理解滤波的概念,了解常用滤波方式

2.理解电容滤波的工作原理,熟练掌握其相应的计算、二、课程任务

1、滤波电路的电路分析

2、电容滤波电路的工作原理

三、教学重难点

重点:滤波电路原理,滤波电路特点 难点:滤波电路工作原理

四:知识回顾1、2、二极管的特性 电容的特性

五、教学过程

引子:上一堂课我们讲诉了整流电路及其工作原理,大家发现其作用是吧交流电转变成脉动的直流电。而我要所需要的波形是比较平滑的直流电 这又改怎么获取呢。当变压器次级U2从第一个正半周开始上升时,VD由于单向导电性,正偏、二极管导通。此时电流流过C和RL,说明U2两端电压加在了RL和C上,当RL工作时因为电容C是一个储能元件,此时C处于充电状态,而VD的导通内阻是非常小的 所以C的充电时间会很短 充电就很快。会使得UC跟随U2同时上升到峰值。

当U2从峰值开始下降时,电容C的电压不能突变将出现UC>U2的情况,此时VD由于单向导电性处于截止状态,负载要工作 就必须有电容C充当电源,此时电容对RL放电。而电容放电的时间很长 在电量还没放完之前 下一个周期的脉冲就会到来。所以UC会按指数规律缓慢下降。

直到下一个周期的正半周的到来 二极管会再次导通。但是要注意的是,U2开始上升 必须上升到大于电容电压UC VD才会再次导通,此时电容又被U2充电到下一个周期。这样的过程反复进行就得到一个比较平滑的波形。

桥式整流滤波电路原理与之相同,只是在电压U2的一个周期内导通两次,电容充放电两次,输出波形更加平滑。主要特点:

1、输出电压波形连续且平滑。

2、输出电压的平均值U0提高

3、整流二极管的导通时间比没接电容时缩短。

4、如果电容容量大,充电时间的充电电流比较大,则电容容量按以下公式计算

C>(3—5)1|2RL

5、输出电压U0受负载变化影响大。

课堂小结:

了解了滤波电路的电路结构,掌握了电容滤波电路的工作原理,熟记了电容滤波电路的主要特点。清楚了滤波电路的分类

老师:常见的滤波电路有哪几种?

学生:电容滤波、电感滤波、LC π型滤波 为之后学习相关内容做下了良好的铺垫。

第二篇:滤波电路教案(推荐)

课题:

滤波电路 课型:讲练结合 职业知识:

1.理解滤波的概念,了解常用滤波方式

2.理解电容滤波的工作原理,熟练掌握其相应的计算、二、工作任务单

1、滤波电路的电路分析

2、电容滤波电路的工作原理

三、教学重难点

重点:滤波电路原理,滤波电路特点 难点:滤波电路工作原理 四:知识回顾

1、二极管的特性

2、电容的特性

五、教学过程

引子:上一堂课我们讲诉了整流电路及其工作原理,大家发现其作用是吧交流电转变成脉动的直流电。而我要所需要的波形是比较平滑的直流电 这又改怎么获取呢。

当变压器次级U2从第一个正半周开始上升时,VD由于单向导电性,正偏、二极管导通。此时电流流过C和RL,说明U2两端电压加在了RL和C上,当RL工作时因为电容C是一个储能元件,此时C处于充电状态,而VD的导通内阻是非常小的 所以C的充电时间会很短 充电就很快。会使得UC跟随U2同时上升到峰值。

当U2从峰值开始下降时,电容C的电压不能突变将出现UC>U2的情况,此时VD由于单向导电性处于截止状态,负载要工作 就必须有电容C充当电源,此时电容对RL放电。而电容放电的时间很长 在电量还没放完之前 下一个周期的脉冲就会到来。所以UC会按指数规律缓慢下降。

直到下一个周期的正半周的到来 二极管会再次导通。但是要注意的是,U2开始上升 必须上升到大于电容电压UC VD才会再次导通,此时电容又被U2充电到下一个周期。这样的过程反复进行就得到一个比较平滑的波形。

桥式整流滤波电路原理与之相同,只是在电压U2的一个周期内导通两次,电容充放电两次,输出波形更加平滑。主要特点:

1、输出电压波形连续且平滑。

2、输出电压的平均值U0提高

3、整流二极管的导通时间比没接电容时缩短。

4、如果电容容量大,充电时间的充电电流比较大,则电容容量按以下公式计算

C>(3—5)1|2RL

5、输出电压U0受负载变化影响大。

课堂小结:

了解了滤波电路的电路结构,掌握了电容滤波电路的工作原理,熟记了电容滤波电路的主要特点。清楚了滤波电路的分类

为之后学习相关内容做下了良好的铺垫。

第三篇:放大及滤波电路

能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。

放大电路的用途和组成

放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。

读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。

下面我们介绍几种常见的放大电路: 低频电压放大器

低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。

(1)共发射极放大电路

图 1(a)是共发射极放大电路。C1 是输入电容,C2 是输出电容,三极管 VT 就是起放大作用的器件,RB 是基极偏置电阻 ,RC 是集电极负载电阻。1、3 端是输入,2、3 端是输出。3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1(b),动态时交流通路见图 1(c)。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

(2)分压式偏置共发射极放大电路

图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE,CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是 RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。

(3)射极输出器

图 3(a)是一个射极输出器。它的输出电压是从射极输出的。图 3(b)是它的交流通路图,可以看到它是共集电极放大电路。

这个图中,晶体管真正的输入是 V i 和 V o 的差值,所以这是一个交流负反馈很深的电路。由于很深的负反馈,这个电路的特点是:电压放大倍数小于 1 而接近1,输出电压和输入电压同相,输入阻抗高输出阻抗低,失真小,频带宽,工作稳定。它经常被用作放大器的输入级、输出级或作阻抗匹配之用。

(4)低频放大器的耦合

一个放大器通常有好几级,级与级之间的联系就称为耦合。放大器的级间耦合方式有三种: ①RC 耦合,见图 4(a)。优点是简单、成本低。但性能不是最佳。② 变压器耦合,见图 4(b)。优点是阻抗匹配好、输出功率和效率高,但变压器制作比较麻烦。③ 直接耦合,见图 4(c)。优点是频带宽,可作直流放大器使用,但前后级工作有牵制,稳定性差,设计制作较麻烦。

功率放大器

能把输入信号放大并向负载提供足够大的功率的放大器叫功率放大器。例如收音机的末级放大器就是功率放大器。

(1)甲类单管功率放大器

图 5 是单管功率放大器,C1 是输入电容,T 是输出变压器。它的集电极负载电阻 Ri′ 是将负载电阻 R L 通过变压器匝数比折算过来的:

RC′=(N1 N2)2 RL=N 2 RL

负载电阻是低阻抗的扬声器,用变压器可以起阻抗变换作用,使负载得到较大的功率。

这个电路不管有没有输入信号,晶体管始终处于导通状,静态电流比较大,困此集电极损耗较大,效率不高,大约只有 35 %。这种工作状态被称为甲类工作状态。这种电路一般用在功率不太大的场合,它的输入方式可以是变压器耦合也可以是 RC 耦合。

(2)乙类推挽功率放大器

图 6 是常用的乙类推挽功率放大电路。它由两个特性相同的晶体管组成对称电路,在没有输入信号时,每个管子都处于截止状态,静态电流几乎是零,只有在有信号输入时管子才导通,这种状态称为乙类工作状态。当输入信号是正弦波时,正半周时 VT1 导通 VT2 截止,负半周时 VT2 导通 VT1 截止。两个管子交替出现的电流在输出变压器中合成,使负载上得到纯正的正弦波。这种两管交替工作的形式叫做推挽电路。

乙类推挽放大器的输出功率较大,失真也小,效率也较高,一般可达 60 %。

(3)OTL 功率放大器

目前广泛应用的无变压器乙类推挽放大器,简称 OTL 电路,是一种性能很好的功率放大器。为了

易于说明,先介绍一个有输入变压器没有输出变压器的 OTL 电路,如图 7。

这个电路使用两个特性相同的晶体管,两组偏置电阻和发射极电阻的阻值也相同。在静态时,VT1、VT2 流过的电流很小,电容 C 上充有对地为 1 2 E c 的直流电压。在有输入信号时,正半周时 VT1 导通,VT2 截止,集电极电流 i c1 方向如图所示,负载 RL 上得到放大了的正半周输出信号。负半周时 VT1 截止,VT2 导通,集电极电流 i c2 的方向如图所示,RL 上得到放大了的负半周输出信号。这个电路的关键元件是电容器 C,它上面的电压就相当于 VT2 的供电电压。

以这个电路为基础,还有用三极管倒相的不用输入变压器的真正 OTL 电路,用 PNP 管和 NPN 管组成的互补对称式 OTL 电路,以及最新的桥接推挽功率放大器,简称 BTL 电路等等。

直流放大器

能够放大直流信号或变化很缓慢的信号的电路称为直流放大电路或直流放大器。测量和控制方面常用到这种放大器。

(1)双管直耦放大器

直流放大器不能用 RC 耦合或变压器耦合,只能用直接耦合方式。图 8 是一个两级直耦放大器。直耦方式会带来前后级工作点的相互牵制,电路中在 VT2 的发射极加电阻 R E 以提高后级发射极电位来解决前后级的牵制。直流放大器的另一个更重要的问题是零点漂移。所谓零点漂移是指放大器在没有输入信号时,由于工作点不稳定引起静态电位缓

慢地变化,这种变化被逐级放大,使输出端产生虚假信号。放大器级数越多,零点漂移越严重。所以这种双管直耦放大器只能用于要求不高的场合。

(2)差分放大器

解决零点漂移的办法是采用差分放大器,图 9 是应用较广的射极耦合差分放大器。它使用双电源,其中 VT1 和 VT2 的特性相同,两组电阻数值也相同,R E 有负反馈作用。实际上这是一个桥形电路,两个 R C 和两个管子是四个桥臂,输出电压 V 0 从电桥的对角线上取出。没有输入信号时,因为 RC1=RC2 和两管特性相同,所以电桥是平衡的,输出是零。由于是接成桥形,零点漂移也很小。

差分放大器有良好的稳定性,因此得到广泛的应用。集成运算放大器

集成运算放大器是一种把多级直流放大器做在一个集成片上,只要在外部接少量元件就能完成各种功能的器件。因为它早期是用在模拟计算机中做加法器、乘法器用的,所以叫做运算放大器。它有十多个引脚,一般都用有 3 个端子的三角形符号表示,如图 10。它有两个输入端、1 个输出端,上面那个输入端叫做反相输入端,用“ — ”作标记;下面的叫同相输入端,用“+”作标记。

集成运算放大器可以完成加、减、乘、除、微分、积分等多种模拟运算,也可以接成交流或直流放大器应用。在作放大器应用时有:

(1)带调零的同相输出放大电路

图 11 是带调零端的同相输出运放电路。引脚 1、11、12 是调零端,调整 RP 可使输出端(8)在静态时输出电压为零。9、6 两脚分别接正、负电源。输入信号接到同相输入端(5),因此输出信号和输入信号同相。放大器负反馈经反馈电阻 R2 接到反相输入端(4)。同相输入接法的电压放大倍数总是大于 1 的。

(2)反相输出运放电路

也可以使输入信号从反相输入端接入,如图 12。如对电路要求不高,可以不用调零,这时可以把 3 个调零端短路。

输入信号从耦合电容 C1 经 R1 接入反相输入端,而同相输入端通过电阻 R3 接地。反相输入接法的电压放大倍数可以大于 1、等于 1 或小于 1。

(3)同相输出高输入阻抗运放电路

图 13 中没有接入 R1,相当于 R1 阻值无穷大,这时电路的电压放大倍数等于 1,输入阻抗可达几百千欧。

放大电路读图要点和举例

放大电路是电子电路中变化较多和较复杂的电路。在拿到一张放大电路图时,首先要把它逐级分解开,然后一级一级分析弄懂它的原理,最后再全面综合。读图时要注意: ① 在逐级分析时要区分开主要元器件和辅助元器件。放大器中使用的辅助元器件很多,如偏置电路中的温度补偿元件,稳压稳流元器件,防止自激振荡的防振元件、去耦元件,保护电路中的保护元件等。② 在分析中最主要和困难的是反馈的分析,要能找出反馈通路,判断反馈的极性和类型,特别是多级放大器,往往以后级将负反馈加到前级,因此更要细致分析。③ 一般低频放大器常用 RC 耦合方式;高频放大器则常常是和 LC 调谐电路有关的,或是用单调谐或是用双调谐电路,而且电路里使用的电容器容量一般也比较小。④ 注意晶体管和电源的极性,放大器中常常使用双电源,这是放大电路的特殊性。

例 1 助听器电路

图 14 是一个助听器电路,实际上是一个 4 级低频放大器。VT1、VT2 之间和 VT3、VT4 之间采用直接耦合方式,VT2 和 VT3 之间则用 RC 耦合。为了改善音质,VT1 和 VT3 的本级有并联电压负反馈(R2 和 R7)。由于使用高阻抗的耳机,所以可以把耳机直接接在 VT4 的集电极回路内。R6、C2 是去耦电路,C6 是电源滤波电容。

例 2 收音机低放电路

图 15 是普及型收音机的低放电路。电路共 3 级,第 1 级(VT1)前置电压放大,第 2 级(VT2)是推动级,第 3 级(VT3、VT4)是推挽功放。VT1 和 VT2 之间采用直接耦合,VT2 和 VT3、VT4 之间用输入变压器(T1)耦合并完成倒相,最后用输出变压器(T2)输出,使用低阻扬声器。此外,VT1 本级有并联电压负反馈(R1),T2 次级经 R3 送回到 VT2 有串联电压负反馈。电路中 C2 的作用是增强高音区的负反馈,减弱高音以增强低音。R4、C4 为去耦电路,C3 为电源的滤波电容。整个电路简单明了。

波的基本概念

滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。

经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。

实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路。

用模拟电子电路对模拟信号进行滤波,其基本原理就是利用电路的频率特性实现对信号中频率成分的选择。根据频率滤波时,是把信号看成是由不同频率正弦波叠加而成的模拟信号,通过选择不同的频率成分来实现信号滤波。

当允许信号中较高频率的成分通过滤波器时,这种滤波器叫做高通滤波器。当允许信号中较低频率的成分通过滤波器时,这种滤波器叫做低通滤波器。当只允许信号中某个频率范围内的成分通过滤波器时,这种滤波器叫做带通滤波器。理想滤波器的行为特性通常用幅度-频率特性图描述,也叫做滤波器电路的幅频特性。理想滤波器的幅频特性如图所示。图中,w1和w2叫做滤波器的截止频率。

滤波器频率响应特性的幅频特性图

对于滤波器,增益幅度不为零的频率范围叫做通频带,简称通带,增益幅度为零的频率范围叫做阻带。例如对于LP,从-w1当w1之间,叫做LP的通带,其他频率部分叫做阻带。通带所表示的是能够通过滤波器而不会产生衰减的信号频率成分,阻带所表示的是被滤波器衰减掉的信号频率成分。通带内信号所获得的增益,叫做通带增益,阻带中信号所得到的衰减,叫做阻带衰减。在工程实际中,一般使用dB作为滤波器的幅度增益单位。低通滤波器

低通滤波器的基本电路特点是,只允许低于截止频率的信号通过。

(1)一阶低通Butterworth滤波电路

下图a和b是用运算放大器设计的两种一阶Butterworth滤波电路的电路。图a是反相输入一阶低通滤波器,实际上就是一个积分电路,其分析方法与一阶积分电路相同。

基本滤波电路 演示

图b是同相输入的一阶低通滤波器。根据给定的电路图可以得到

对滤波器来说,更关心的是正弦稳态是的行为特性,利用拉氏变换与富氏变换的关系,有

下图是上式RC=2时的幅频特性和相频特性波特图。

RC=2时一阶Butterworth低通滤波器的频率响应特性

(2)二阶低通Butterworth滤波电路

下 图是用运算放大器设计的二阶低通Butterworth滤波电路。

二阶Butterworth低通滤波电路 直接采用频域分析方法得到

其中k = 1+R1/R2。令Q=1/(3-k),w0=1/RC,则可以写成

其中k相当于同相放大器的电压放大倍数,叫做滤波器的通带增益,Q叫做品质因数,w0叫做特征角频率。

下图是二阶低通滤波器在RC=2时的波特图,其中图a是Q>0.707时的效果,图b是Q=0.707时的效果,图c是Q<0.707时的效果。

(a)Q>0.707

(b)Q=0.707

(c)Q<0.707 二阶低通滤波器在RC=2时的波特图

从图中可以看出,当Q>0.707 或Q<0.707时,通带边沿处会出现比较大的不平坦现象。因此,品质因数表明了滤波器通带的状态。一般要求Q=0.707。由此可以得到

这就是二阶Butterworth滤波器电压增益得计算0.707公式。令Q=0.707,得 0.414R2 = 0.707R1 通常把最大增益倍所对应的信号频率叫做截止频率,这时滤波器具有3dB的衰减。利用滤波器幅频特性的概念,可以得到截止频率w0 =w =1/RC,即 f =1/2pRC

高通滤波器的特点是,只允许高于截止频率的信号通过。下图是二阶Butterworth高通滤波器电路的理想物理模型。

直接采用频域分析方法,并令k = 1+R1/R2,Q =1/(3-k),w0=1/RC,则可以得到二阶Butterworth高通滤波电路的传递函数为

二阶Butterworth高通滤波电路 演示

高通滤波器

考虑正弦稳态条件下,s=jw,得

二阶BButterworth高通滤波器在频率响应特性与低通滤波器相似,当Q>0.707或Q<0.707时,通带边沿处会出现不平坦现象。有关根据品质因数Q计算电路电阻参数R1 和R2的方法与二阶低通滤波器的计算相同。

同样,利用滤波器幅频特性的概念,可以得到截止频率w0 =w =1/RC,即 f =1/2pRC

第四篇:滤波电路分析经验总结

常用滤波电路经验总结

滤波是信号处理中的一个重要概念。滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成.如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容电感组成而成的各种复式滤波电路。滤波可分为经典滤波和现代滤波。

经典滤波指的是任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。

滤波是指当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。

在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL时才能获得较好的滤波效果。L愈大,滤波效果愈好。另外,由于滤波电感电动势的作用,可以使二极管的导通角接近π,减小了二极管的冲击电流,平滑了流过二极管的电流,从而延长了整流二极管的常用的滤波电路有无源滤波和有源滤波两大类。若滤波电路元件仅由无源元件(电阻、电容、电感)组成,则称为无源滤波电路。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成,则称为有源滤波电路。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。

滤波器有四种:低通滤波器,高通滤波器,带通滤波器,带阴滤波器.如何识别这些滤波器:若信号频率趋于零时有确定的电压放大倍数,且信号频率趋于无穷大时电压放大倍数趋于零,则为低通滤波器;反之,若信号频率趋于无穷大时有确定的电压放大倍数,且信号频率趋于零时电压放大倍数趋于零,则为高通滤波器;若信号频率趋于零和无穷大时电压放大倍数均趋于零,则为带通滤波器;反之,若信号频率趋于零和无穷大时电压放大倍数具有相同的确定值,且在某一频率范围内电压放大倍数趋于零,则为带阻滤波器。

第五篇:单相桥式整流滤波电路教案

单相桥式整流滤波电路教案

我在给12级汽修班讲解整流滤波电路时,发现同学们不太理解工作原理。刚开始是这样讲的:

1. 简单介绍二极管的单向导电性,然后画出桥式整流电路的原理图。如下图所示:

2. 讲解整流电路的作用:把交流电转变成直流电。接着讲交流电的特点:电流(或电压)大小和方向随时间不断变化。

3. 讲交流转变成直流的过程。为了简化讨论,先不考虑电压的大小,只考虑方向,那么可以将交流电分成正负两个半周:正半周(下正下负)和负半周(下正上负)。

3.1 先讨论正半周(上正下负),此时会产生一个下图中红色线条所示电流。

负载电流方向:从上到下;电压方向:上正下负。

3.2 再讨论负半周,即下正上负。此时会产生下图中绿色线条所示的电流。

负载电流方向:从上到下;电压方向:上正下负。

3.3 整流电路小结:不管是正半周(上正下负)还是负半周(下正上负),负载电流都是从上往下,电压方向都是上正下负。即:输入的是交流电,负载得到的却是直流电。完成了从交流到直流的转变。

3.4 接下来讨论大小。我们知道二极管的管压降是0.7V。也就是说,二极管只在要导通,其管压降(两端电压)一直是0.7V,跟电流大小没有关系。也就是说,只要在输入电压的基础上减去两只二极管的管压降就是输出电压。于是就可以根据输入电压波形画出输出电压波形。波形如下:

3.5 整流电路结论:综合以上分析,我们可以得出,当AB端输入正弦交流电(Ui所示)时,OX上就会得到脉动的直流输出电压(Uo所示)。电压(电流)的方向不变(从上到下),大小在变(脉动直流)。单相桥式整流电路的工作原理,如果用一句话来总结,那就是:两两成对,交替导通。

4. 接下来讲滤波电路。

4.1 滤波电路的作用:把输出电压变得更加平滑。因为整流之后的输出电压波动很大,很多设备不能使用。

4.2 滤波电路的分类:电容滤波、电感滤波、组合滤波。工程中,用得最多的是电容滤波。因为电容滤波电路简单,成本低,效果好;不好的是给整流二极管带来很大的冲击电流,还会产生高次谐波,对电网有较大影响。电感滤波体积大、成本高(需要用铜或铝做成线圈),多用于大电流场合。组合滤波多用于要求较高的场合。电感滤波之后,往往会加一个电容,电感和电容就组成了组合滤波电路,当然还有电阻与电容组合而成的滤波电路。

4.3 画出电容滤波电路:

4.4 电容滤波工作原理:一种是教材上的解释,电容可以把直流隔断,又可以让交流通过(隔直通交)。整流之后的脉动直流既有直流成分,又有交流成分。电容的作用就是保留直流成分,把交流成分滤掉(交流通过电容返回电源)。这样一来,就只剩直流了。另一种解释是,电容是储能元件。当输入电压高时,输入不光给负载供电,还给电容充电,这时电容上储存有相当的电能,当输入电压由高转低,电容就给负载放电。当输入电压又升高后,又给电容充电。如此周而复始,在负载上就得到了比原来高且平滑的电压。工作原理示意图如下:

4.5 经过滤波后的波形如下图所示:

上述波形中,弯曲的部分是输入给电容充电(当然此时输入还给负载供电),直线部分是电容给负载放电。波形的平滑程度取决于R与C的乘积。R与C的乘积越大,波形就越平滑;R与C的乘积越小,波谷就越深。

5. 总结:经过上面的讲述,同学们对整流有一定的认识,但是理解不透彻;对滤波就是稍微有点概念,对工作原理理解不了。

反思:面对同学们的困惑,我向同一教研组的其他老师请教,他们也想不出好的讲解方法来。我又到网上搜索相关的教案、视频、动画等资料,发现大同小异,跟我讲的大体相当。

1. 后来我想起同学们在听整流时,对为什么会产生图中折线电流表示不理解。于是我在下一个班讲解为什么会出现折线所示电流时换成另外一种讲法。

2. 按电流方向往下走。电流从正极A出发。

这时有两个方向,流过哪些只二极管呢?流过D4不可能(电流方向与二极管方向相反),只能从D1流过。

这时也有两个方向,可从D2流过不可能(电流方向与二极管方向相反),只能经X流过电阻R1。

这时又有两个方向,从D3流过还从D4过呢?把各点电压标上去,就一目了然。假设某一时刻AB间的电压为12V。令B点电压为0V,则A点电压为12V。因为二极管的管压降是0.7V,所以D1的阴极电压是11.3V,D3的阳极电压是0.7V。电流是不能从低电压低的地方流向电压高的地方,所以只能从D3流过。同理,电流到达D3阴极后,也不能经D2流过,只能回到电源负极B。电流流向如下图所示:

从图中可以看出,D2和D4反向截止,没有导通。我们干脆把D2和D4从图中擦掉,得到下图。

再把图中二极管移动一下位置,得到下图。

同理,当交流电下正上负时,可以得到如下图所示电流:

再做一下变形,即可得到。

经过如此讲述,同学们对于折线所示电流有了较为清晰的认识。3. 接下来说说对滤波电路讲解所做的改变。

同学们对于滤波本身没有太多的认识,因此我举一个关于水电站例子说明滤波的作用。

这是一座水电站示意图。水库的上游有很多条河流,把水流到水库储存起来。大坝下游装有发电机。上游河流的水流是不稳定的,时大时小。造成水流不稳定的因素有很多,比如季节变化、天气原因、农田灌溉、蓄洪泄洪等。而大坝下游的发电机却要求供水非常稳定,要不然发出的电时高时低,用起来很不方便。把上游河流的水流比如成整流之后输出的电流是恰当的:方向不变,大小时刻在变。而供给发电机的水流却要求非常稳定,就好比滤波之后的电压。解决这个问题的办法,就是在中间建一个水库。当上游戏河流水流大的时候,上游河流的水不光给发电机供水,还把多余的水储存在水库里,当上游河流水流较小的时候,水库就放出一部分水供给发电机,保证供给发电机的水流稳定。此处水库的作用就相当于整流滤波电路中的电容:当输入电压较高时,输入电压不光给负载供电,还把多余的电能储存在电容里,当输入电压由高降低后,电容就把储存在其中的电能释放出来,这样就保证负载上得到了平滑的电压。水电站中,水库越大,调节能越强;整流滤波电路中,电容越大,输出越平滑。

经过这样讲述,同学们对整流滤波电路理解深刻多了。

经过此次改变,我发现给中职生讲课时,要针对他们基础比较薄弱、理解能力不是很强的特点,做一些改变,力求深入浅出、形象生动,举一些贴近生活的实例,才能让同学们学得进、记得牢,而不是单纯地把理论讲得多么透彻。有时为了讲清某个知识点,需要反复讲多次,甚至用不同的讲解方法讲多次,才能达到比较好的效果。

滤波电路教案
TOP