首页 > 精品范文库 > 15号文库
第8讲 抽屉原理(小升初)
编辑:悠然小筑 识别码:24-253874 15号文库 发布时间: 2023-03-30 11:38:54 来源:网络

第一篇:第8讲 抽屉原理(小升初)

第8讲 抽屉原理

一、基础知识

1、抽屉原理:把多于N个的苹果放进N个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果.2、抽屉原理的一般表达:把多于M×N个苹果随意放到N个抽屉里,至少有一个抽屉里有(M+1)个或(M+1)个以上的苹果.3、在有些问题中,”抽屉”和”苹果”不是很明显的,需要精心制造”抽屉”和”苹果”如何制造”抽屉”和”苹果”可能是很困难的,一方面需要认真分析题目中的条件和问题,另一方面需要多做一些题积累经验.4、利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。b、把元素放入(或取出)抽屉。C、说明理由,得出结论。

二、典型例题

例题1:某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?

例题2:某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

例题3:一只袋中装有许多规格相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。问最少要摸出多少只手套才能保证有3副同色的?多少只才能保证其中至少有2双不同袜子?

例题4:任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?

例题5:能否在图29-1的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线AD、BC上的各个数的和互不相同?

6、一次数学竞赛,有75人参加,满分20分,参赛者得分都是整数,75人的总分是980分,问至少有几个人得分相同? 例

7、一个自然数除以n的余数可能是0、1、2、3、„..n-1,把这n种情况看作n个抽屉,把(n+1)个自然数反复如n个抽屉中去,则必有一个抽屉中有两个数,这两个数的余数相同,则它们的差一定能被n整除,也就是n的倍数。

随堂练习:

1、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子。请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

2、一副扑克牌(去掉两张王),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

3、证明:任取8个自然数,必有两个数的差是7的倍数。

4、从2、4、6、8、„、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

5、从1、2、3、4、„、19、20这20个自然数中,至少人选几个数,就可以保证其中一定包括两个数,它们的差是12。

6、从1到20这20个书中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

7、证明:在任取的5个自然数中,必有3个数,它们的和是3的倍数。

8、某校校庆,来了n位校友,彼此认识的握手问候。请你证明,无论什么情况,在这n位校友中至少有两人握手次数一样多。

9、在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?

10、试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?

11、某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?

12、某此选举,有5名候选人,每人只能选其中的一人或几人,至少有人参加选举,才能保证有4人选票选的人相同

巩固练习:

1、某校的小学生年龄最小的6岁,最大的13岁,从这个学校中任选几位同学就一定能保证其中有两位同学的年龄相同?

2、中午食堂有5种不同的菜和4种不同的主食,每人只能买一种菜和一种主食,请你证明某班在食堂买饭的21名学生中,一定至少有两名学生所买的菜和主食是一样的。

3、证明:任取6个自然数,必有两个数的差是5的倍数。

4、为了欢迎外币来校参观,学校准备了红色、黄色、绿色的小旗,每个同学都左右两手各拿一面彩旗列队迎接外宾。至少有多少位同学才能保证其中至少有两个人不但所拿小旗颜色一样,而且(左、右)顺序也相同?

5、从10到20这11个自然数中,任取7个数,证明其中一定有两个数之和是29。

6、从1、2、3、„、20这20个书中,任选12个数,证明其中一定包括两个数,他们的差是11。

7、20名校围棋手进行单循环比赛(即每个人都要和其他任何人比赛一次),证明:在比赛中的任何时候统计每人已经赛过的场次都至少有两位小棋手比赛过相同的场次。

8、从整数1、2、3、„、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数。

9、①求证:任意25个人中,至少有3个人的属相相同。②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?

10、方体育用品的仓库里有许多足球、排球和篮球。有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球。问:至少有多少名同学所纳的球种类是完全一样的?

11、平面上给定17个点,如果人已三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。

12、把1到30这30个自然书摆成一个圆圈,则一定有三个相邻的数,它们的和不小于47。

13、圆周上有2000个点,在其上任意地标上0,1,2,,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。

14、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.证明:在200个信号中至少有4个信号完全相同.15、在3×7的方格表中,有11个白格,证明:

(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;(2)只有一个白格的列至少有3列。

16、一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这篛流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

第二篇:第2课时 抽屉原理

第2课时

抽屉原理

(二)教学目标

1、理解“抽屉原理”的一般形式;采用枚举法及假设法解决抽屉问题,通过分析、推理,理解解决这一类“抽屉问题”的一般规律。

2、经历“抽屉原理”的推理过程,体会比较的学习方法。

3、感受数学与生活的密切联系,激发学习兴趣,培养学生的探究精神。

自主学习

自学内容:课本第71页的例2,练习十二第2、4题。自学要求:边学边记,认真完成“合作探究”。

一、创设情境,引出问题

师:上节课我们学习了抽屉原理例1,我们利用什么方法得出了什么结论?谁能来举例子说明?

生:6个鸽子飞进5个鸽笼,总有一个鸽笼至少飞进2只鸽子为什么? 生:假设先每个鸽笼放一只,还剩下一只不管放进那个笼子里,总有一只鸽笼会飞进2只。6÷5=1(只)…1(只)师:我们得出了什么样的结论呢?

生:只要物体数比抽屉数多1,总有一个抽屉至少放2个物体。

师:同学们说的真好,看来我们的思维已经被激活,可以进入新课的学习了,今天我们继续学习抽屉原理的例2 出示第72页例2的主题图,你获得了哪些信息?

二、引导建构,探究新课

出示合作探究题。

1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?

2、3、把7本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?

3、把9本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?

4、你能用算式表示以上过程吗?你有什么发现?

1、学生思考、讨论、交流;做好汇报的准备;

2、学生汇报;其他学生倾听、补充、质疑、评价等;教师适时补充、点拨、板书等。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本 2个 2本…… 余1本(总有一个抽屉里至有3本书)

7本 2个 3本…… 余1本(总有一个抽屉里至有4本书)9本 2个 4本……

余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?

生1:“总有一个抽屉里的至少有2本”只要用 “商+ 1”就可以得到。师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。

生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

交流、说理活动:

生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。

生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。

师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们同意吧?

如果有125本书放在2个抽屉里,总有一个抽屉至少有几本书?还能用枚举法吗?

生:用假设法最好

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书? 观察发现。

师:请同学们看黑板上,2本、3本、4本是怎么得到的呢?

师:同学们的这一发现,称为“抽屉原理”,“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

3、归纳整理:

把多于kn个物体任意放进n个空抽屉里,(k 是非0自然数),那么一定有一个抽屉中至少放进

()个物体。

解决“抽屉原理”的步骤是:找出“抽屉数”和“分放的物体数”;物体数÷抽屉数=商……余数;至少数=商+1。

这一原理在解决实际问题中有着广泛的应用。抽屉原理关键的必须知道什么是抽屉,什么是待分的物体。下面我们应用这一原理解决问题。练习反馈,评价反思

目标达成

独立完成后,说出思考过程。1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里,为什么?

2、张叔叔参加射击比赛,5次的成绩是41环,那么张叔叔至少一次的成绩不低于9环,为什么?

3、师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

生:2张/因为5÷4=1…1 师:先验证一下你们的猜测:举牌验证。

师:如有3张同花色的,符合你们的猜测吗? 师:如果9个人每一个人抽一张呢?

生:至少有3张牌是同一花色,因为9÷4=2…1

巩固提升 1、17枝铅笔放进4个文具盒里,至少有一个文具盒放几枝?

2、六年级152人到常青农庄春游,安排捉鱼、攀爬、赶猪入笼三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?

3、幼儿园有80个小朋友,各种玩具有330件。把这些玩具分给小朋友,是否有人会得到5件或5件以上的玩具?

四、全课小结

本节课你学到了什么?

板书: 抽屉原理

不管怎么放,总有一个文具盒至少有2枝铅笔

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1)

4÷3=1……1

1+1=2

教学反思:学生听取汇报时,不同意见的同学发出了“原来这样,我理解错了,我心里笑了,只要把机会给学生们,学生们会在辨析质疑中找到解决问题的办法,理也会越辩越明。学生出现理解性的错误问题还是处在老师这里,没有对这个问题进行预见,但是我想想,这样让学生进行出现问题在进行辩论学生的印象更深一些,课下我曾经调查学生这节课你印象最深的地方是哪里,有20几个同学提到这里)

第三篇:第三讲 抽屉原理(一)

华罗庚数学

第三讲

抽屉原理

(一)【专题导引】

如果给你5盒饼干,让你把它们放进4个抽屉,可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联系册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。(2)如果把m×x+k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,找出元素。B、把元素放入(或取出)抽屉。C、说明理由,得出结论。

本周我们先来学习第(1)条原理及其应用。

【典型例题】

【例1】某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?

【试一试】

1、某校有370名1992年出生的学生,其中至少有两个学生的生日是同一天,为什么?

2、某校有30名学生是2月份出生的。能否至少有两个学生的生日是在同一天?

【例2】某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

【试一试】

1、某班学生去买数学书、语文书、美术书、自然书。买书的情况是:有买一本、二本、三本或四本的。问至少去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)?

皖西外语六年级奥数辅导 华罗庚数学

2、学校图书室有历史、文艺、科普三种图书。每个学生从中任意借两本,那么至少要几个学生才能保证一定有两人所借的图书属于同一种?

【例3】一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出多少只手套才能保证有3副同色的?

【试一试】

1、一只布袋中装有大小相同、颜色不同的手套。颜色有黑、红、蓝、黄四种。问:最少要摸出多少只手套才能保证有4副同色的?

2、布袋中有同样规格但颜色不同的袜子若干只。颜色有白、黑、蓝三种。问:最少要摸出多少只袜子,才能保证有3双同色的?

【例4】任意5个不相同的自然数,其中至少有两个数的差是4的倍数,这是为什么?

【试一试】

1、任意6个不相同的自然数,其中至少有两个数的差是5的倍数,这是为什么?

2、任意取几个不相同的自然数,才能保证至少有两个数的差是8的倍数?

皖西外语六年级奥数辅导 华罗庚数学

【﹡例5】能否在下图的5行5列方格表的每个空格中,分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?

【﹡试一试】

1、能否在6行6列方格表的每个空格中分别填上1,2,3这三个数中的任一个,使得每行、每列及对角线上的各个数的和互不相同?为什么?

2、证明在8×8的方格表的每个空格中,分别填上3,4,5这三个数中的任一个,在每行、每列及每条对角线上的各个数的和中至少有两个和是相同的。

课外作业

家长签名: 1、15个小朋友中,至少有几个小朋友在同一个月出生?

2、一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种,皖西外语六年级奥数辅导 华罗庚数学

问最少要取出多少个珠子才能保证有2个同色的?

3、一个布袋里有红、黄、蓝色的袜子各8只。每次从布袋中拿出一只袜子,最少要拿出多少只才能保证其中至少有2双颜色相同的袜子?

4、证明在任意的(n+1)个不相同的自然数中,必有两个数之差为n的倍数。

5、在3×9的方格图中(如下图所示),将每一个小方格涂上红色或者蓝色,不论如何涂色,其中至少有两列的涂色方式相同。这是为什么?

皖西外语六年级奥数辅导 华罗庚数学

第四篇:抽屉原理

数学广角——《抽屉原理》练习

1、你所在的班中,至少多少人中,一定有2个人的生日在同一个月?

2、你所在的班中,至少有多少人的生日在同一个月?

3、32只鸽子飞回7个鸽舍,至少有几只鸽子要飞进同一个鸽舍?

4、在街上任意找来50个人,可以确定,这50人中至少有多少个人的属相相同?

5、飞英学校五、六年级共有学生370人,在这些学生中,至少两个人在同一天过生日,为什么?

6、张叔叔参加飞镖比赛,投了5镖,成绩是42环。张叔叔至少有一镖不低于9环。为什么?

7、幼儿园买来不少猴、狗、马塑料玩具,每个小朋友任意选择两件,那么至少几个小朋友中才能保证有两人选的玩具相同。

8、有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子。

9、有红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?

10、抽屉理有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸,一次必须拿几支,才能保证至少有1支蓝铅笔?

加分题:每题20分

1、要拿出25个苹果,最多从几个抽屉中拿,才能保证从其中一个抽屉里至少拿了7个苹果

2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

3、五年级有49名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问至少有名学生的成绩相同。

4、一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现,从石子堆中任意选出五堆,其中至少有两堆石子数之差是4的倍数,你说他的结论对吗?为什么?

5、从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.

第五篇:抽屉原理

《抽屉原理》教学设计 芙蓉中心小学 简淑梅 【教学内容】:

人教版《义务教育课程标准实验教科书●数学》六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。【教材分析】:

这是一类与“存在性”有关的问题,教材通过几个直观例子,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,从而抽象出“抽屉原理”的一般规律。并利用这一规律对一些简单的实际问题加以“模型化”。即:只需要确定实际生活中某个物体(或某个人、或种现象)的存在就可以了。【学情分析】:

抽屉原理是学生从未接触过的新知识,很难理解抽屉原理的真正含义,尤其是对平均分就能保证“至少”的情况难以理解。

年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。【教学目标】:

1.知识与能力目标:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。

2.过程与方法目标:

经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:

通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】:

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教学准备】:

多媒体课件、扑克牌、盒子、铅笔、书、练习纸。【教学过程】:

一、课前游戏,激趣引新。

上课伊始,老师高举3张卡片。(高兴状)

(1)老师这有3张漂亮的卡片,我想把它们送给在坐的三位同学,想要吗?

(2)在送之前,我想请同学们猜一猜,这三张卡片会到男生手上还是会到女生手上?(学生思考后回答:可能送给了3名女生、可能送给了3名男生、也有可能送给了2名男生和1名女生、还有可能送给了2名女生和1名男生。)

(3)同学们列出的这四种情况是这个活动中可能存在的现象,你能从这四种可能存在的现象中找到一种确定现象吗?(学生思考后回答:得到卡片的三个同学当中,至少会有两个同学的性别相同。)

(4)老师背对着学生把卡片抛出验证学生的说法。

(5)如果老师再抛几次还会有这种现象出现吗?其实这里面蕴藏着一个非常有趣的数学原理,也就是我们今天这节课要研究的学习内容,想不想研究啊?

〖设计意图〗:在知识探究之前通过送卡片的游戏,从之前学过的“可能性”导入到今天的学习内容。一方面是使教师和学生进行自然的沟通交流;二是要激发学生的兴趣,引起探究的愿望;三是要让学生明白这种“确定现象”与“可能性”之间的联系,为接下来的探究埋下伏笔。

二、操作探究,发现规律。

1.动手摆摆,感性认识。

把4枝铅笔放进3个文具盒中。

(1)小组合作摆一摆、记一记、说一说,把可能出现的情况都列举出来。

(2)提问:不管怎么放,一定会出现哪种情况?讨论后引导学生得出:不管怎样放,总有一个文具盒里至少放了2只铅笔。

〖设计意图〗:抽屉原理对于学生来说,比较抽象,特别是“总有一个杯子中

至少放进2根小棒”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的杯子,理解“总有一个杯子”以及“至少2根”。

2.提出问题,优化摆法。

(1)如果把 5支铅笔放进4个文具盒里呢?结果是否一样?怎样解释这一现象?(学生自由摆放,并解释些种现象存在的确定性。)

(2)老师指着一名摆得非常快的同学问:怎么你比别人摆得更快呢?你是否有最简洁、最快速的方法,快快说出来和同学一起分享好吗?

(3)学生汇报了自己的方法后,教师围绕假设法(平均分的方法),组织学生展开讨论:为什么每个杯子里都要放1根小棒呢?

(4)在讨论的基础上,师生小结:假如每个杯子放入一根小棒,剩下的一根还要放进一个杯子里,无论放在哪个杯子里,一定能找到一个杯子里至少有2根小棒。只有平均分才能将小棒尽可能地分散,保证“至少”的情况。

〖设计意图〗:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。

3.步步逼近,理性认识。

(1)师:把6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔吗?为什么?

把7支铅笔放进6个文具盒里呢?

把8枝笔放进7个盒子里呢?

把20枝笔放进19个盒子里呢?

……

(2)符合这种结果的情况你能一一说完吗?你会用一句归纳这些情况吗?

(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

〖设计意图〗:通过这个连续的过程发展了学生的类推能力,形成比较抽象的数学思维,从而达到理性认识“抽屉原理”。

4.数量积累,发现方法。

7只鸽子要飞进5个鸽舍里,无论怎么飞,至少会有两子鸽子飞进同一个鸽舍。为什么?

(1)如果要用一个算式表示,你会吗?

(2)算式中告诉我们经过第一次平均分配后,还余下了2只鸽子,这两只鸽子会怎么飞呢?(有可能两只飞进了同一个鸽舍里,也有可能飞进了不同的鸽舍里。)

(3)不管怎么飞,一定会出现哪种情况?

(4)讨论:刚才是铅笔数比文具盒数多1枝的情况,现在鸽子数比鸽舍要多2只,为什么还是“至少有2只鸽子要飞进同一个鸽舍里”?

(4)如果是“8只鸽子要飞进取5个鸽舍里呢?”(余下3只鸽子。)

(5)“9只鸽子要飞进取5个鸽舍里呢?”(余下4只鸽子。)

根据学生的回答,用算式表示以上各题,并板书。

〖设计意图〗:从余数1到余数2、3、4……,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。并发现余下的鸽子数只要小于鸽舍数,就一定有“至少有两子鸽子飞进同一个鸽舍”的现象发生。

5.构建模型,解释原理。

(1)观察黑板上的算式,你有了什么新的发现?(只要鸽子数比盒鸽舍数多,且小于鸽舍数的两倍,至少有2只鸽子飞进了同一个鸽舍里。)

(2)刚才我们研究的这些现象就是著名的“抽屉原理”,(教师板书课题:抽屉原理)我们将小棒、鸽子看做物体,杯子、鸽舍看做抽屉。

(3)课件出示:“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

(4)请你用“抽屉原理”解释我们的课前游戏,为什么不管老师怎么送,得到卡片的同学一定有两个同学的性别是一样的?其中什么相当于“物体”?什么相当于“抽屉”?

〖设计意图〗:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着,并让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。

三、循序渐进,总结规律。

(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进3本书。为什么?

A、该如何解决这个问题呢?

B、如何用一个式子表示呢?

C、你又发现了什么?

教师根据学生的回答,继续板书算式。

(2)如果一共有7本书呢?9本书呢?

(3)思考、讨论:总有一个抽屉至少放进的本数是“商+1”还是“商+余数”呢?为什么?

教师师让学生充分讨论后得出正确的结论:总有一个抽屉至少放进的本数是“商+1”(教师板书。)

〖设计意图〗:对规律的认识是循序渐进的。在初次发现规律的基础上,引导学生抓住假设法最核心的思路---“有余数除法”,学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。从而得出“某个抽屉书的至少数”是除法算式中的商加“1”,而不是商加“余数”,从而使学生从本质上理解了“抽屉原理”。四.运用原理,解决问题。

1、基本类型,说说做做。

(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

(2)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

2、深化练习,拓展提升。

(1)有一副扑克牌,去掉了两张王牌,还剩52张,如果请五位同学每人任意抽1张,同种花色的至少有几张?为什么?

如果9个人每一个人抽一张呢?

(2)某街道办事处统计人口显示,本街道辖区内当年共有 370名婴儿出生。统计员断定:“至少有2名婴儿是在同一天出生的。”这是为什么? 至少有多少名婴儿是在同一个月出生的?为什么?

〖设计意图〗:让学生运用所学知识去分析、解决生活实际问题,不仅是学生掌握知识的继续拓展与延伸,还是他们成功解决问题后获取愉悦心情的重要途经;不同题型、不同难度的练习不仅能进一步调动学生学习的积极性,还能满足不同的孩子学到不同的数学,并体会抽屉原理的形式是多种多样的。

五、全课小结,课外延伸。

(1)说一说:今天这节课,我们又学习了什么新知识?你还有什么困惑?

(2)用今天学到的知识向你的家长解释下列现象:

从1、2、3……100,这100个连续自然数中,任意取出51个不相同的数,其中必有两个数互质,这是为什么呢?

〖设计意图〗:既让学生说数学知识的收获,也引导学生谈情感上的感受,同时培养他们的质疑能力,使三维目标落到实处;把课堂知识延伸到课外,与家长一起分析思考,主要是想拓展学生思维,达到“家校牵手,共话数学”的教学目的。

板书设计。

抽屉原理

物体数 抽屉数 至少数 =商+1

(铅笔数)(盒子数)

2

3

÷ 4 =1……1 2 =1+1 ÷ 5 =1……2 2 =1+1 ÷ 2 =2……1 3 =2+1 ÷ 2 =3……1 4 =3+1

〖设计意图〗:这样的板书设计是在教学过程中动态生成的,按讲思路来安排的,力求简洁精练。这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。

第8讲 抽屉原理(小升初)
TOP