首页 > 精品范文库 > 15号文库
显示器的种类和优缺点
编辑:红叶飘零 识别码:24-752450 15号文库 发布时间: 2023-10-16 16:05:39 来源:网络

第一篇:显示器的种类和优缺点

显示器的种类及优缺点

一:显示器的种类:CRT显示器、LCD显示器、PDP显示器、OLED显示器 二:各类显示器优缺点 CRT显示器 优点: 高对比度 高响应速度 大尺寸 使用寿命长

色域宽、颜色响应准确,非常适合出版、绘图等应用。缺点

体积大、重量大

某些CRT存在几何畸变现象 功耗较大

运作时会释出少量X射线,有辐射。长时间使用令人眼部不适,容易造成近视 含有铅,丢弃后会严重污染环境 易受外来磁场干扰而出现色斑

假如长时间显示同一画面,该画面会永久以残影形式留在画面。

 LCD显示器:优点:LCD与CRT相比拟有工作电压低、功耗小,用电比传统CRT显示器的耗电量少70%,散热小、没有丝毫辐射、对人体健康无损害、完全平面、能精确还原图像、无失真、可视面积大、款式新颖多样、能大量节省空间、抗干扰能力强、显示字符锐利、画面稳定不闪烁、屏幕调节方便。缺点:显示色域不够宽,颜色重现不够逼真 早期产品可视角度不够广

响应速度偏低,玩游戏或播放影片时或出现残影

假如长时间显示同一画面,该画面会永久以残影形式留在画面。长时间使用可能会产生了亮点、暗点、坏点 长时间使用寿命不及CRT  PDP显示器:超大屏幕:传统电视的屏幕最大尺寸只能做到40英寸,而PDP屏幕可以做到80英寸以上;

超宽视角:PDP的视角超过160度,因此可以容纳更多人同时观看;

纯平面无失真:PDP完全是纯平面显示,且各个发光单元的结构都相同,因此不会出现显像管电视常见的梯形失真、线性失真和枕形失真等几何失真现象;

不受电磁干扰:由于PDP本身没有电磁结构,因此不会受电磁的干扰,喇叭、高压电、甚至磁场都不会对其产生任何干扰,这样就能够获得更稳定的画质;

亮度均匀:传统CRT电视有热晕问题(画面正中与四角的亮度不均匀),而PDP的各像素都可独立发光,且非常均匀,没有亮区和暗区,不存在热晕问题;

绿色环保:PDP是通过等离子体放电(不是通过扫描)形成图像的,因此画面无大面积闪烁(还无电磁辐射),人们长时间观看不会受到伤害,属绿色环保产品;

图像清晰、彩色鲜艳:PDP有较高的亮度(显示的画面更清晰、鲜艳)和对比度(图像就会越清晰)全数码显示:支持数码视频接口(DVI),无需数模转换即可显示数字图像信号,这样可以减少转换带来的失真

经久耐用:世界各等离子显示屏厂家均以10万小时使用寿命为目标开发显示屏,通常估计,其实际寿命约在6万小时左右,按每天观看6小时计算,PDP的使用寿命在30年以上。 OLED显示器:与LCD技术相比,OLED的优点是:

第一,OLED可以自身发光,而LCD则不能。所以OLED比LCD要亮得多,另外OLED对比度更大,色彩效果更加丰富;

第二,LCD需要背景灯光点亮,而OLED在需要点亮的单元才加电,并且电压很低,因此更加节能; 第三,OLED所需材料很少,制造工艺简单,量产时的成本要比LCD节省20%;

第四,OLED没有视角范围的限制,可视角度一般可达到160度,重量也比LCD轻得多。同时OLED还可弯曲,应用范围极广 技术优势

目前,LCD是小型设备显示器的首选,而大屏幕电视采用LCD的情况也很普遍。常规LED可以用来构成电子表和其他电子设备上的数字。OLED则具备很多LCD与LED所不具备的优势: 相较于LED或LCD的晶体层,OLED的有机塑料层更薄、更轻而且更富于柔韧性。

OLED的发光层比较轻,因此它的基层可使用富于柔韧性的材料,而不会使用刚性材料。OLED基层为塑料材质,而LED和LCD则使用玻璃基层。

OLED比LED更亮。OLED有机层要比LED中与之对应的无机晶体层薄很多,因而OLED的导电层和发射层可以采用多层结构。此外,LED和LCD需要用玻璃作为支撑物,而玻璃会吸收一部分光线。OLED则无需使用玻璃。

OLED并不需要采用LCD中的逆光系统,LCD工作时会选择性地阻挡某些逆光区域,从而让图像显现出来,而OLED则是靠自身发光。因为OLED不需逆光系统,所以它们的耗电量小于LCD(LCD所耗电量中的大部分用于逆光系统)。这一点对于靠电池供电的设备(例如移动电话)来说,尤其重要。

OLED制造起来更加容易,还可制成较大的尺寸。OLED为塑胶材质,因此可以将其制作成大面积薄片状。而想要使用如此之多的晶体并把它们铺平,则要困难得多。

OLED的视野范围很广,可达170度左右。而LCD工作时要阻挡光线,因而在某些角度上存在天然的观测障碍。OLED自身能够发光,所以视域范围也要宽很多。缺点:

OLED似乎是一项完美无缺的技术,适合各类的显示器,但它也存在一些问题:

寿命:尽管红色和绿色的OLED薄膜寿命较长(10000-40000小时),但根据目前的技术水准,蓝色有机物的寿命要短的多(仅有约1000小时)。

制造:OLED的造价目前还比较高。

水:OLED如果遇水,很容易就会损毁。

第二篇:小议LCD显示器优缺点

小议LCD显示器优缺点

LCD显示器发展至今,它有许多优缺点的,下面给大家分析一下LCD显示器它的优缺点问题。

液晶显示器的优势

传统CRT显示器发展了几十年,其技术结构原理限制了它的进一步发展。真空阴极射线管固有的几个重大缺点导致CRT显示器越来越难适应消费者对显示器要求的进一步提高,这时候,平板显示器件异军突起,其中最有可能取代CRT显示器在PC显示终端垄断的地位就是液晶显示器。

液晶显示器显示原理与CRT显示器迥然不同。相对CRT显示器来说,液晶显示器天生有拥有以下绝对优势:

1、零辐射,低耗能,散热小。液晶显示器的显示原理是通过扭转液晶像素中的液晶分子偏转角度来背景光而实现还原画面的,其不存在象CRT那样内部具有超高压元器件,不至于出现由于高压导致的x射线超标。而且机器结构电路简单,模块化以及芯片的高集成化足以把电路工作时候产生的电磁辐射降到最低。这样的设计直接降低了电路的功耗,发热量也非常小。液晶显示器虽然在工作时候可能产生轻微的电磁辐射,但是很容易通过屏蔽电路解决。而CRT显示器由于考虑到散热,不得以在屏蔽罩上钻孔导致辐射的泄露。

2、纤薄轻巧。正是液晶显示器的出现,才令手提电脑的发明成为可能。同样,桌式液晶显示器虽然在体积以及重量上要比手提电脑的都要大一些,但是,相对那又笨又重的CRT显示器来说就是小巫见大巫了。以15英寸的显示器比较,CRT显示器的深度一般接近50厘米,而大白鲨最新推出的液晶显示器NF-1500MA的深度却不到5厘米!随着消费观点以及居住环境的改变,人们对家用电器产品的体积以及重量要求越来越高。液晶显示器以其纤薄轻巧的天生优势成为最有可能打破CRT显示器垄断地位的显示器件。

3、精确还原图像。液晶显示器采用的是直接数码寻址的显示方式,它能够将显卡输出的视频信号经过AD转换之后,根据信号电平中的“地址”信号,直接将视频信号一一对应的在屏幕上的液晶像素上显示出来。而CRT显示器是靠偏转线圈产生电磁场来控制电子束在屏幕上周期性的扫描来达到显示图像的目的的。由于电子束的运动轨迹容易受到环境磁场或者地磁的影响,无法做到电子束在屏幕上的绝对定位。所以CRT显示器容易出现画面的几何失真,线性失真等无法根本消除的现象。而液晶显示器则不存在这一可能。液晶显示器可以把画面完美的在屏幕上呈现出来,而不会出现任何的几何失真,线性失真。

4、显示字符锐利。画面稳定不闪烁。液晶显示独特的显示原理决定了其屏幕上各个像素发光均匀,而且红绿蓝三基色像素紧密排列,视频信号直接送到像素背后的以驱动像素发光,因此不会出现传统的CRT显示器固有的会聚以及聚焦不良的弊病。所以,液晶显示器上的文本显示效果与传统的CRT显示器相比有着天渊之别。液晶显示器的字体非常锐利,完全没有CRT显示器显示文本时候出现的字体模糊,字体泛色等现象。而且,由于液晶显示器在通电之后就一直在发光,背光灯工作在高频下,显示画面稳定而不闪烁,有利于长时间的使用电脑。而CRT显示器是靠电子束重复撞击到荧光粉来达到发光的,这样会导致亮度周期性闪烁。长时间使用之后容易造成人眼的不适。

5、屏幕调节方便。液晶显示器的直接寻址显示方式,使得液晶显示器的屏幕调节不需要太多的几何调节和线性调节以及显示内容的位置调节。液晶显示器的可以很方便的通过芯片计算后自动把屏幕调节到最佳位置,这个步骤你只需要按一下“Auto”键就可以完成。省却了CRT显示器那而烦琐的调节。你只需要手动调节一下屏幕的亮度和对比度就可以使机器工作在最佳状态了。

液晶显示器的具有这些天生优势,已经对CRT显示器构成足够的威胁,唯一的遗憾就是由于液晶显示器的制造成本所限,目前液晶显示器的价格还是相对偏高。

液晶显示器的缺点

现在市面上有很多低价的14、15英寸液晶显示器出售,许多商家也将液晶吹捧到天上去了,诚然,液晶有不少非常明显的有点,只是由于各种原因,目前出售的低价位液晶都只是属于液晶产品里面的“低端”,本身有不少先天的缺点,下面我们来详细分析一下到底这些液晶显示器有什么缺点。

1、价格

虽然说是低价位,但是何CRT比较起来,液晶显示器的价格在显示器家族中可谓“贵族价格”,仅仅是15寸就3000元,而同尺寸的纯平显示器也不过千元左右。专家分析液晶显示屏高居不下的主要原因是在制造过程中良品率很低,导致成本无法降低。目前,能够生产液晶屏的只有日本和台湾的部分厂商,技术没有完全扩散,尚未形成大规模生产的竞争态势,并且质量上也有很大差异。在国际市场上,不同品级之间的价差可达到数十到上百美元之多。

2、接口

液晶显示器的数字接口高处不胜寒。从理论上说,液晶显示器是纯数字设备,与电脑主机的连接也应该是采用数字式接口,采用数字接口的优点是不言而喻的。首先可以减少在模数转换过程中的信号损失和干扰;减少相应的转化电路和元件;其次不需要进行时钟频率、向量的调整。

但是目前市场上出售的低价液晶显示器,大部分都是采用模拟接口,存在着传输信号易受干扰、显示器内部需要加入模数转换电路、无法升级到数字接口等问题。并且,为了避免像素闪烁的出现,必须做到时钟频率、向量与模拟信号的完全一致。

此外,液晶显示器的数字接口尚未形成统一标准,带有数字输出的显示卡在市面上并不多见。这样一来,液晶显示器的关键性的优势却很难充分发挥。就目前而言,提前消费的结果就是花高价买个摆设。

3、可视角度小

早期的液晶显示器可视偏转角度只有90度,只能从正面观看,从侧面看就会出现较大的亮度和色彩失真。现在市面上的液晶显示器可视偏转角度一般在140度左右,对于个人使用来说是够了,但如果几个人同时观看,失真的问题就显现出来了。

4、相应时间过慢

响应时间是液晶显示器的一个特殊指标。液晶显示器的响应时间指的是显示器各像素点对输入信号反应的速度,响应时间短,则显示运动画面时就不会产生影像拖尾的现象。这一点在玩游戏、看快速动作的影像时十分重要。足够快的响应时间才能保证画面的连贯。目前,市面上一般的液晶显示器,响应时间与以前相比已经有了很大的突破,一般为40ms左右。但是仍旧无法满足对3D游戏和高质量DVD电影播放的要求。

5、亮度和对比度低

要打电筒吗?这句笑话说的是液晶显示器的亮度和对比度。由于液晶分子不

能自己发光,所以,液晶显示器需要靠外界光源辅助发光。一般来讲140流明每平方米才够。有些厂商的参数标准和实际标准还存在差距。这里要说明一下,就是一些小尺寸的液晶显示器以往主要应用于笔记本电脑当中,采用两灯调节,因此它们的亮度和对比度都不是很好。

6、维修问题

液晶“坏点”问题。液晶显示屏的材料一般采用玻璃,很容易破碎,再加上每一个像素都十分细小,常常会造成个别的像素坏掉的现象,俗称“坏点”,这是无法维修的,只有更换整个显示屏,而更换的价格往往十分昂贵。

一种新品的推出,自有它优越于陈品的特色。LCD显示器的优越之处就在于它的轻巧简便和环保护眼。但是由于现阶段的LCD产品同时存在着上述缺陷,尚不能满足消费者的所有需求。在这样的产品技术前提下,我们呼吁广大消费者,不要盲目跟随时尚风潮,而是要认清自己的需求和产品的特点,做出最为客观的、实用的选择。

网站:联系:0755-29491359 *** QQ:649539816

第三篇:加速器种类及优缺点[范文]

大学物理自主学习之勇攀高峰

中荷学院2012级卓越班

闫醒阳 20125357

带电粒子加速器

加速器的种类:

倍压加速器、直线加速器、回旋加速器、同步加速器、对撞机与储存环,静电加速器等等。

a倍压加速器

原理:倍压加速器也称高压倍加器,是最早的一种低能加速器。它是利用电压倍加原理产生高电压来加速粒子的。

倍压加速器一般由高压电源、加速管、离子源或电子枪、高压电极、绝缘支柱和其他附属设备所组成。若使用正离子源,其高压电源的正极接到加速器的高压电极上,负极接地,中间是加速管,离子源放在高压电极中。真空管道是用来保持加速器的真空。当正离子源产生的正离子发射出来后,受到高压电极的排斥作用,就会沿加速管急速地到负极,能量逐步增高,正离子得到加速。反过来,若使用负离子源或电子枪,这时高压电极的极性就要反接,即将高压电源的负极接到高压电极上,就能加速电子和负离子。

优缺点:由于倍压加速器的输出粒子流强度高,结构比较简单,运行比较可靠,造价低和建造快,因而得到了广泛的应用。

b直线加速器

原理:直线加速器是采用高频电场来加速粒子的。直线加速器既能加速质子和重离子,也能加速电子,加速质子的称为质子直线加速器,加速电子的称为电子直线加速器。质子直线加速器的能量从几十到几百兆电子伏。电子直线加速器的能量可从几兆到几十兆电子伏。直线加速器可作为高能加速器(或对撞机)的注入器,此外在医疗和工业探伤方面也有广阔的应用前景。

质子直线加速器一般采用高频电场来加速。加速器的外壳是1-2米的大圆筒,内壁是铜制成的,光洁如镜。沿加速腔的轴线方向,装有好多个金属圆管,称为漂移管。漂移管之间的间隙称为加速间隙。漂移管一个比一个长,而间隙也是一段比一段大。当施加高频电源后,在加速间隙中产生较高的高频电场。我们知道,高频电场的方向和大小是随时间迅速变化的,漂移管设计得很巧妙,它好像一个个“防空洞”,洞中设有高频电场,当粒子的飞行方向与电场方向相同时则使粒子加速,当粒子飞行方向与电场方向相反时,粒子正好躲在“防空洞”中,而不会受到电场反向造成的减速;当电场方向又变得和粒子飞行方向一致时,粒子刚好从前一个“防空洞”出来,在第二个加速间隙中得到加速,电场改变时,又正好躲在下一个“防空洞”。就这样粒子每经过一个加速间隙就受到一次加速,经过若干个这样的间隙,就能使粒子具有较高的能量。

优缺点:直线加速器具有束流强度高、能量可逐节增加等优点,缺点是需要昂贵的高频、微波功率源.而且直线加速器的优点是从零速开始加速很方便,绝大部分回旋加速器的起始加速段(注入器)都是直线加速器;而且加速重粒子在能量损失方面比起同步加速器来说比较有优势,因为重粒子偏转需要的向心加速度更大;另外事实上都造到很大的时候直线加速器反而比较不占地方。

c回旋加速器

原理:回旋加速器属于圆形加速器的一种,它与直线加速器一样,利用高频交流电压来使粒子做多次加速,以获得能量。所不同的是将两个半圆空心电极(称为D型盒)放在磁场中以代替质子直线加速器中的圆柱形电极。两个D型盒分别接在电源的两个电极上,从而它们之间就有了一定的电压。另外,由于D型盒是金属制成的,在每个D型盒的内部,电场为零,所以带电粒子在D型盒内的运动是匀速的,而在两个D型盒之间的间隙则会作加速运动(电场对它加速),如图5-5所示。即当带电粒子从离子源(a处)进入D型盒之后,因为有磁场的约束,就绕着圆弧形的轨道前进,通过abc弧后又来到D型盒的边缘,这时两个D型盒之间的电场正好能对粒子加速。当粒子到达d点时,速度已比刚才增快了,因此它就将沿着一个半径稍大的def圆弧运动,到达f点时再次被电场加速。这个过程不断地持续下去,粒子的速度越来越快,能量越来越高,粒子的回旋半径也越来越大。

优缺点:回旋加速器可以反复回旋加速以累积能量,另外如果有足够的资金和场地的话,也可以造得非常大——半径越大越接近直线,这样偏转的时候由于同步辐射(切伦科夫辐射)损失的能量越少。

d同步加速器

原理:针对回旋加速器的缺点,人们对它进行了一次大手术,即挖掉了磁体的中心部分,以减轻总重量,这样磁极由磁柱变成了磁环。粒子不再像回旋加速器那样沿钟表发条形的轨道回旋了,它从一开始就进入了半径固定的环形跑道(轨道)里加速。当然为了不使磁场强度的调整幅度变化太大,先利用其它低能量加速器即注入器对粒子进行预加速。待达到一定的速度后,再送入这种加速器中继续“培养”。这好像奥运会田径赛跑的预选赛一样,只有达到奥运会规定的成绩,取得报名资格的选手,才有可能到奥运会上决一雌雄。

同步加速器可以加速电子,也可以加速质子等较重粒子。所以同步加速器又可分为电子同步加速器、质子同步加速器和强聚焦电子或质子同步加速器等。优缺点:(针对于电子加速器)①具有从红外线到硬X射线广泛范围内的光滑连续谱。如使用单色器,可获得一定波长的单色光。

②辐射强度高,一个储存环的辐射总功率常在数千瓦以上。③天然准直性好,其发散度一般小于1毫弧度。

④辐射亮度高,一般比X射线转靶的标识辐射亮度高10倍,比连续轫致辐射亮度高10倍。

⑤具有天然的偏振性。在轨道平面上是完全偏振光,其电矢量平行于轨道平面。⑥洁净度很高。因同步辐射是自由电子发光的,不产生其他粒子本底。⑦可实现脉冲化,脉宽可达 0.01~1纳秒或更短。

⑧光通量、能量分布及偏振度等均可准确计算,并和实验值很好地相符合,因此可做为标准光源。

电子同步加速器多用于光核反应和介子物理等方面的研究。同步辐射装置作为性能良好的新型光源,在原子、分子物理、固体物理、表面物理、天体物理、化学、生物学、医学、环境科学、能源科学、材料科学、光刻技术、显微技术和光学标准计量等等许多科学技术领域里,得到越来越广泛的应用。

e.静电加速器

原理:以静电型高压发生器作为高压电源的加速器。按照加速粒子的不同,它可分为正离子静电加速器(简称质子静电加速器)和电子静电加速器两类.假设高压电极对地的电容是C,当它上面积累的电荷是Q时,它对地的电压可由

来决定。这关系式对时间微分后得

式中Ia是有效充电电流,它等于输电带送到高压电极的电流(输电电流)减去通过各种途径从高压电极漏去的电流(泄漏电流)。当电压上升到某值时,泄漏电流恰好等于输电电流,即Ia=0,此值即为此高压发生器的平衡电压。这种高压发生器,要改变电压极性是很方便的,只要改变喷电电源极性即可实现。

优缺点:60年代中,范德格喇夫静电高压发生器的重要改进是用输电链(或梯)代替输电带。输电链(梯)是利用在链(梯)上产生感应电荷的办法充电并输送电荷的,它的主要优点是:输电不靠电晕放电,电流波动小,发生器的高压自然稳定度高;工作寿命长;内部清洁等。同质子静电加速器相比,电子静电加速器的结构比较简单,所占空间也较小。这是由于负极性高压电极的击穿电压比正极性高;电子枪及其所需电源比离子源要简单得多,因此对于相同能量的电子静电加速器来讲,它的高压电极尺寸就比较小,这样钢筒的尺寸也就可相应减小。其次,由于电子静电加速器是作为β辐射源(高速电子流经扫描器后通过薄窗引出)和γ辐射源(高速电子轰击重元素──金、钨等来产生很强的γ射线)使用的,对电子束的能量分散度没有很高的要求,因此它不必配备分析器和稳压装置,用于实验的辐照室就直接安置在离加速管出口不远的地方

f对撞机与储存环

原理:对撞机是在高能同步加速器基础上发展起来的一种装置,其主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定束流强度及一定能量时使其在相向运动状态下进行对撞,以产生足够高的相互作用反应率,从而便于测量。用高能粒子轰击静止靶(粒子)时,只有质心系中的能量才是粒子相互作用的有效能量,它只占实验室系中粒子总能量的一部分。如果射到靶上的粒子能量为 E,则对靶中同种粒子作用的质心系能量约为(E为粒子的静止能量)。可见,随着Eo的增高,用于相互作用的那部分能量所占的比例将越来越小,即被加速粒子能量的利用效率越来越低,但是,如果是两个能量为 E的相向运动的同种高能粒子束对撞,则质心系能量约为2E,即粒子全部能量均可用来进行相互作用。可见,为了得到相同的质心系能量,所需的加速器能量将比对撞机大得多。如果对撞机能量为 E,则相应的加速器能量应为2E2/E。例如,能量为2×300GeV的质子、质子对撞机,同一台能量o为 180000GeV的质子加速器相当,建造这样高能量的加速器。在目前的技术水平及经济条件仍然是不可及的。但建造上述能量或更高一些能量的对撞机是完全可行的,这就是近20年来对撞机得到广泛发展的原因之一。优缺点:由于电子冷却及随机冷却技术(见加速器技术和原理的发展)的成功,使反质子束的性能大大得到改善,而且束流可以积累到足够的强度,从而有可能在同一环中进行质子-反质子对撞

中荷学院2012级卓越班 闫醒阳 20125357

第四篇:相变材料种类及优缺点比较

非直接接触

为了提高热导率,相变材料装在浅而大的盘状容器中;也可以将PCM装入有导热流体包围的小圆柱管中;或者是壳管换热器的壳中。

部分填充PCM的蜂窝结构,以及将PCM置于球状的塑料容器中(即相变胶囊),很好的解决了相变时体积变化导致泄漏、导热面积减小引起热阻增大的问题。组合相变材料

直接接触的换热器 固—固相变材料

水和盐与不溶流体的使用,扰动解决了PCM的过冷和相隔离的问题,而且微/纳胶囊较大的面积/体积比,使得导热率加强。

材料在固态、液态、气态中发生转变的过程叫做相变。材料在相变过程中,会放热或者吸热,而物体会维持恒温。而这种特性为我们热控制带来了福音。

相变材料是由多组分构成的,包括主储剂、相变点调整剂、防过剂、防相分离剂、相变促进剂组分。

相变材料的分类:

按照其相变过程可分为固——固相变、固——液相变、固——气相变和液——气相变材料四种,目前应用较多的是固——液相变材料。

按照其化学组成可分为无机相变材料、有机相变材料和复合相变材料。无机相变材料包括结晶水合盐(可逆性不好)、熔融盐、金属合金等无机物;有机相变材料包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。(多种相变材料混合可以获得合适的相变温度)三种各自的特点 存在的问题:

过冷、相分离、相变时体积变化、腐蚀容器、液相泄露;有机相变材料熔点低,易燃、导热率低。

近年来出现的产品:

为解决固液相变时泄露和腐蚀,产生了胶囊相变材料,为增加表面积/体积比,微/纳米胶囊相变材料及其应用;定型相变材料综合了是将相变材料与高分子材料复合,既避免固-固相变材料潜热低的问题,又回避了固——液相变材料液体泄露的问题;金属泡沫相变材料等 相变材料,应满足的要求有:合乎需要的相变温度;足够大的相变潜热;性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。改善相变材料导热性能的办法是,在相变材料中加人金属、陶瓷材料和热解石墨等导热系数高的填料,填料通常有以下结构形式:粉末、纤维、肋片及蜂窝;利用2种或者3种相变温度不同的材料按相变温度高低顺序进行放置,可得到合适的相变温度点,同时加快导热速度。1)、添加粉末、纤维填料会导致导热系数增加程度有限。例如,在石蜡中添加20%重量比的A1粉末,表观导热系数为0.48W/m“K,导热系数增加了不到3倍(原石蜡导热系数为0.15W/m”K);相变热控装置的温度均匀性难以保持。在相变材料中添加粉末、纤维填料,很难保证填料始终均匀分布在相变材料中,长期运行会导致聚集、沉淀等不良后果,导致其强化传热性能逐渐降低,并使得相变热控装置的温度均匀性变差;2)、添加肋片、蜂窝填料会导致相变材料的充装性差。使用填料增加相变材料导热性能,需保证相变材料的可充装性。使用肋片、蜂窝填料时,由于每个肋片或蜂窝间没有空隙,相变材料充装时非常困难,只有采取打孔或预留空间等办法解决,但会影响装置的强度及传热性能,效果不好;肋片、蜂窝填料与相变热控装置壳体热阻大。由于肋片、蜂窝坟料是由很薄的金属片制成,无法用焊接工艺将它和壳体金属板联接,只能采用胶粘的方法,显然,这将增加接触热阻,降低装置传热性能。

2002年,南京理工大学将高孔隙率通孔型泡沫铝或泡沫石墨等材料用于相变储热单元,设计、制造了高传热性能的相变储热装置(见图5所示),试验侧试结果表明泡沫功能材料增加了相变材料的导热系数,提高了相变储热单元的传热性能,提高了相变热控装置的温度均匀性、可充装性及可靠性。例如,孔隙率为92 %的泡沫铝与石蜡的组合表观导热系数可达5W/m.K以上,导热系数提高了30倍以上。而且,由于所采用的泡沫铝为通孔型,且孔径在4mm以上,相变材料很容易充满整个装置,不会产生死角,泡沫铝相变热控装置充装性能好。另外,由于泡沫铝的孔隙率大(92%以上),相变传热装置使用的泡沫铝重量轻,用于航天器或行星登陆车热控将不会使相变装置的重量及储能量有太大变化[4]0 应用和封装方面的总结(民用产品的启示,包括封装结构和预冷预热等): 储能利用,如用在建筑、太阳能热水器、工业废热利用、太阳帆板电池、功能工质、医用暖片

作为散热器的中间部分,缓冲散热: 1.对周期性的,间断性的大功率热载荷可以减小散热面

2.与主动热控的强制对流、自然对流等措施结合(风扇排热或者液体工质散热),通过增加热容来增强热控系统的热控能力;若预先加热或者冷冻,可进一步提高其热控能力或者增加热控系统的安全系数。即能承担更大的热载荷。如大型电池的控温。3.与热管结合使用,可将某一部分的废热用来控制其他部分的温度水平

恒温控制:由于相变时温度维持在相变点,可实现对对温度敏感的电子元器件的精确控温

航天服

军事上隐身:通过隐藏设备温度,改变红外光谱,而起到隐形或者隐身的作用。相变材料应用于航天领域

利用相变材料熔化时吸收大量潜热、凝固时放出大量潜热的特性,由于相变热控装置只发生物理状态的转变、无运动部件且不消耗航天器能量、可靠性高,特别适用于航天器内周期性工作的大功率仪器设备或受周期性高热流影响的设备的温度控制。可用于月球车间断性工作的电子设备,以保证月球车电子设备温度维持恒定,不受月球外表面的温度巨幅变化的影响,也不受月球车内仪器的发热变化的影响。

相变材料已成功应用于航天器热控领域,在行星登陆车上也有许多应用。例如,在“阿波罗15号”飞船的月球车上,采用了三个相变材料装置,第一个装置是将相变材料与信号运算器和电池相连,月球车出动执行任务时,信号运算器产生的热量被相变材料吸收,使之熔化;月球车返回后,将相变材料储存的热量通过辐射器向空间发散,相变材料重新凝固,为下次出动执行任务做好准备。第二、第三个装置将相变材料分别与驱控电子组件和月球通讯继电器连成一体。月球车出动时,后者产生的热量由相变材料吸收,返回后通过百叶窗辐射器散热,为再次工作做好准备。另外,相变材料用来保持阿波罗登月中宇航服系统的温度。美国03 /05火星漫游车也应用了十二烷相变材料来控制锂电池的温度,该相变储热单元与可变热导LHP组合使用,火星登陆车的电池装在储热装置中,通过相变材料的熔化、凝固维持电池的温度水平川(见图4)。相变控温的特点

1.它属于吸收型被动温控,与常规散热型有很大的不同。它不靠温差散热,因此不受外界环境温度变化的影响,使元件或设备始终稳定在需要的温度上。尤其在大功率密度和要求低的平衡温度时,是常规散热无法解决的难题,而采用相变温控可迎刃而解。在低气压或真空条件下需要散热的设备采用这种温控技术效果更好。

2.与主动温控比较,它不用电,没有运动部件,可用于振动、冲击、加速度等恶劣的力学条件下工作,可靠性很高。

3.在一定条件下,它可取代水冷和风冷进行散热,如对半导体致冷器件的热端温控,不用水冷或风冷,节水节电,具有较大的经济价值。

4.它在低温条件下(如一40℃)工作,它还储存热能,可使设备以极大的速率恢复到正常的工作温度。

5.它能周期性工作,长久使用。6.在低的平衡温度条件下,它比热沉法散热器体积可缩小2.6倍左右;重量可减轻4.5倍左右。7.工艺较复杂。

航天应用

1.电子元器件组件的温控 2.热能储存

在电子组件的温控中,相变材料储存和释放能量的过程可以推广到热环境发生变化的航 天器上。例如一个沿着地球轨道飞行的卫星,会遇到出入地球阴影发生强烈变化的周期性热 环境,在这种情况下,可用相变材料将太阳能储存起来,阻尼轨道周期中产生大的温度变 化。例如一个载人舱,在整个轨道中要求儿乎等温的条件,可用一层相变材料包络整个载人 舱,吸收或释放轨道中太阳能,为舱内提供一个接近相变材料熔点的等温条件。

在无大气的行星或月球上着陆的航天器也会遇到强烈变化的热环境。由于星体的自转,存在着白天和黑夜,又由于没有空气调节,白天黑夜温差很大。着陆的航天器用相变材料屏 蔽起来,白天储存太阳能,夜间放出能量用于保温,可使舱内人员和设备正常工作。3.长距离温控

实现长距离温控,可用热管将热源与中心相变材料温控系统连结起来,远距离的热源发 出的热通过热管被相变材料吸收,这部分热又可用于其他部件的温控。这种将废热又转变成 有用能量的措施,对长距离空间航程是很有价值的。4.精密仪器温控

对于温度范围要求很严格的高敏感仪器,如制导和控制仪器中的导航陀螺,其温度精度 必须维持在0.5k以内,才能保证正常工作。采用相变材料进行温控可使这些仪器温度维持在

一个很小的范围内。5.孤立元件温控

装在天线、航天器外边的帆板彬条上以及辐射器上的仪器,在结构上远离主航天器,对 这些仪器或元件采取主动温控往往是不可能的或者是很困难的。采用相变材料对这些部件进 行温控则是很有效的。并且使主飞行器和这些部件之间避免了使用热管、接热片等,可大大 减轻重量并增加可靠性。

相变材料种类及优缺点比较:

目前相变储能材料的复合方法有以下几种: 胶囊型相变材料、与高分子材料复合制备定形相变材料、将相变材料吸附到多孔基质中 相变储能材料使用存在的问题:耐久性、经济性、储能密度

耐久性问题。首先,相变材料在循环相变过程中热物理性质的退化。其次,相变材料从基体材料中泄露出来,表现为在材料表面结霜。再则,相变材料对基体材料的作用,在相变过程中产生的应力使得基体材料容易破坏 相变贮热材料,尤其有机相变材料,往往存在热导率较低,导热性较差之不足;为解决固液相变材料液相泄露和无机盐对容器的腐蚀问题,把固液相变材料封闭在球形的胶囊中,Hawlader等以石蜡为相变材料,以阿拉伯胶囊体材料,制备了定形相变贮热材料;复合型相变贮热材料,相变温度可以根据需要来调节,兼具有无机相变材料和有机相变材料的种种优点,受到广泛的关注。

理想的固-液相变材料应具有以下性质:(1)熔化潜热高,从而在相变中能贮能或放出较多的热量;(2)相变温度适当,能满足需要;(3)固-液相变的可逆性好,能尽量避免过冷或过热现象;(4)固-液两相导热系数大;(5)固-液相变过程有较小的膨胀收缩性;(6)相变材料的密度大,比热容大;(7)无毒,无腐蚀性;(8)成本低,制造方便。

目前国内外研制的固-液相变材料主要有:(1)无机水合盐。这类材料熔化热大,导热系数高,相变时体积变化小。但由于它们的结晶水模数在相变中有变化,使得相变的可逆性变差,有过冷范围且有腐蚀性。(2)有机物。用作固-液相变的有机物常是一些醇、酸、高级烷烃等,由于官能团不同,它们在性质上相差很大。有些材料具有合适的相变温度和较高的潜热,并且无毒、无腐蚀性。但有些材料在高温或强氧化剂存在时会燃烧、分解等,因此要加以选择,以确保安全。

与显热储能相比,相变储能具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑等众多领域具有重要的应用价值和广阔的前景。

从材料的化学组成来看,可分为无机相变材料、有机相变材料和混合相变材料三类。无机相变材料包括结晶水合盐、熔融盐、金属合金等无机物;有机相变材料包括石蜡、羧酸、酯、多元醇等有机物;混合相变材料主要是有机和无机共融相变材料的混合物。

通常,相变材料是由多组分构成的,包括主储剂、相变点调整剂、防过剂、防相分离剂、相变促进剂组分。而有机物相变材料则相变潜热低,而且易挥发、易燃烧、价格昂贵。

作为相变材料,应满足的要求有:合乎需要的相变温度;足够大的相变潜热;性能稳定,可反复使用;相变时的膨胀收缩性小;导热性好,相变速度快;相变可逆性好,原料廉价易得等。

固-液相变材料主要优点是价格便宜,但是存在过冷和相分离现象,从而导致储能不理想;易产生泄漏问题,污染环境;腐蚀性较大,封装容器价格高等缺点[5]。

与固-液相变材料相比,固-固相变材料具有不少优点。可以直接加工成型,不需容器盛装;固-固相变材料膨胀系数较小,相变时体积变化较小;不存在过冷和相分离现象,不需要加入防过冷剂和防相分离剂;毒性很低,腐蚀性很小;无泄漏问题,对环境不产生污染;组成稳定,相变可逆性好,使用寿命长;装置简单,使用方便。固-固相变材料主要缺点是相变潜热较低,价格较高。无机物相变材料一般具有腐蚀性、存在过冷和相分离的缺点,而有机物相变材料则存在导热系数低、部分有机物相变材料还存在性能不稳定的缺点

有机相变材料具有相变温度适应性好、相变潜热大、理化性能稳定、在固态时成型性较好等诸多优点;但是有机相变材料导热性能较低,密度小,相变过程中体积变化大,并且有机物熔点较低,不宜在高温场所中应用,且易挥发,易燃 无机物主要包括高温熔融盐、部分碱及混合盐。高温熔融盐主要有氟化盐、氯化盐、硝酸盐、硫酸盐等,它们具有较高的相变温度,从几百摄氏度至几千摄度,因而相变潜热较大。碱的比 热高,熔化热大,稳定性好,在高温下蒸汽压力很低,且价格便宜,是一种较好的中高温储能物质。混合盐熔化热大,熔化时体积变化小,传热较好,最大的优点是物质的熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度至上千摄氏度的储能材料。无机物类相变材料的导热系数也较低,而且还存在与容器的相容性问题, 金属及其合金导热系数高,相变潜热大但是金属相变材料的相变温度都比较高,且硅铝合金相变储热材料的缺陷在于合金处于高温液态时化学活性比较强,容易与容器发生化学反应,所以样品与容器的相容性问题成为硅铝合金相变储热材料应用的关键。

相变储能材料的导热强化,克服单纯相变储能材料存在的导热系数低,有腐蚀性等缺点。与金属复合的相变复合材料、与陶瓷复合的相变复合材料和与碳质纳米材料复合的相变复合材料。

金属基主要包括铝基(泡沫铝)和镍基等,相变储能材料主要包括各类熔融盐和碱。金属作为强化材料可以提高材料的导热性能,但是金属在高温下化学活性比较强,容易与容器发生反应,并且成本比较高,所以只能用于特殊的用途。

与陶瓷复合提高相变储能复合材料导热性能陶瓷基相变储能复合材料主要是将相变材料分布于陶瓷基体的超微多孔网络中,相变材料受热熔化时吸收潜热,而液态相变材料受陶瓷基体毛细张力的作用不会流出,从而使相变前后维持复合材料原来的形状。主要优点有:可供选择的无机盐种类多;可同时利用显热和潜热,蓄热密度大;无需封装,不存在腐蚀问题;不存在过冷和相分离的问题。无机盐/陶瓷基复合相变储能材料[15]具有独特的蓄热性能和机械性能,可用于工业余热回收、太阳能、电力调峰等领域,目前备受关注的是Glück A[16]等和张仁元[17]等研究的用无机盐/陶瓷基复合储能材料代替工业窑炉中的显热耐火砖和用于空间站太阳能发电系统的蓄热器。

微/纳米胶囊相变材料的应用

3.1建筑领域

在建筑材料中添加PCM的一种成功的方法就是将MCPCM混入砖瓦、墙板、天花板、地板等建筑结构材料中进行太阳能贮存[20,21]。白天接受太阳辐射,吸收太阳能,夜间释放出来以保持室内温度,减少室内温度波动,使室内保持良好的热舒适,减少空调系统的设备容量,转移用电负荷。在沙漠和温差较大的地区特别有效。3.2纺织服装领域

将MCPCM与普通纤维共混后熔融纺丝制备可调温纤维,或者也可直接进行织物涂层整理[22,23]。其用途有很多方面,例如,相变材料微胶囊可应用在民用服装如运动服装上。运动员在进行剧烈的运动时,会产生大量的热量,体内的微气候的温度急剧升高,从而人体的温度也急剧升高。在运动服装上应用相变材料微胶囊,可以利用相变材料微胶囊吸收存储和重新释放身体的热量,避免身体过热与发冷,使身体始终保持较舒适的状态。蓄热调温纺 织品还可应用于职业服装如消防服、野战服、冷库工作服、潜水服飞行服等以及室内装饰、床上用品和睡袋方面。此外,还可具有医疗用途[24],涂层织物用于手术服,可防止液体透过,防止部分细菌感染。蓄热调温织物用做医用恒温绷带,可防止局部温度过高,防止出汗引起伤口感染,影响伤口愈合,也可防止冻伤。还可用于烧伤病人服装。3.3军事领域

MCPCM还可用于军事红外线伪装领域[25]。将MCPCM分散在基质中以涂料或遮障的形式用于军事目标上,通过改变、调节相变物质的含量、组成等,使其尽可能吸收目标放出的热量,使得军事目标的温度与周围环境的温度保持相同,从而可以达到最佳的伪装效果。3.4功能热流体领域

功能热流体是指热流体为连续相、其他添加剂(有相变或没有相变)为分散相的多功能流体[26]。在传热流体中添加可发生相变(固–液或固–固相变的微胶囊是当前功能热流体研究领域的一个热点问题。将相变材料包裹在微胶囊状的壳体内形成潜热微封装材料,并将其添加到液体工质中,可提高热流体的比热容,从而起到强化传热的作用。

在热流体中添加纳米胶囊相变材料并将得到的热流体称为功能纳米相变热流体。功能纳米相变热流体除保留微胶囊相变热流体的优点外,因相变材料在尺度上从微米级变为纳米级,增大了表面积与体积的比率,从而提高了传热速率;此外,功能热流体的输送泵功也将减小,并大大降低长时间运行时粒子之间碰撞破坏的可能性,相变材料的相变效率也将提高。在MCPCM(微胶囊)中发生相变的物质被封闭在球形胶囊中,从而可有效解决相变材料的泄漏、相分离以及腐蚀性等问题,有利于改善相变材料的应用性能。纳米胶囊相变材料(NCPCM)在保留微胶囊相变材料优点的同时,因胶囊尺寸从微米级降为纳米级,使胶囊表面积与体积的比率增大,有利于提高相变材料的传热速率;同时,在使用过程中还可大大降低长时间使用时粒子之间碰撞破坏的可能性。

将石蜡与一热塑弹性体SBS复合制备了在石蜡熔融状态下仍能保持形状稳定的复合相变蓄热材料,复合材料保持了石蜡的相变特性,相变潜热可高达纯石蜡潜热的80%,在复合相变材料中加入膨胀石墨后,热传导性有了显著提高,其放热时间比纯石蜡缩短了61%。组合相变材料

为了得到合适相变温度的相变材料,同时又能提高相变材料的导热性能,可将现有的几种相变材料采用一定的方法进行组合,得到新的相变材料。相变材料的组合方式主要有2种:一种是沿传热流体流动方向分别放置相变温度不同的2种或2种以上的相变材料储热单元;另一种是在同一储热单元内或沿垂直于传热流体流动的方向上,合理组合放置相变温度不同的2种或2种以上的相变材料。结果表明,采用组合相变材料,潜热储、放热过程传热速率提高15%。

(1)储能系统体积趋向于小巧和轻便,要求相变材料的储能性能更高。这对于采取合适的强化传热手段提出了更高的要求。

(2)相变材料的可逆性和稳定性还要进一步提高。如相变材料在多次储热-放热循环后储能性能的劣化、相变材料和基体材料或添加物之间的相容性问题等。这不仅关系到相变材料的导热性能,也关系到其使用寿命。

(3)经济性问题,即材料成本问题。应该在满足使用的前提下寻找成本更低的相变材料,并在制备工艺和封装技术等方面研究出更经济的方法,导热增强方式及优缺点比较:

金属颗粒和翅片结构

由金属构成的翅片结构能够起到增加受迫对流进而增强换热的作用,Liu等[5]研究表明翅片结构可以有效地增加热传导和自然对流,可以使热导率增加67%,并分析了翅片大小和齿距对导热的影响作用,提出减少宽度和翅距均可以增加导热性能;

碳纤维

碳纤维能与绝大多数相变材料相容,耐腐蚀能力较强,且纤维直径很小,有利于在材料中均匀布置 膨胀石墨

膨胀石墨是以鳞片石墨为原料采用特殊工艺,使鳞片石墨沿层间方向膨化而成的产物。它既保留了天然鳞片石墨的导热性好、无毒害等优良性质,又具有天然鳞片石墨所没有的吸附性、生态环境协调性以及生物相容性等特征。在以石蜡为相变材料时多辅以膨胀石墨来提高其热导率。

有机相变材料成型性好、没有过冷和相分离现象、性能稳定、无毒性,但是有机材料导热系数小,相变过程中增加了储能和释能时间,降低了热控系统的效率 纳米流体

美国Argonne国家实验室的Choi等提出了纳米流体的概念:即以一定的方式和比例在液体中添加纳米级金属或金属氧化物粒子,形成新的强化传热工质。纳米流体导热系数增大的原因,一是固体颗粒的加入改变了基础液体的结构,增强了混合物内部的能量传递过程,使得导热系数增大;二是纳米粒子的小尺寸效应,使得粒子与液体间有微对流现象存在,这种微对流增强了粒子与液体间的能量传递过程,增大了纳米流体的导热系数

三种主要的强化传热方法,分别是泡沫金属、金属固体和金属翅片、膨胀石墨 泡沫金属是一种内部充满气泡的金属制品,既有金属特性又有气泡特性。其重量减轻为其致密固体的1/2~1/50,且仍能保持致密固体的大部分强度,具有比表面积大、导热系数高等优点。复合相变材料的传热性能大大提高,但是储能能力有所降低。并且指出,如果与风扇或制冷工质回路等主动冷却系统相结合,可以很好地解决高热流密度、短时和间歇性大功 率组件的温控问题

热流方向与翅片方向一致即构成并联时,翅片能有效提高热流方向的导热能力。但是,当翅片与热流方向垂直时,填充在翅片间的相变材料构成主要热阻,有效导热系数基本等于相变材料的导热系数,这时,翅片的强化泡沫金属复合相变材料和膨胀石墨复合相变材料的热传导性,结果表明,两者都能明显提高导热效率,进而缩短储放热时间,结果还显示,泡沫金属明显优于膨胀石墨。,电子设备能有效抗击高的热流、并且能保证操作的可靠性和稳定性 这种复合相变材料能大大提高相变材料的导热系数和储热能力。并且发现泡沫石墨的孔径大小和韧带的厚度对导热系数和储热量也有影响,孔径越小、韧带越厚,结果导热系数越高。孔径越大、韧带越薄,储热量越大。在选取提高导热系数的添加物时,应该满足下面几个条件:导热系数高;物质密度不能太高;材料应该与相变材料相容;具有一定的耐腐蚀能力;价格相对便宜,易购得。在对各种强化传热方法回顾以后,可以得出以下几点结论:

1)添加金属颗粒会显著增加系统的总重量,并且分布不均匀容易造成传热不稳定,整体效能较低,因此发展前途有限;

2)加入碳纤维改善导热性能是一种较先进的方法,虽然碳纤维的技术加工存在一些困难,但物理和化学性能优良,以后应加强这方面的研究;

3)膨胀石墨主要与高聚物(如石蜡)混合,多应用于中高温领域的性能改进,研究者对这方面的关注较多,技术已臻于完善;

4)纳米流体作为新型材料,性能优越,而且还有许多新工质及新工艺等待开发,考虑到其在低温领域有很大的应用空间,以后应加大研究力度;

5)泡沫金属既有金属特性又有气泡特性,多种潜在的优良特性还有待于开发,应该对此做进一步的深入研究。

相变材料的利用

A.太阳能供暖系统上的应用

相变储热材料用于储热具有环保、高效、节能、安全等多项优势,非常适合于太阳能供暖系统储热,以替代传统的取暖设备。组合式相变储热单元换热器为方形结构,主要由钢板、折流板、高密度聚乙烯管组成。内部结构由3个区构成,每个区内都有几十根高密度聚乙烯 管,管外径25mm,壁厚1.5mm,相变储热材料用石蜡封装在管内,每根管内都留有5%~10%的空余空间,用来避免储热材料受热膨胀将管胀裂。3个区内的石蜡相变点温度值是不相同的,沿高温水流动方向依次降低,根据实际需要,各区之间相差2.5~5.5℃。每个区内各有2块折流板,用以增加流体的扰动,提高换热效果,这种供暖系统在实际中已有应用。B.太阳能热水系统上的应用 C.热泵干燥机组中的应用 D.工业加热过程的应用 E.医药工业中的应用

相变贮热材料在太空中的应用日趋活跃,可用于太阳能热动力发电、航天器仪器仪表的恒温控制、舱外航天服等方面。

许多医疗电子治疗仪要求在恒温条件下使用,这样就需要利用温控储热材料来调节,使仪器在允许的温度内工作。日本有专利报导用NaSO410H2O和MgSO47H2O的混合物作为相变材料用于仪器室的控温,可使室温保持在25℃左右。也可将特种仪器埋包在用相变材料制成的热包中,来维持仪器使用的温度。近年来国内市场有种热袋,相变材料是水合盐,相变温度55℃左右,利用一块金属片作为成核晶种材料,当用手挤压金属片时,使它的表面成为晶体生长中心,从而结晶放热,再配备某些具有活血作用的中药袋,从而达到理疗的作用,对于治疗类风湿等疾病具有一定的疗效。相变储能复合材料在电子行业中的应用

近年来随着电子设备向高速、小型、高功率等方向发展,集成电路的集成度、运算速度和功率迅速提高,导致集成块内产生的热量大幅度增加。如果集成块产生的热量不能及时扩散,将使集成块的温度急剧上升,影响其正常运行,严重的还可能造成集成块烧坏。而如果在集成块上应用相变材料,可以有效缓解其过热问题。因为相变材料在其发生相变过程中,在很小的温升范围内,吸收大量热量,从而降低其温度上升幅度。

相变材料的应用:

出现了一系列具有超高热流密度、短时和间歇工作的大功率组件,如激光武器、行波管和机动飞行控制系统等.这类系统的短时峰值发热量大大地超过了平均发热量

太阳能热发电、工业热利用及余热回收、电力负荷调节等方面/,以及各种设备的温控上面。近年来,相变材料作为一种辅助冷却手段被广泛应用航天器和航空电子设备、个人计算机、通信设备、便携式计算机、手机等的热控制。相变材料被动热管理策略能用于瞬态性或者周期性热源的散热。被选择的相变材料熔点需低于设备允许最高工作温度,理想的相变材料应具有高的潜热质量比、显热质量比、高的热导率、相变时体积变化小的特点。

A. 装有PCM的薄盘贴合在处理器或者处理器盒子上。使用于手机散热,装置体积小。能管理的热量小,适用于小功率散热。B. 单纯增大PCM容量,由于PCM热导率低,其管理热量的能力仍不能提高,必须在PCM中加肋片 C. 先加一个导热的盘状肋,再在其上面加一些针状肋,这种结构大大减小了暴露在空气中的散热面积。

相变材料的封装结构:

利用相变材料熔化时吸收大量潜热、凝固时放出大量潜热的特性,由于相变热控装置只发生物理状态的转变、无运动部件且不消耗航天器能量、可靠性高,特别适用于航天器内周期性工作的大功率仪器设备或受周期性高热流影响的设备的温度控制。可用于月球车间断性工作的电子设备,以保证月球车电子设备温度维持恒定,不受月球外表面的温度巨幅变化的影响,也不受月球车内仪器的发热变化的影响。

相变材料已成功应用于航天器热控领域,在行星登陆车上也有许多应用。例如,在“阿波罗15号”飞船的月球车上,采用了三个相变材料装置,第一个装置是将相变材料与信号运算器和电池相连,月球车出动执行任务时,信号运算器产生的热量被相变材料吸收,使之熔化;月球车返回后,将相变材料储存的热量通过辐射器向空间发散,相变材料重新凝固,为下次出动执行任务做好准备。第二、第三个装置将相变材料分别与驱控电子组件和月球通讯继电器连成一体。月球车出动时,后者产生的热量由相变材料吸收,返回后通过百叶窗辐射器散热,为再次工作做好准备。另外,相变材料用来保持阿波罗登月中宇航服系统的温度。美国03 /05火星漫游车也应用了十二烷相变材料来控制锂电池的温度,该相变储热单元与可变热导LHP组合使用,火星登陆车的电池装在储热装置中,通过相变材料的熔化、凝固维持电池的温度水平川(见图4)。

常用的相变材料有石蜡类、非石蜡类有机物、水化盐、熔盐低熔共晶物等,由于一般相变材料的导热系数很小,在0.1一1.0W/m“K量级之间,在相变过程中,低导热系数会导致相变材料内温度梯度增加,传热速率小,热响应速度慢,使得控温对象温度比设计高,相变热控装置性能低。因此,提高相变热控装里整体表观导热系数,提高装里传热效率,是应用相变材料热控技术的关键。以往,改善相变材料导热性能的办法是,在相变材料中加人金属、陶瓷材料和热解石墨等导热系数高的填料,填料通常有以下结构形式:粉末、纤维、肋片及蜂窝。高导热系数的填料的加人在一定程度上提高了相变材料的导热性能,但也存在以下问题:1)、添加粉末、纤维填料会导致导热系数增加程度有限。例如,在石蜡中添加20%重量比的A1粉末,表观导热系数为0.48W/m”K,导热系数增加了不到3倍(原石蜡导热系数为0.15W/m"K);相变热控装置的温度均匀性难以保持。在相变材料中添加粉末、纤维填料,很难保证填料始终均匀分布在相变材料中,长期运行会导致聚集、沉淀等不良后果,导致其强化传热性能逐渐降低,并使得相变热控装置的温度均匀性变差;2)、添加肋片、蜂窝填料会导致相变材料的充装性差。使用填料增加相变材料导热性能,需保证相变材料的可充装性。使用肋片、蜂窝填料时,由于每个肋片或蜂窝间没有空隙,相变材料充装时非常困难,只有采取打孔或预留空间等办法解决,但会影响装置的强度及传热性能,效果不好;肋片、蜂窝填料与相变热控装置壳体热阻大。由于肋片、蜂窝坟料是由很薄的金属片制成,无法用焊接工艺将它和壳体金属板联接,只能采用胶粘的方法,显然,这将增加接触热阻,降低装置传热性能。

2002年,南京理工大学将高孔隙率通孔型泡沫铝或泡沫石墨等材料用于相变储热单元,设计、制造了高传热性能的相变储热装置(见图5所示),试验侧试结果表明泡沫功能材料增加了相变材料的导热系数,提高了相变储热单元的传热性能,提高了相变热控装置的温度均匀性、可充装性及可靠性。例如,孔隙率为92 %的泡沫铝与石蜡的组合表观导热系数可达5W/m.K以上,导热系数提高了30倍以上。而且,由于所采用的泡沫铝为通孔型,且孔径在4mm以上,相变材料很容易充满整个装置,不会产生死角,泡沫铝相变热控装置充装性能好。另外,由于泡沫铝的孔隙率大(92%以上),相变传热装置使用的泡沫铝重量轻,用于航天器或行星登陆车热控将不会使相变装置的重量及储能量有太大变化[4]0

相变温控的特点

1.它属于吸收型被动温控,与常规散热型有很大的不同。它不靠温差散热,因此不受外界环境温度变化的影响,使元件或设备始终稳定在需要的温度上。尤其在大功率密度和要求低的平衡温度时,是常规散热无法解决的难题,而采用相变温控可迎刃而解。在低气压或真空条件下需要散热的设备采用这种温控技术效果更好。

2.与主动温控比较,它不用电,没有运动部件,可用于振动、冲击、加速度等恶劣的力学条件下工作,可靠性很高。

3.在一定条件下,它可取代水冷和风冷进行散热,如对半导体致冷器件的热端温控,不用水冷或风冷,节水节电,具有较大的经济价值。

4.它在低温条件下(如一40℃)工作,它还储存热能,可使设备以极大的速率恢复到正常的工作温度。

5.它能周期性工作,长久使用。6.在低的平衡温度条件下,它比热沉法散热器体积可缩小2.6倍左右;重量可减轻4.5倍左右。7.工艺较复杂。

航天应用

1.电子元器件组件的温控 2.热能储存

在电子组件的温控中,相变材料储存和释放能量的过程可以推广到热环境发生变化的航 天器上。例如一个沿着地球轨道飞行的卫星,会遇到出入地球阴影发生强烈变化的周期性热 环境,在这种情况下,可用相变材料将太阳能储存起来,阻尼轨道周期中产生大的温度变 化。例如一个载人舱,在整个轨道中要求儿乎等温的条件,可用一层相变材料包络整个载人 舱,吸收或释放轨道中太阳能,为舱内提供一个接近相变材料熔点的等温条件。

在无大气的行星或月球上着陆的航天器也会遇到强烈变化的热环境。由于星体的自转,存在着白天和黑夜,又由于没有空气调节,白天黑夜温差很大。着陆的航天器用相变材料屏 蔽起来,白天储存太阳能,夜间放出能量用于保温,可使舱内人员和设备正常工作。3.长距离温控

实现长距离温控,可用热管将热源与中心相变材料温控系统连结起来,远距离的热源发 出的热通过热管被相变材料吸收,这部分热又可用于其他部件的温控。这种将废热又转变成 有用能量的措施,对长距离空间航程是很有价值的。4.精密仪器温控

对于温度范围要求很严格的高敏感仪器,如制导和控制仪器中的导航陀螺,其温度精度 必须维持在0.5k以内,才能保证正常工作。采用相变材料进行温控可使这些仪器温度维持在

一个很小的范围内。5.孤立元件温控

装在天线、航天器外边的帆板彬条上以及辐射器上的仪器,在结构上远离主航天器,对 这些仪器或元件采取主动温控往往是不可能的或者是很困难的。采用相变材料对这些部件进 行温控则是很有效的。并且使主飞行器和这些部件之间避免了使用热管、接热片等,可大大 减轻重量并增加可靠性。

这些装满相变材料的管有两个作用:一方面它们作为肋片增大传热面积同时它们含有PCM能储存以低昂热量。这些管的两边及上部用墙壁封装,风扇开在敞开的一面,这样风扇产生的空气流能均匀地通过所有管子,确保高的热导率。普通风扇0.01 m3/s 热导率能达到180e220 W/(m2 K).。当风扇失效时,PCM仍能保证安全工作。

本次试验设置三个变量

能量水平:方向垂直,分别输入6 W, 9 W, and 12 W,即2.4 kW/m2, 3.6 kW/m2, and 4.8 kW/m2 方向:功率输入为12 W,分别相对重力方向水平、竖直、倾角45度 熔化/凝固的时间(直到达到循环稳定状态):输入12W,竖直放置

第五篇:地砖种类及优缺点

地砖一般可分为:抛光砖、玻化砖、釉面砖、马赛克等

一、釉面砖

1、顾名思义,釉面砖就是砖的表面经过烧釉处理的砖。它基于的分别,可分为两种:

1)陶制釉面砖,即由烧制而成,较高,强度相对较低。其主要特征是背面颜色为红色。

2)瓷制釉面砖,即由瓷土烧制而成,吸水率较低,强度相对较高。其主要特征是背面颜色是灰白色。

要注意的是,上面所说的吸水率和强度的比较都是相对的,目前也有一些陶制釉面砖的吸水率和强度比瓷制釉面砖好的。

2、釉面砖的釉面根据光泽的不同,还可以分为下面两种:

1)亮光釉面砖。适合于制造“干净”的效果。

2)哑光釉面砖。适合于制造“时尚”的效果。

3、常见问题

釉面砖是装修中最常见的砖种,由于色彩图案丰富,而且防污能力强,被广泛使用于墙面和地面之中,常见的质量问题主要有两方面:

1)龟裂

龟裂产生的根本原因是坯与釉层间的应力超出了坯釉间的热膨胀系数之差。当釉面比坯的热膨胀系数大,冷却时釉的收缩大于坯体,釉会受拉伸应力,当拉伸应力大于釉层所能承受的极限强度时,就会产生龟裂现象。

2)背渗

不管那一种砖,吸水都是自然的,但当坯体密度过于疏松时,就不仅是吸水的问题了,而是渗水泥的问题。即水泥的污水会渗透到表面。

4、常用规格

正方形釉面砖有152×152mm、200×200mm、长方形釉面砖有152× 200mm、200×300mm等,常用的釉面砖厚度5mm及6mm。

二、通体砖

通体砖的表面不上釉,而且正面和反面的材质和色泽一致,因此得

名。

通体砖是一种耐磨砖,虽然现在还有渗花通体砖等品种,但相对来说,其花色比不上釉面砖。由于目前的室内设计越来越倾向于素色设计,所以

通体砖也越来越成为一种时尚,被广泛使用于厅堂、过道和室外走道等装

修项目的地面,一般较少会使用于墙面,而多数的防滑砖都属于通体砖。

通体砖常有的规格有300x300mm、400x400mm、500x500mm、600x600mm、800x800mm等等。

三、抛光砖

抛光砖就是通体坯体的表面经过打磨而成的一种光亮的砖种。抛光砖属于通体砖的一种。相对于通体砖的平面粗糙而言,抛光砖就要光洁多了。抛光砖性质坚硬耐磨,适合在除洗手间、厨房和室内环境以外的多数室内空间中使用。在运用渗花技术的基础上,抛光砖可以做出各种仿石、仿木效果。

也许是业内的大意,也许是业内的故意,抛光砖却留下了一个致命的缺点:易脏。这是抛光砖在抛光时留下的凹凸气孔造成的,这些气孔会藏污纳垢,以致抛光砖谈污色变,甚至一些茶水倒在抛光砖上都回天无力。

也许大家意识到这点,在后来一些质量好的抛光砖在出厂时都加了一层防污层,但这层防污层又使抛光砖失去了通体砖的效果。如果要继续通体,就只好继续刷防污层了。装修界也有在施工前打上水蜡以防粘污的做法。

抛光砖的常用规划是400x400mm、500x500mm、600x600mm、800x800mm、900x900mm、1000x1000mm。

四、玻化砖

为了解决抛光砖出现的易脏问题,市面上又出现了一种叫玻化砖的品种。玻化砖其实就是全瓷砖。其表面光洁但又不需要抛光,所以不存在抛光气孔的问题。

玻化砖是一种强化的抛光砖,它采用高温烧制而成。质地比抛光砖更硬更耐磨。毫无疑问,它的价格也同样更高。

玻化砖主要是地面砖,常用规划是400x400mm、500x500mm、600x600mm、800x800mm、900x900mm、1000x1000mm。

五、马赛克

马赛克(Mosaic)是一种特殊存在方式的砖,它一般由数十块小块的砖

组成一个相对的大砖。它以小巧玲珑、色彩斑斓被广泛使用于室内小面积

地墙面和室外大小幅墙面和地面。它主要分为:

1、陶瓷马赛克。是最传统的一种马赛克,以小巧玲珑著称,但较为单调,档次较低。

2、大理石马赛克。是中期发展的一种马赛克品种,丰富多彩,但其耐差、防水性能不好,所以市场反映并不是很好。

3、。玻璃的色彩斑斓给马赛克带来蓬勃生机。它依据玻璃的品种不同,又分为多种小品种:

1)熔融玻璃马赛克。以等为主要原料,在高温下熔化成型并呈

乳浊或半乳浊状,内含少量气泡和未熔颗粒的玻璃马赛克。

2)烧结玻璃马赛克。以为主要原料,加入适量等压制成一定规格尺寸的生坯;在一定温度下烧结而成的玻璃马赛克。

3)金星玻璃马赛克。内含少量气泡和一定量的金属结晶颗粒,具有明

显遇光闪烁的玻璃马赛克。

4、常用规格

马赛克常用规格有20×20mm、25×25mm、30×30mm,厚度依次在4mm-4.3mm之间。市面上还有其他五花八门的砖的名称,但不管其叫法如何乱法,基本上

都可以划入上述的品种之一种。

下面介绍一下砖的选择:

瓷砖的选择,除了颜色依你喜欢的外,其他的必须用科学态度去决择。

首先从包装箱内拿出任意四块瓷砖,放在平坦的地面。然后对比一下,四

块砖是否平坦一致?看看瓷砖对角与对角的地方是否嵌接?再就是用手掌

敲击瓷砖表面,听声音:好的瓷砖声音比较低沉;而不好的瓷砖声音明亮,并有明显回响。当然,从声音上来评好坏是相对的。但第一种比较却不可

轻视。国产与进口的最大分别主要就在瓷砖制品的规格一致性上。

抛光砖目前主要指利用瓷质砖硬度高、耐磨的特点,对其表面进行抛光,使其生产镜面效果而制得的瓷质砖。抛光砖种类主要有:普通抛光、纯色抛光、渗花抛光、自由布料抛光,微粉抛光、大颗粒抛光、全颗粒抛光等系列

抛光砖是用黏土和石材的粉末经压机压制,经烧制而成,正面和反面色泽一致,不上釉料、烧好后,表面再经过抛光处理,这样正面就很光亮,背面是砖的本来面目。既然是抛光,所以也就不耐脏了,用拖布拖过之后,会留有水的印迹。第二个缺点就是抛光砖因为光滑了,所以也就不防滑了。第三个问题就是有颜色的液体容易渗入。但好的品牌,因为压机好,密度高,加上烧制的温度高,密度非常高,所以也就不容易渗入,但是这不是绝对的,再好的抛光砖,如果有墨汁或者酱油之类的无意落在上面过几分钟再擦,也必然会留有永远都擦不去的痕迹,因为污渍已经渗入到砖里面了。

玻化砖,也叫玻化石、通体砖,专业的名称应该是瓷质玻化石。它由石英砂、泥按照一定比例烧制而成,然后用专业磨具打磨光亮,表面如玻璃镜面样光滑透亮,笔者在实践过程及了解市场销售人员得知:玻化砖在吸水率、边直度、弯曲强度、耐酸碱性等方面都优于普通釉面砖及一般的大理石,又因为此种砖好多有仿大理石的花色,纹理比天然大理石的纹理分布更加一致和匀称,所以深受蛛蛛们的喜爱。

但是玻化砖也不是完美的,它的缺陷就是经过打磨后,毛气孔暴露在外,灰尘、油污等容易渗入。应该有好些使用者发现,买来时玻化砖光亮如镜,时间一长发现有污渍渗入,结果很难去除。目前来说,这是一个行业公认的难题,但有些厂家经过研究已经通过新技术解决了这个难题,在产品出厂前就做好表面防污处理,将毛气孔堵死,使污物不致渗入。但是并不是说所有这类产品的厂家都有这道防污处理的工序,因为这道工序并没有列入该类产品的国家标准中,很多品牌的产品没有经过防污处理就能作为合格产品出厂销售,消费者不了解情况,铺装使用时不注意,就会发生污迹斑斑的情况。蛛蛛们要在购买前问清楚,如是未做防污处理的玻化砖在使用中要打蜡,使用一般的地板蜡就可以了。铺装前为避免施工过程中损伤砖面,应做好成品保护工作。

玻化砖与抛光砖区别:首先可以肯定的是,玻化砖属于抛光砖。只是它的生产技术高于普通意义上的抛光砖,玻化砖就是指完全烧透的砖,即全瓷的陶瓷产品。目前市场上通常所说的抛光砖是指普通的抛光砖,就是砖体的瓷化程度要差,属于没有烧透的陶瓷产品。抛光砖和玻化砖最大差别就是体现在瓷化程度上,也就是说玻化砖的硬度更高、密度更大、吸水率更小。(玻化砖的吸水率小于等于0.1%)。玻化砖的防污性能要远远高于普通的抛光砖。

玻化砖及抛光砖适用范围:客厅、卧室、走道等

釉面砖:顾名思义,就是表面用釉料一起烧制而成的,主体又分陶土和瓷土两种,陶土烧制出来的背面呈红色,瓷土烧制的背面呈灰白色。釉面砖表面可以做各种图案和花纹,比抛光砖色彩和图案丰富,因为表面是釉料,所以耐磨性不如抛光砖。

一般来说是在瓷砖的胚体烧制一定温度后再在瓷砖的表面施釉经过高温高压烧制而成,由瓷砖胚体和表面的很薄的一层釉层构成。釉层主要是增加瓷砖的美观效果,同时起到防污的作用。依据所施釉料的不同,釉面砖又分为亚光和亮光两种。亚光:反光原理属于漫射,表面有点粗糙不平,光感柔和;亮光属于反射原理,砖面平整光亮。

厨房应该选用亮光的釉面砖,哑光釉面表面上虽然有一层很薄的釉面,擦洗起来也还不算难,但是时间长了,瓷砖表面的釉面难免脱落,此时油渍进入砖面之中,清理起来会很难。

优质釉面砖参数指标:

(1)吸水率:应该不大于21%

(2)耐急冷急热性:耐急冷急热性是指釉面砖承受温度急剧变化而不出现裂纹的性质,试验采用的冷热温差应为130摄氏度左右

(3)弯曲强度:釉面砖的弯曲强度平均值不小于16Mpa,当砖的厚度大于或等于7.5mm时,弯曲强度平均值不小于13Mpa.(4)抗龟裂性:经抗龟裂性试验,釉面无裂纹。

(5)釉面抗化学腐蚀性:釉面抗化学腐蚀性是指釉面在酸碱溶液的作用下抗腐蚀的能力。釉面抗化学腐蚀性一般需由供需双方商定级别。家庭使用没有特别要求。

釉面砖适用范围:厨房(亮光)、卫生间、阳台等

挑选瓷砖小方法:

一是看规格,好的砖几块摞在一起,尺寸一致。

二是看吸水率,一般越小越好。在砖的背面倒上一些水,看水的渗透速度,一般来说,墙砖的吸水率远高于地砖

三看渗透性(适用玻化砖),倒一滴墨水于砖表面,过5-10分钟擦去墨水,看是否已经渗透进去

四听声音,不过一般非业内人士这招用不上,因为大家听的太少了。

地板砖作为家装一个重要组成部分,越来越受到人们的关注。

地板砖分类究竟有哪些?一般来讲,按照其材质的不同可以分为以下几类:

一是用陶土烧制的,因吸水率较高而必须烧釉。这种砖的强度较低,现在很少使用。二是用瓷土烧制的,为了追求装饰效果也烧了釉,这种瓷砖结构致密、强度很高、吸水率较低、抗污性强,价格比陶土烧制的瓷砖稍高。瓷土烧制的釉面砖,目前广泛使用于家庭装修,有80%的购买者都用这种瓷砖作为地面装饰材料。

三是石材地板砖,通常是采用天然石材,多为天然大理石和天然花岗岩制作而成。天然大理石质地致密但硬度不大,容易加工、雕琢和磨平、抛光等。大理石抛光后光洁细腻,纹理自然流畅,有很高的装饰性。大理石吸水率小,耐久性高,可以使用40-100年。

四是塑料地板砖,这种地板砖的砖体上呈网状分布有漏水凶,砖体下分布着支撑物。拼接方式采用搭扣式。能有效地防水、防滑,并且拼接方便、牢固可靠。

按照功能,地板砖又可分为地砖、墙砖及腰线砖等。

地砖,顾名思义就是铺在地面上的砖,按花色分为仿西班牙砖、玻化抛光砖、釉面砖、防滑砖及渗花抛光砖等。

墙砖:按花色可分为玻化墙砖、印花墙砖。

腰线砖:多为印花砖。为了配合墙砖的规格,腰线砖一般定为60mm×200mm的幅面。地板砖按工艺分为:釉面砖、通体砖、抛光砖、玻化砖、陶瓷锦砖。

釉面砖是指砖表面烧有釉层的砖。这种砖分为两类:一是用陶土烧制的;另一种是用瓷土烧制的。

通体砖:这是一种不上釉的瓷质砖,有很好的防滑性和耐磨性。一般所说的“防滑地砖”大部分是通体砖。由于这种砖价位适中,颇受消费者喜爱。

抛光砖:通体砖经抛光后就成为抛光砖,这种砖的硬度很高,非常耐磨。

玻化砖:这是一种高温烧制的瓷质砖,是所有瓷砖中最硬的一种。有时抛光砖被刮出划痕时,玻化砖仍然安然无恙。

陶瓷锦砖:又名马赛克,规格多,薄而小,质地坚硬,耐酸、耐碱、耐磨、不渗水,抗压力强,不易破碎,彩色多样,用途广泛。

显示器的种类和优缺点
TOP