首页 > 精品范文库 > 5号文库
常用生物医学材料
编辑:紫陌红尘 识别码:14-710972 5号文库 发布时间: 2023-09-23 20:14:28 来源:网络

第一篇:常用生物医学材料

常用生物医学材料

南华大学

电气学院

20104320135

李闯

摘要: 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。人工骨与医用硅橡胶同为如今最常用的两类生物医学材料。

关键字:人工骨,植入,移植,相容性,人工制备,医用硅橡胶,美容,整容

一:医用硅橡胶

1·生物相容性:由于其结构对称性,分子主链呈螺旋状,使硅氧单键的极性相互抵消,且侧链的R一般都是低极性或非极性基团,所以整个大分子极性很低,使硅橡胶表现出疏水性、耐氧化以及抗老化性。

此外,主链中Si2O键和侧链中的C2Si键的极性都近似于离子键,在正常使用温度(250°C以下)不发生裂解、氧化等反应,故又具有优异的耐热性,可用作医疗器械、人造脏器和药物缓释体系,对人体有良好的生物相容性。2·生物功能性:是指生物材料具有在其植入位置上行使功能所要求的物理和化学性质:(1)可检查、诊断疾病;(2)可辅助治疗疾病;(3)可满足脏器对维持或延长生命功能的性能要求;(4)可改变药物吸收途径,控制药物释放速度,满足疾病治疗要求。

3、无毒性

4、耐生物老化

5、物理和力学稳定性

6、易加工成型,材料易得,价格适当,便于消毒灭菌

7、在生产、加工过程中防止引入对人体有害的物质

应用

1·作为人造器官

硅橡胶模拟制品可长期埋置于人体内,作为人体内某个部分不可缺少的元件。包括脑人工肺、视网膜植入物、人工脑膜、人工手指、手掌关节、人造鼓膜、人工心脏瓣膜附件、人工肌腱以及用于消化系统和腹外科制品的各种导管等。

2·在整容和修复方面的应用(1)人工颅骨的修复:(2)尼龙、聚酯纤维等增强后作人造皮肤;(3)提高视力的隐性眼镜;(4))修补前额、鼻、勃颈等;(5)治疗外耳的缺损;

(6)现在争议一直很大的人工乳房

3·在医疗器械上的应用

硅橡胶可作为导管短期置入人体的某个部位,作为抢救和治疗的重要辅助材料和手段,如为肝功能不全、烧伤等病人进行补液用的静插管, 还可用于胎儿吸引器的吸头,医用电极板基质,生物传感器的包装材料等 4·在药物缓释体系的应用

硅橡胶可作为药物缓释体系的载体,如包封药物胶囊,包封的药物包括抗生素,镇静剂,安眠药,抗癌药,麻醉剂等.硅橡胶还可作为消泡剂治疗某些疾病,如用于抢救急性肺水肿,可迅速疏通呼吸道,改善缺氧状况,减少或避免因泡沫阻塞气流通过而窒息的死亡。

医用硅橡胶的副作用:

(1)由于其分子结构的低极性造成的疏水性,使其仍对人体有一定的异物反应,今后的发展要求是对其表面进行改性,提高其亲水性。

(2)抗张力强度不够,易破裂和撕裂,要解决其机械强度低的性质,就要对其采用物理和化学方法改性。

(3)对皮下避孕埋植系统而言,以硅橡胶为载体的长效皮下埋植剂在放置有效期满后必须取出,增加了使用者的痛苦和花费,这样就引发了可生物降解埋植剂的研究。

二:人工骨

人工骨是指用人工材料制造的人骨替代品或者骨折固定材料。人工骨材料主要有高分子合成材料如聚甲基丙烯酸甲酯、高密度聚乙烯等、无机材料如磷酸三钙、羟基磷灰石、氧化铝生物陶瓷等。

1·由于人骨的各种生物学特性,故对人工骨的要求也很苛刻,具体对人工骨的性能要求如下:

由于对活骨化学、生物特性的不断了解, 人们更有能力设计和开发出模仿这些特性的材料, 理想的骨移植替代材料应当具有成骨性、生物相容性、可吸收降解、可提供结构支撑、临床使用方便、价格低廉。根据其具体用途, 一些特性要比其它的特点更重要。骨移植物和其替代物可依据其骨传导、骨诱导和成骨特性分类(见表1)。同种异体骨移植物与自体骨移植物的特性比较(见表2)。复合材料移植物是具有骨传导性的基质与骨诱导和成骨活性物质的组合, 有可能替代自体骨。

人工骨容易商品化获得, 使用方便, 但目前单一的人工骨多为骨传导材料或复合骨诱导因子材料, 其机械性能较差, 难以起到机械支撑作用, 尚不能用于修复重建大段骨缺损和关节缺损, 仅用于填充植骨或脊柱融合。一些人工骨制备成注射剂型, 能够采用非手术或微创的方法提高骨修复效果, 方法操作简单、创伤轻微, 对血运和关节肌肉功能干扰小。避免了局部血供的进一步破坏, 大大减少了感染和手术并发症的发生可能, 而且恢复快, 符合现今微创外科的趋势。在此仅介绍两种最常用人工骨临床应用及相关问题。

1·医用硫酸钙

Osteoset是一种医用硫酸钙骨移植替代物,(于1996年6月通过美国食品与药品委员会论证, 并在同年获得欧洲CE商标, 此后已在成千例病人中使用, 并且证明是安全有效的。Osteoset颗粒有两种型号, 小颗粒在小的骨缺损中使用较为理想, 直径分别为4.8mm和3.0mm, 颗粒分别重100mg和30mg。为了方便使用, 各种尺寸颗粒均用小瓶包装, ˜射线灭菌。Osteoset2T内含4 %的妥布霉素, 妥布霉素亦称妥布拉霉素(To2bramycin), 为氨基糖甙类抗生素, 抗菌谱与庆大霉素相似。主要用于各种革兰氏阴性杆菌感染(绿脓杆菌、变形杆菌、克雷氏菌、沙门氏菌、葡萄球菌包括金黄色葡萄球菌), 对绿脓杆菌较庆大霉素约强2~3倍, 比多粘菌素B也较强, 对庆大霉素耐药的绿脓杆菌也常敏感, 对其它革兰氏阴性菌的作用则低于庆大霉素, 对金葡菌的作用约与庆大霉素相等。适用于感染性骨缺损, 引起肾毒反应者较庆大霉素为低。

2· 自固化磷酸钙水泥

自固化磷酸钙水泥(Calcium Phosphate Cement , CPC)是Brown和Chow于20世纪80年代早期研制出来的快速凝固型、非陶瓷型羟基磷灰石(HAP)类人工骨材料, 由数种磷酸钙粉末和固化液两部分在使用时按比例调和而成。调和物呈膏体状, 能根据填充部位的要求随意塑形, 在体内条件下发生固化反应, 约4h后自然转变成含微孔的HA晶体。在固化过程中基本不放热, 不会造成组织灼伤。一般ACPC固化的抗压强度为30~50MPa , 它与反应物中的添加成分或制备方法等因素无关。上世纪90年代中期国内研制成功了自固化磷酸钙水泥(CPC)人工骨材料, 并进行了商品化开发, 商品名瑞邦骨泰。其剂型分为普通型骨泰、载药型骨泰和注射型骨泰。

参考文献 1· 中国矫形外科杂志

2004年12月第12卷第23、24期

2·史文红、赵成如.医用硅橡胶及其制品[J ].中国医疗器械信息,2009,15(11)3·温变英.生物医用高分子材料及其应用[J ].化工新型材料,2001 ,29(9):41 4·医用高分子材料—硅橡胶

5·贡长生、张克立.新型功能材料[M].北京:化学工业出版社,2001.

第二篇:生物医学

生物医学工程与医学成像

学院:机械工程学院

专业:测控技术与仪器

姓名:王成林

学号:

引言:

生物医学工程是一门生物、医学和工程多学 科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新仪器设备,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。

生物医学工程在国际上做为一个学科出现,始于20世纪50年代,在我国,生物医学工程做为一 个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国著名 的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工 程的发展,从事着生物医学的科研 教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。

当代生物医学工程技术中最具代表性的技术是:数字医学影象技术,物理外科手术技术,电生理参数检测与监护技术,临床检验、分析与分子生物学技术,医学网络与信息系统,数字医学影象类和高能物理治疗类。

医学影像技术可借助于某种能量与生物体的相互作用,提取生物体内组织或器官的形态、结构以及某些生理功能的信息,为生物组织研究和临床诊断提供影像信息。显微分辨能力,将活体影像学带进了基础科学,使其可以深入到细胞、分子水平,即其成像技术从宏观进入了微观,分子影像学应运而生,医学影像进入了新的时代。它涉及的范围有X线成像、超声波成像、磁共振成像、红外线成像、放射性核素成像、光学成像等。

正文:影像技术

一、X线成像技术

X-ray透视和摄影技术是最早的医学影像技术。X线成像系统检测的信号是穿透组织后的X线强度,反映人体不同组织对X线吸收系数的差别,即组织厚度及密度的差异;图像所显示的是组织、器官和病变部位的形状。随着计算机的发展,数字成像技术越来越广泛地代替传统的屏片摄影。数字X线检查技术包括计算机X线摄影、直接数字X线摄影、数字减影血管造影和X-CT等。X-CT的问世被公认为伦琴发现X射线以来的重大突破,是标志着医学影像设备与计算机相结合的里程碑。

二、核医学成像技术

核医学成像系统又称放射性核素成像(RNI)系统,所检测信号是摄人体内的放射性核素所放出的射线,图像信号反映放射性核素的浓度分布,显示形态学信息和功能信息。核医学成像的影像取决于脏器或组织的血流、细胞功能、细胞数量、代谢活性和排泄引流情况等因素。它是一种功能性影像,影像的清晰度主要取决于脏器或组织的功能状态。PET/CT是将最先进的PET和CT的功能有机地结合在一起的一种全新的功能分子影像诊断设备。PET/CT融合的图像既能提供精确的解剖结构图像,又能提供生物靶区的材料。使用PET/CT制定放疗计划对于临床来说是一个全新的分子影像领域,具有广阔的应用前景。

三、超声成像技术

超声成像系统的检测信号是超声回波,图像信号反映人体组织声学特性的不同,从而显示甚至动态显示器官的大小和形状。超声分子显像以靶向超声微泡造影剂为显像剂,能够对体内组织器官微观病变进行分子水平的探测与显像的方法。超声造影是利用造影剂后使散射回声增强,明显提高超声诊断的分辨力、敏感性和特异性的技术。随着仪器性能的改进和新型声学造影剂的出现,超声造影已能有效地增强心肌、肝、肾、脑等实质器官的二维超声影像和血流多普勒信号,反映和观察正常组织和病变组织的血流灌注情况。

四、磁共振成像技术

磁共振(MRI)成像系统检测的信号是生物组织中的原子核所发出的磁共振信号。随着新型磁共振机的开发,揭开了磁共振应用领域新的一页,即运动MR和介入MR的应用和研究。MR血管成像、MR水成像、MR血流成像、脏器功能的检测、MR波谱分析、动脉血质子标记技术、抗血管生成因子辅助MR功能成像等技术的应用,使磁共振成像进一步突破了影像学仅应用于显示大体解剖和大体病理学改变的技术范围,向显示细胞学的、分子水平的以至基因水平的成像方面发展。

五、红外线成像技术

由于人体器质性的组织结构和形态变化,只能在疾病发展到一定程度才会出现,而远红外线诊断技术正是采集这种组织结构、形态和功能的变化来诊断疾病。红外热像仪不仅可以诊断疾病病情,甚至可以提前阳性发现期。红外线成像技术不仅对组织器官的炎症、疼痛、血液循环状态等有重要的诊断价值,而且对恶性肿瘤的诊断及转移倾向,肿瘤状况也有着重要的临床价值。

六、光学成像技术

光学与光子学取像方法,共焦扫描光学显微镜的图像具有高的对比度和高的分辨率。其高性能的成像本领是通过下述两点实现的:一是利用灵敏的外差探测,二是离开焦点的散射光不被探测器探测。它们非常适宜于对活体组织内部进行分层探测。利用这种技术已成功地监测了胚胎发育过程中的形态变化,鉴别正常与非正常基因的表达。用这种技术还可以对活体眼睛进行成像,测量视网膜结构、拍摄黄斑疾病等。光学成像技术在活体生物组织内部微结构的测量和疾病诊断等方面有重要的应用价值。

结论:

当今医学影像技术进入了全新影像时代,医学影像技术的发展反映和引导着临床医学在诊治以及随诊方面的进步。医学影像技术的发展,在某种意义上代表着医学发展潮流中的一个热点趋势,推动了医学的发展。医学影像技术必将对人类的健康作出更大的贡献。

第三篇:生物医学

生物医学光子学 运用光子学原理和技术,为医学、生物学和生物技术领域中的问题提供解决方案即构成生物医学光子学的研究内容。生物医学光子学涉及对生物材料的成像、探测和操纵。

简介编辑

在生物学领域,主要研究分子水平的机理,监测分子结构与功能,在医学领域,主要研究生物组织结构与功能,能对生物体以非侵入的方式,实现

宏观与微观尺度分子水平的疾病探测、诊断和治疗。

目前,生物医学光子学主要包含以下研究内容:

一是生物系统中产生的光子及其反映的生命过程,以及这种光子在生物学研究、医学诊断、农业、环境、甚至食品品质检查方面的重要应用。利用光子及其技术对生物系统进行的检测、治疗、加工和改造等也是一项重要的任务。二是医学光子学基础和技术,包括组织光学、医学光谱技术、医学成像术、新颖的激光诊断和激光医疗机理极其作用机理的研究。

内容简介

《生物医学光子学(第2版)》由基础篇和应用篇组成,在基础篇详细地讲述了生物医学光子学必需的理论和相关技术,包括基础光子学系统、光与组织体相互作用的基本知识和数学描述:应用篇以无创伤人体成分测量和无创伤人体光学成像为实例,向读者描述了应用于人体疾病诊断的光子学实现方法,最后扼要地介绍了该研究领域的其他热点研究和应用。

第二版说明

前言

第一章 绪论

第二章 光与生物组织体的相互作用

第三章 描述光在组织体中传播的数学模型

第四章 生物医学光子学中的测量技术

第五章 参数提取的定量数学方法

第六章 生物医学光子学在人体成分浓度检测方面的应用

第七章 生物医学光子成像技术

第八章 生物医学光子学其他研究热点介绍

参考文献

中英文名词对照表

第四篇:生物医学材料

钛及钛合金在生物医学上的应用及研究进展

摘 要:简单介绍了钛及钛合金和其作为生物医学材料的优点,简述了钛及钛合金的物理性能、化学性能,同时阐明了其生物相容性原理。综述了国内外生物医学钛合金材料的应用和研究进展。

关键词: 医用钛合金;生物医学材料;生物相容性;应用和发展 引言

金属材料是最早用于临床的生物医学材料,可用于传统的人体硬组织缺损、创伤、骨科、牙科疾病等的各种修复,矫形及内、外固定治疗等。从20世纪中叶以来,以钛合金为主的生物医学金属材料开始在人体硬组织植入,特别是在人体软组织的介入治疗方面显示出独特而神奇的疗效。极大地促进医用了钛合金材料在外科植入物和矫形器械产品中的应用和推广。近年来钛及其合金以其与骨相近似的弹性模量、良好的生物相容性及在生物环境下优良的抗腐蚀性在临床上得到了越来越广泛的应用。而具有典型代表性的医疗器械产品的问世,无疑是医学领域的一个里程碑,具有划时代的意义

[2,3]

[1]。

2钛及钛合金作为生物材料的优点

2.1钛及其合金的物理性能

纯钛有4个牌号,还有20余种合金,为临床选择使用提供了余地,钛熔点1668士4℃,沸点3553℃,具有α、β俩种同素异形体,882℃转变时伴随5 %的相变体膨胀。导热系数0.036cal/cm.s.k,接近牙釉质导热系数0.002cal/cm.s.k,作为口腔修复体时可保护牙髓。钛的强度比不锈钢高,且有较高韧性和抗疲劳能力,即使在有裂纹和缺陷时也需要用极高的载荷才能使其断裂。合金化虽然可以提高其强度,但降低其断裂韧度(Klc)2.2钛及其合金的化学性能

钛在空气中或氧化条件下其表面生成一层钝化膜(主要由TiO2、Ti3O2=TiO组 成),温度升高,时间延长使钝化速度增大,膜厚度增加,而且该钝化膜有自修复功能。通过生化试验,动物实验和临床观察均证明钛对于血液、体液等有极好 的耐腐蚀性能[4,8]

[4-7]

[4]。

。2.3生物相容性

普通金属材料力学性能优良、易加工,但组成与人体组织成分相距甚远,因而很难与生物组织亲合,一般不具有生物活性。作为生物医学材料的钛及钛合金满足了2个基本条件:①无毒性;②耐生理体液腐蚀。

钛及钛合金的缺点是硬度较低,耐磨性差。如果将钛制品表面进行高温离子氮化处理,纯钛及钛合金硬度分别提高 7倍和 2倍,氮化后钛材的年腐蚀率仅 为非氮化的三分之一。动物实验结果表明,生物组织对表面渗氮处理钛材反应轻微且无毒性。[9]3钛及其合金在生物医学领域的应用

近年来,钛及其合金以整形外科、牙科及各种医疗器械为中心,在医学领域得到空前的快速发展。3.1人体矫形

钛合金弹性模量比不锈钢更接近于人体骨骼,因此钛合金肘关节、踩关节等被广泛用于人体矫形手术中。每年世界上大约有1亿病人由于臂关节和膝关节 炎症而进行替换治疗。钛制膝盖板比用不锈钢膝盖板轻许多且腐蚀问题得到了 改善。德国在20世纪80年代开发了钛合金精铸假肢,推动了钛功能假肢的发展,从此,钛合金精铸假肢在各国很快得到了推广应用。目前,钛制假肢正在逐渐取代钢制假肢[10]。

3.2介入性治疗

介入性治疗是近几年来得到快速发展的一种先进的非手术临床诊疗技术。该技术通常是在X射线图像监视下,几利用穿刺插管技术将特制导管、支架等沿血管或体内其它管腔输送到体内病变处,就地治疗

[11]

。过去支架通常以316L不锈钢制成,但这种支架的纵向柔韧性不太令人满意,而钛镍形状记忆合金支架具有偏置式力学效应和形状记忆效应,目前正被广泛研究并投人临床湘瓜合金制成的血管支架,不仅与316L不锈钢有相当的强度,而且具有良好的冷加土成形性、更适合人体要求的纵向柔顺性3.3牙科

从钛合金植入人体那一刻起 ,牙齿种植用金属材料就发生了一系列的改变。

[12]

。钛与人体骨骼上皮组织、结缔组织都具有良好的亲和性,力学性能也可与其它各种类型牙科用合金相媲美,且密度小,制成的义齿体感舒适义齿通过表面处理,还可满足人们对义齿美观的要求。3.4循环系统医疗器械

钛通常被用在制作心率调节器和除颤器,它可以作为载体工具替代心脏本身某些功能,如心脏瓣膜。美国活性金属公司提供了一种钛材,用以制造主动脉瓣膜,外科医生把这种心脏瓣膜放在适当位置而不必进行缝合。在心脏起搏器中,密封的钛盒能有效防止潮气渗入密封的电子元器件

[14]

[13]

。不仅如此,钛

。人工肺关键部位使用的微孔钛片作为气体扩散元件将氧气扩散到体外循环的病人血液中,将静脉血变成动脉血。3.5 面部治疗

当人体面部组织遭到严重破坏时,局部组织修复需要用外科植入件进行。钛合金具有良好生物相容性和所需强度,因此,是人体面部组织修复的理想材料。纯钛网作为骨头托架已用于颗骨再造手术3.6手术器械

钛医疗器械具有良好的抗腐蚀能力,反复的清洗、消毒表面质量不受影响;无磁性,能够排除对微小、敏感植入电子器械的破坏威胁;质轻、用来替代不锈钢重量大为减轻,使医生操作过程中更加灵活,降低医生的疲劳程度。因此,目前已用来制作手术刀片、止血钳、剪刀、电动骨钻、镊子等。

[9]

[15]。

参考文献:

[1],张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J],生物医学工程学杂志,2000,17(2):206-208 [2] 汶建宏,杨冠军,葛鹏,毛小南,赵映辉.钛合金的研究进展[J].钛工业进展,2008,25(1):33-40 [3] 徐雄.生物医用钛合金应用及发展

[4] Eylon.D著.张祖光,李湘杰.译.钛在能源与工业中的应用.机械工业出版社,1989:9.[5] 郭天文.口腔科铸钦理论与技术.世界图书出版西安公司,1997.[6](英)邓肯著,周光爵,译.钛的应用与选择.冶金工业出版社,1988.[7] 钛科学与工程.第七届学术会议(上、下册),1991:1.[8] 范德辉,莫宣学,翁润生,秦飞.钛及钛合金在医学上的应用研究[J],口腔材料器械杂志,1998,8(1):46-48 [9] 黄甫强.牛金龙.钛合金在医学领域的应用[J],稀有金属快报,2005,24(1):33-34 [10] 李世普.生物医用材料导论[M].湖北:武汉工业大学出版社,2000 程奎;翁文剑;葛曼珍;生物陶瓷涂层[J].材料科学与工程,1998.16(3):8-12 [11] 顾汉卿,许国风.生物医学材料学[M].天津:天津科技翻译出版公司,1993 [12] 高敬,姚丽.国内外钛合金研究发展动态[J].世界有色金属,2001,(2):4-7 [13] 杨遇春译.世界铁的应用趋势[J],现代材料动态,2002,(2):1-2 [14] 宁兴龙.钛工业进展[J],1996,(3):1-3

[15] 张新平,等.钛及钛合金在牙科领域中研究现状[J],稀有金属材料与工程,2002,31(4):246-251

第五篇:生物医学材料

如何发展广东省的生物医学材料

[摘要]广东省发展生物医学材料从“确立重点开发产品;构建生物医学材料产业的新技术体系;加强对外合作与交流;充分利用资本市场解决资金不足的问题”4方面进行培育。同时开展相关研究使我省生物材料的研究水平有较大提高。

[关键词]广东省;生物医学材料 ;发展;纳米生物材料领域;组织工程和再生医学材料领域;材料的制备方法学和质量控制体系研究

(department of chemistry , foshanuniversity , student ID :2009234110)Abstract: Guangdong Province the development of biomedical materials from the established focus on developing products;build a new technical system of biomedical materials industry;strengthen international cooperation and exchanges;take full advantage of the capital market to solve the problem of insufficient funds “four aspects of nurturing.Related studies of biological materials in the province level has improved greatly.Key words:guang dong province;Biomedical Materials;developing;The field of nano-bio materials;Tissue engineering and regenerative medicine materials in the field;Preparation of methodological materials and quality control system

生物医学材料是指一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。随着我国经济的持续增长,中国生物医学材料领域这片“热土”引起国际上一些主要研究机构和越来越多的世界500强企业的关注,日本和韩国的生物医学材料领域近年来也呈现出强劲增长态势。有人预言,未来10年,生物材料将步入“亚洲世纪”。生物医学材料的发展历程世纪初, 第一次世界大战以前所使用的材料为第一代生物医学材料。代表材料有石膏金 属、橡胶以及棉花等物品。这一代的材料大都已被现代医学所淘汰。第二代生物医学材料的发展是建立在医学、材料科学(尤其是高分子材料学)、生物化学、物理学以及大型物理测试技术发展的基础上的, 研究人员也多由材料学家和医生来担任。代表材料有经基磷灰石、磷酸三钙、聚经基乙酸、聚甲基丙烯酸轻乙基醋、胶原、多肤、纤维蛋白等。这类材料与第一代生物医学材料一样, 其研究思路仍旧是从改善材料本身的力学性能和生化性能, 使其在生理环境下能够长期地替代生物组织。第三代生物医学材料川是一类具有促进人体自身修复和再生作用的生物医学复合材料。它是在生物体内各种细胞组织、生长因子、生长抑素及生长机制的结构和性能的基础上建立的叫, 由具有生理“ 活性” 的组元及控制载体的“ 非活性” 组元构成, 有较理想的修复再生效果。它通过材料之间的复合、材料与活细胞的融合、活体组织和人工材料的杂交等手段, 赋予材料特异的靶向修复、治疗和促进作用, 从而使病变组织大部分甚至全部由健康的再生组织取代。骨形态发生蛋白材料是第三代生物医学材料中的代表。

我国生物医学材料的发展前景

我国自上个世纪70年代开始进行生物医学材料的研究,国家“九五”、“十五”、“十一五”等各类科技计划和产业发展规划都对生物医学材料研究给予了支持。我国《生物产业发展“十一五”规划》明确提出:加快发展生物医学材料、生物人工器官、临床诊断治疗设备,建设若干国家工程中心和工程实验室,加强自主创新,在一批关键技术或部件上实现重点突破,实现产业化。《促进生物产业加快发展的若干政策》明确提出,加快发展生物医学材料、组织工程和人工器官、临床诊断治疗康复设备。

但是,国内大约70%的生物医学材料市场仍然被国外产品占据,在更高端的生物医学材料产品领域,国外产品甚至占据95%以上的市场份额。如果要要发展广东的生物医学材料,要改变这种状况在很大程度上取决于我省在生物医学材料核心关键技术领域的突破,除产品创新外,应特别关注材料制造技术。

国内生物医学材料与国外同类产品相比, 存在4 个突出的问题:1.仿制品多, 缺乏自主知识产权;2.销售价格低, 但档次和质量也低;3.企业生产规模普遍偏小, 难以形成规模效应;4 研发投入少, 产品技术含量较低。与此同时, 外商的大批涌人, 不仅带来了大量具有竞争力的产品, 同时还展开专利权、商标权等知识产权方面的竞争。

2000 年底国内公司在我国注册生产的生物医学材料及制品只有53 种,而国际医疗器械生产公司在我国注册生产、销售的品种多达30 多种。因此, 建议从以下几个4个方面培育,发展广东省的生物医学材料。

.确立重点开发产品

复合材料作为硬组织修复材料的主体, 有效地解决了材料的强度、韧性及生物相容性的问题, 是生物医学材料新品种开发的重点, 在临床上得到了广泛的应用哪〕。目前研究较多的是合金、碳纤维、无机材料(生物陶瓷、生物活性玻璃)、高分子材料的复合以及血液净化剂的开发。这些生物医学材料应该作为广东省今后重点开发的产品。构建生物医学材料产业的新技术体系

生物医学材料产业的新技术体系必须以生物医学材料企业为技术创新的主体, 充分发挥科研院所、大专院校的带头作用, 实行产、学、研结合, 成立学科齐全、队伍精干、人才结构合理的生物医学材料科研队伍, 开发有自主知识产权的生物医学高新技术产品。加强对外合作与交流

加强对外合作与交流必须积极参加国际间的技术交流与合作, 学习国外先进的技术和管理经验, 及时掌握生物医学材料技术在国际上的发展状况和趋势, 积极引进、消化和吸收国外的先进技术,强化“ 产品国际化” 的意识, 在新产品开发上要紧紧跟随甚至超越国际潮流, 增强我国生物医学材料产品的竞争力, 缩小与发达国家之间的差距。充分利用资本市场解决资金不足的问题与我国大多数高新技术产业类似, 生物医学材

料产业也面临着发展资金不足的问题。通常可采取下列措施解决: 充分利用股票市场帮助我国生物医学材料企业筹集资金;º 鼓励生物医学材料企业发行企业债券;» 创造良好的市场氛围, 吸引国外资本和民间资本进入生物技术领域;通过其他风险资本筹集资金。

期待突破

广东省发展生物医学材料首先应有所突破的是生物医学材料先进制造技术领域。据相关专家表示,生物医学材料制造技术的高低既制约着生物医学材料的产品精度和质量,也控制着产品生产成本,决定了产品的竞争力。其次是生物医学材料表面/界面科学与工程领域。生物医学材料的表面性质直接关系到材料与体内组织的反应及其相互作用,决定着植入或替代产品在体内修复的成败。对于复合生物医学材料而言,界面既是核心问题,又是热点前沿,界面特征决定着材料最终的整体力学性能。令人兴奋的是,经过两代生物材料工作者的努力,我国上海硅酸盐研究所、四川大学、西安交通大学等在医用金属材料表面改性领域,尤其是在发展生物活性涂层技术方面已取得长足进步。其他课题组和团队通过对各类复合生物材料的界面设计和构建,显著提高了生物材料(尤其是无机—有机复合生物材料)的整体力学和生物学性能。此外,一些课题组在构建智能或仿生生物材料表界面方面也形成了自己的特色。

第三是纳米生物材料领域。纳米生物材料一直是生物医学材料的前沿和重要领域,作为医用植入和修复材料,其在力学及细胞生物学性能上具有优势。预计在完成安全性评价后,纳米生物材料将首先在硬组织修复材料领域获得应用。这主要是因为人的骨组织本身就是纳米结构的材料(由纳米级羟基磷灰石和有机高分子物质构成)。而作为纳米生物材料的另一个应用途径,诊断检测试剂正显示出重要前景。第四是组织工程和再生医学材料领域。组织工程和再生医学的临床应用离不开生物材料科学和技术的突破。目前组织工程领域面临暂时的困境,这与科学问题有关,如种子细胞、生长因子及体外构建问题等;更与研究发展生物相容性好的细胞特异性材料及支架的先进制造技术密切相关。只有在上述领域取得整体突破,组织工程才有望在未来5~10年内造福大众。

再者是组织诱导材料领域。组织诱导材料是我国科学家首先提出并拥有我国自主知识产权的生物材料,其广泛应用和被国际接受有赖于相关机理的进一步阐明。

最后是医学材料生物相容性评价和产品标准领域。随着基于新原理的产品的不断涌现、大众对产品质量的深度关切,人们对材料生物相容性、安全性、有效性及时效性等的评价方法和产品标准提出了更高要求,并期待突破。

在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照”有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。

一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配;

二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。

三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术。

四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。

五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计;

通过上述研究的开展,将使我省生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。

[1]武汉生物工程学院学报, Journal of Wuhan Bioengineering Institute, 编辑部邮箱 2007年 03期

[2]应用科技, Applied Science and Technology, 编辑部邮箱 2002年 07期

[3]孙雪, 奚廷斐.第三代生物医学材料与再生医学国内外市场需求的变化与发展[J」.中国临床康复,2005,9(26):105-110

[4]王正平, 叶贤富.生物医学材料的应用及进展[J].应用科技,2002,29(7):69-72

[5]黄传勇, 孙淑珍, 张中太.生物陶瓷复合材料的研究[J].中国生物医学工程学报, 2009,19(3):23-25

[6]师昌绪.跨世纪材料科学技术的若干热点问题[J].自然科学进展,1999,9(1):25-28

[7]贺亚敏, 黄培林, 吕晓迎.新型生物医学材料—类金刚石膜的研究进展仁[J].国外医学生物医学工程分册,2002,25(2):73-77

[8]孙越, 郭贤权, 何炳林.血液灌流级吸附剂[J] 中国修复重建外科杂志,2006,20(2):189一193.[9]孙雪,奚廷斐.生物医用材料和再生医学的进展[J].中国修复重建外科杂志,2006,20

(2):189一193.[10]袭迎详, 王迎军.可降解生物医用材料的降解机理「J].硅酸盐通报,2000,19(3):4一45.[11]顾其胜, 侯春林, 徐政.实用生物医用材料学〔M.上海:上海科学技术出版社,2 005:11一22.[12]郑学斌.人体硬组织替代材料的研究进展[J〕.物理,2003,32(3):159一164.[13]詹亚歌, 蔡海文, 向世清, 等.高分辨率光纤光栅温度传感器的研究[J〕.中国激光,2005,32(1):53一56.[14]李玉宝.生物医学材料学[ M 」.北京:化学工业出版社,2003:80.[15] 李世普.生物医用材料导论[ M 〕.武汉:武汉工业大学出版社

[16]何天白,胡汉杰.功能高分子与新技术.化学工业出版社,2001

[17]奚廷斐.生物材料进展

(一)B.生物医学工程与临床,2004,8(3):184-189.[18] 傅远飞.羟磷灰石类生物材料研究进展[ J].口腔材料器械杂志, 2000, 9(1): 35-37.[19] 陈克正, 刘兴斌.纳米微粒在生物医学领域的应用研究进展[ J].青岛化工学院学报,2000,21(1):39-42.[20] 曾晟宇, 赵乃勤.金属生物材料表面改性研究的进展[ J].材料保护,2000,33(1):5-7.[21] 师昌绪.跨世纪材料科学技术的若干热点问题[J].自然科学进展, 1999, 9(1):25-28.[22] 陈贻瑞, 王建.基础材料与新材料[ M].天津: 天津大学出版社, 1999.[23] 于思荣.生物医学钛合金的研究现状及发展趋势[J].材料科学与工程,2000,18(2):131-134.[24] 于思荣.金属系牙科材料的应用现状及部分元素的毒副作用[J].金属功能材料, 2000,7(1):1-6.[25] M ITSUO N.Mechanical proper ties of biomedical titanium alloys[ J].Materials Sciencend Engineering A, 1998,243:231-236.[26] MATTHEW D.Biomedical alloys [ J ].Advanced Matterials & Processes , 1998, 154(1):63-65.[27]Reis R I , Roman I S.Biodegradable system in tissue engineering and regenerative medicine [M].Florida : CRC PRESS ,2005:509-548

[28]Hang J ,Xu X Y, chenX S, teal.Biodegradable electeospun fibers for drugdelivery [J].Journal of controlled Release,2003,92(3):227-231

[29]Hench LL.J Am ceram soc 1998,81:`705

常用生物医学材料
TOP