课
时
教
案
课题:第一单元:小数乘法的验算
第课时
总序第个教案
课型:
新授
编写时间:
****年**月**日
执行时间:
****年**月**日
教学内容:教材P7及练习二第3、5、6、7、10题。
教学目标:
知识与技能:使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。
过程与方法:理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。
情感、态度与价值观:养成认真计算与及时检验的学习习惯。
教学重点:运用小数乘法的计算法则正确计算小数乘法。
教学难点:正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。
教学方法:观察、分析、比较。
教学准备:多媒体。
教学过程:
一、复习准备
1.口算。0.9×6
7×0.08
1.87×O
0.24×2
1.4×0.3
0.12×6
1.6×5
4×0.25
60×0.5
指名学生口算,然后集体订正。
2.思考并回答。(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
3.揭示课题:这节课我们继续学习小数乘法。(板书课题)
二、情景引入
1.教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:
批
注
“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
学生观察情境图,提取信息:
所求问题:鸵鸟的最高速度是多少千米/时?
所需条件:非洲野狗的最高速度是56千米/时,鸵鸟的最高速度是非洲野狗的1.3倍。
思路分析:56千米/时
是非洲野狗的1.3倍
?千米/时
非洲野狗
鸵鸟
(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)
(2)追问提高学习新知的兴趣:
①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)
②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)
③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。
让学生独立计算出鸵鸟的最高速度,并集体订正。
(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)
学生可能会有以下几种验算的方法:
①用原式再计算一遍。
②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。
③观察法:观察小数位数或第二个因数比1大还是比1小。
④用计算器进行验算。
师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用哪一种就用哪一种来验算。
(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?
生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。
师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。
师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)
2.看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。
三、巩固练习
1.完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。
2.教材第8页练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。
四、课堂小结
当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。
作业:教材第8页练习二第5、6、7题。
课外作业:教材第9页练习二第10题。
板书设计:
求一个数的小数倍数是多少及验算
例5
56×1.3=72.8(千米/时)
×
1.3
2.8
教学(后记)反思: