首页 > 精品范文库 > 11号文库
几种变压器的短路问题
编辑:逝水流年 识别码:20-932715 11号文库 发布时间: 2024-03-03 00:23:59 来源:网络

第一篇:几种变压器的短路问题

几种变压器的短路问题

在第12章的学习中,以基本电磁定律为基础,通过对交流铁芯线圈电路的电磁关系的分析以及有关物理量的计算,我们了解了变压器的工作原理及基本结构。推导出三个重要变换关系即电压变换、电流变换、电阻变换,并了解了电压互感器和电流互感器等特殊变压器。随后提出了关于几种变压器能否短路的问题。变压器短路问题

1.1变压器短路运行分析

变压器是利用电磁感应的原理来改变交流电压的装置,主要功能有电压变换、电流变换、阻抗变换等。虽然各种变压器用途不同,但主要部件都是铁芯和绕组(包括主边和副边,且变换的比例都和两侧线圈匝数比 K有关。

当变压器副边短路时,将产生一个激增的短路电流。由于副边电流是与原边电流反相的,根据磁动势方程I1N1+I2N2=I0N1可知副边电流能抵消原边电流产生的主磁通,而当一次绕组电压U不变时,主磁通也基本保持不变,这时一次绕组必然也将产生一个很大的电流来抵消副边短路的去磁作用,这样二种因素的大电流汇集在一起作用在变压器的铁芯和线圈上,在变压器中将产生一个很大的作用力。这个力作用在线圈上,可以使变压器线圈发生严重的畸变和崩裂,另外产生出允许温升几倍的温度,致使变压器在很短时间内烧毁。

1.2变压器短路故障分析

变压器短路的原因很多,大致可分为三类。(1)电流引起的短路故障:短路电流的热效应会致使变压器元件之间的绝缘层过热破坏,绝缘材料会严重受损被击穿,最终导致变压器是损坏比较严重。(2)过热性故障:变压器内部的元器件都有可能发生局部过热,如载流导体甚至螺栓因接触不良发热过多;变压器的漏磁形成环流、涡流损耗,变压器的铁芯发生短路都会使局部过热。(3)出口故障:由变压器出口短路引起变压器内部故障的原因比较多,与变压器材质、结构设计和工艺水平等因素有关。1.3提高变压器抗短路能力的方法

变压器是整个电力系统的核心,若发生故障会影响到电网的运行,必须采取相应的措施来完善变压器,减少短路故障发生的频率。一方面在技术层面要完善整个变压器的结构设计。在变压器的设计过程中除做好变压器的抗短路能力的设计,还应考虑高温、电磁力、机械力对变压器元器件的影响,在材料的选用、生产过程中也应考虑各方面要求。

另一方面在使用过程中,要根据电网的实际需求,选用合适的变压器型号和容量,所选用的变压器要经过严格的实验工作,保证各项性能都符合该电网的需求。变压器 在安装过程中要使用专业的安装人员进行施工,保证变压器的安装质量,避免安装中出现错误,引起变压器出现短路故障。在变压器的运行中要重视重合闸和强行投运情况,他们都可能加剧变压器的损坏,可以采取将重合闸的重合时间延长,这样会减少对变压器的损坏。由于变压器工作环境的和工作条件的特殊性,必须要将变压器的接地,防止出口短路。电压互感器短路问题

2.1 电压互感器运行分析

电压互感器是用来将高电压变换成低电压的降压变压器。其一次绕组匝数多,并联在被测高压电路上;二次绕组匝数少,与电压表、电压继电器或其他仪表的电压线圈相连接。其工作原理、构造和接线方式都与变压器相同,只是容量较小,通常仅有几十或几百伏安。它的用途是把高电压按一定的比例缩小,使低压线圈能够准确地反映高电压量值的变化,以解决高电压测量的困难。同时,由于它可靠地隔离了高电压,从而保证了测量人员和仪表及保护装置的安全。2.2电压互感器短路危害

电压互感器本质上也是一种变压器,显然同变压器一样副边不能短路。一方面,由于电压互感器本身阻抗很小,当二次侧短路会产生很大的短路电流,烧损互感线圈,引起一次侧、二次侧击穿,甚至引起连锁反应损坏电路。另一方面,电压互感器主要用在精密测量仪器中,即便短路不会损坏电路,也会因电流激增使有关保护原件产生动作,从而影响仪器的功能,使有关距离保护和与电压有关的保护误动作,仪表无指示,影响系统安全,所以电压互感器二次不能短路。2.3电压互感器短路的防止

同变压器一样,电压互感器在使用中为了确保人身安全,综合考虑安全性和经济性,互感器铁芯和二次绕组的一端都应妥善接地防止短路。电流互感器开路问题

3.1 电流互感器运行分析

电流互感器原绕组的匝数很少, 通常只有一匝到几匝, 它的一次串接到被测电路中, 流过被测电流I1, 这个电流与普通双绕组变压器的一次侧电流不同, 它与电流互感器二次侧负载无关, 只决定被测电路负载大小。而副绕的匝数比较多, 它与电流表或其它仪表串联成闭合回路, 二次侧是处于短路运行状态, 也就是一次侧电流I1, 不随二次侧电流I2 的变化而变化(这里不同于普通变压器), I1只取决于一次回路的电压和阻抗。正常工作(互感器未开路)时由于二次绕组磁动势抵消了部分一次绕组的磁动势,铁芯中的空载磁势I0N1并不大, 二次绕组中的感应电压也不大。在一次侧负载不变时,一旦二次侧开路(拆下仪表时未将二次侧短接)则二次回路电流I2 和磁势将消失,由磁平衡方程式:I1N1+I2N2=I0N1 可得I1N1=I0N1,铁芯空载磁势I0N1 和磁通必然增大,二次侧感应出高电压,将会危害设备及人身安全。3.2 电流互感器开路原因及现象

造成电流互感器二次侧开路的原因有很多,一方面可能是由于互感器二次绕组损坏、氧化、锈蚀等客观原因造成的接触不良进而开路,另一方面则可能由于使用者的操作失误,如忘记将拆下的端子从新短接起来导致的开路。

电流互感器二次侧开路时会产生异常现象,如(1)电流互感器二次回路端子、元件线头等有放电、打火现象。开路时, 由于电流互感器二次产生高电压, 可能使互感器二次接线柱、二次回路元件接头、接线端子等处放电打火, 严重时使绝缘击穿。(2)仪表指示异常

降低或为零。如用接有电流表的回路开路,会使三相电流表指示不一致,功率表指示减小,计量表计不转或转速变慢。如果表计指示时有时无,有可能处于半开路状态(接触不良)。(3)仪表、电能表、继电器等冒烟烧坏。上述元件烧坏都会使电流互感器二次开路,有功功率表、无功功率表以及电能表远动装置的变送器、保护装置的继电器烧坏, 不仅使电流互感器二次开路,同时也会使电压互感器二次短路。(4)电流互感器本体有噪声、振动等不均匀的声音,这种现象在负荷小时不太明显。当发生开路时, 因磁通密度的增加和磁通的非正弦性,硅钢片振动力加大,将产生较大的噪声。3.3 电流互感器运开路处理方法及防止措施

由上述电流互感器开路运行分析可知,开路时会瞬间感应出高电压,在交流电网中甚至高达千伏。对设备一次回路,开路产生的高电压也会对设备本身与工作人员的安全产生威胁。同时由于磁感应强度的急剧增大,将会使铁芯严重发热,烧坏绝缘层进而引起连锁反应。

对二次回路而言,由于互感器多用于测量、控制等仪器,首先是计量上的损失,由于开路将会失去电流的数据,在故障的过程中将无法对线路的实际负荷进行计量。其次,当二次侧开路时,继电保护将会因失去电流失效,差动保护与零序保护则会因为产生了不平衡电流而误动。所以在二次开路故障产生时设备产生的各种其他故障保护装置是无法起到保护作用的。而对于差动保护,甚至可能产生误动的情况。

使用电流互感器时,为了安全起见,互感器的铁芯和二次绕组一般都接地处理。在操作的过程中,要做好绝缘防护,操作过程要严格按照安规要求进行。发现二次开路时,首先按照图纸将二次端子短路。在对故障检查和处理过程中,首先要尽量减小一次的负荷电流,使二次绕组的电压降低。通过检查短接时是否出现火花来鉴别短路点的位置,逐步排查出断路点。

第二篇:三相变压器空载和短路实验

南京工程学院

电力工程学院

/

学年

第二

学期

课程名称

电机实验

实验名称

三相变压器空载、短路实验

班级名称

建筑电气

学生姓名

同组同学

实验时间

202_

实验地点

实验报告成绩:

评阅教师签字:

****年**月**日

电力工程学院二〇〇七年制

一、实验目的1、通过空载和短路实验,测定三相变压器的变比和参数。

2、通过负载实验,測取三项变压器的运行特性。

二、实验项目

1、测定变比

2、空载实验

测取空载特性U0=f(I0),P0=f(U0),cosφ0=f(U0)。

3、短路实验

测取短路特性UK=f(IK),PK=f(IK),cosφK=f(IK)。

4、纯电阻负载实验:保持U1=U1

n,cosφ=1的条件下,測取U2=f(I2)。

三、实验方法

1、实验设备

1、BMEL系列电机系统教学实验台2、交流电压表,电流表,功率因数表3、三相可调电阻器4、三相变压器5、开关板

2、短路实验

1)

是实验线路如图1所示,变压器高压线圈接电源,低压线圈直接短路

接通电源前,将交流电压跳到输出电压为零的位置,接通电源后,逐渐增大电源电压,达到20V左右,使变压器的短路电流Ik=1.1—0.5In的范围内,測取变压器的三箱输入电压、电流、功率共取几组数据,记录于表中,其中I

k=In点必测。实验时,记下周围环境温度,作为线圈的实际温度。

图1

三相变压器短路实验接线图

表2-1

室温

UK(V)

IK(A)

PK(W)

UK

(V)

IK

(A)

PK

(W)

cosΦK

U1u1.1v1

U1v1.1w1

U1w1.1u1

I1u1

I1v1

I1w1

PK1

PK2

18.94

18.71

19.19

3.5

3.364

3.361

18.94666667

3.408333333

119

0.614258012

16.59

15.89

16.35

3.0

2.892

2.818

16.27666667

2.903333333

0.620724729

14.00

13.44

13.93

2.5

2.431

2.387

13.79

2.439333333

0.624286406

11.11

11.03

11.07

2.0

1.962.1.934

11.07

1.965333333

0.612850995

8.20

7.64

8.12

1.5

1.397

1.362

7.986666667

1.419666667

0.6173708163、空载实验

1)测定变比

1实验接线图如图,被试变压器选用三相变压器,1.在三湘交流电源断开的条件下,将调压器旋钮逆时针方向旋到底,并合理选择仪表量程

2.合上交流电源总开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=0.5Un,測取高,低压线圈的线电压U1u1.1v1,U2u1.2v1

Uv

U1u1.1v1

U2u1.2v1

220.78

1.69

Kuv==1.69

三相变压器变比实验接线图

图2三相变压器空载实验接线图

2)空载实验

a)

空载实验接线图如图,变压器低压线圈接电源,高压线圈开路。

b)

v

/w分别为交流电压表,电流表,功率表。功率表接线时,需要注意电压线圈和电流线圈的同名端,避免接错线

c(接通电源前,先将交流电源跳到输出电压为零的位置。合上交流电源开关,即按下绿色“闭合”开关,顺时针调节调压器旋钮,使变压器空载电压U0=1.2Un

d(表2-3然后,逐次降低电源电压,在1.2—0.5U的范围内,測取变压器的三箱线电压,电流和功率,共取几组数据,记录于表中,其中U=U

n的点必测点,并在该点附近测的点密集一些

e(测量数据以后,断开三相电源,以便为下次的实验做好准备

U0(V)

I0(A)

P0(W)

U0

(V)

I0

(A)

P0

(W)

cosΦ0

U2u1

2v1

U2v1

2w1

U2w1

2u1

I2u10

I2v10

I2w10

P01

P02

450.1

445.2

447.5

0.169

0.122

0.174

130

447.6

0.155

-53

-0.441055728

420.2

416.4

417.3

0.137

0.098

0.141

417.9666667

0.125333333

0.110212571

400.0

397.3

397.8

0.121

0.086

0.125

398.3666667

0.110666667

0.536937095

380.4

376.6

377.2

0.109

0.077

0.111

0

378.0666667

0.099

0.678716592

360.2

358.2

358.3

0.098

0.071

0.101

358.9

0.09

0.714962718

330.1

328.6

328.0

0.085

0.059

0.086

328.9

0.076666667

0.755584182

300.1

299.6

298.6

0.076

0.055

0.076

299.4333333

0.069

0.782434818

260.2

259.9

258.3

0.066

0.046

0.065

259.4666667

0.059

0.791999821

220.2

220.6

219.2

0.059

0.042

0.060

220

0.053666667

0.782405785

190.5

190.2

189.0

0.054

0.037

0.053

189.9

0.048

0.823410731

4纯电阻负载实验

实验线路图如图所示,变压器低压线圈接电源,高压线圈经开关S接三相负载电阻Rl.1将负载电阻R

l调至最大,合上开关S1接通电源,调节交流电压,使变压器的输入电压U1=U1n

3.在保持U1=U1n的条件下,逐次增加负载电流,从空载到额定负载范围内,測取变压器三相输出线电压和相电流,共取几组数据,记录于表中,其中I=0和I2=In

两点必测

表1-4U

un=U1n

=220V,cosφ2==1

序号

U(V)

I(A)

U1u1.1v1

U1v1.1w1

U1w1.1u1

U2

I1u1

I1v1

I1w1

I2

373.9

381.6

377.75

220.5

0.816

0.613

0.410

1.0

357.6

370.0

363.8

217.6

1.334

0.865

0.396

2.0

351.3

370.4

360.85

215.3

1.855

1.122

0.389

3.0

347.9

370.5

359.2

214.7

2.111

1.248

0.385

3.5

344.2

370.2

357.2

213.3

2.388

1.386

0.384

4.0

三项变压器负载实验接线图

根据空载实验数据作出空载特性曲线并计算激参数:

U0=f(I0)

P0=f(U0)

cosΦ0

=f(u0)

计算激磁参数

从空载特性曲线查出对应于U0=U

n时的I0和P0的值,并由下面式子求取激磁参数

Rm=P0/(3I0*I0)=1960(欧)Zm=2505(欧)Xm=1560(欧)

绘出短路特性曲线和计算短路参数:

Uk=f(Ik)

Pk=f(Ik)

cosΦK

=f(Ik)

计算短路参数

从短路特性曲线查出对应于Ik=In时的Uk和Pk的值,并有计算出的实验环境温度时的短路参数

Rk‘

=4.169(欧)

Zk=3.918(欧)

Zk’=11.189(欧)

Xk‘=8.504(欧)

Uk=122.108%

Ukr=45.5%

Ukx=92.8%

变压器的电压变化率ΔU

根据试验数据,描绘出

cosφ2==1时的特性曲线U2=F(I2),由特性曲线计算出I2=I2n时的电压变化率ΔU

ΔU=0.456%

绘出被试的效率特性曲线

`

第三篇:变压器 短路电流计算经验公式

变压器 短路电流计算经验公式

发布者:admin发布时间:202_-9-27阅读:85次

电力 变压器变压器的短路电流计算有多个方法,很多手册中都有讲到,工业与民用配电设计手册第三版中有详细的说明,这里就不在赘述,大家自己看书去,还有短路电流计算的软件,也很方便,很多地方也有下载的,自己找吧。这里要说的是简单的经验公式,可以快速的计算出短路电流的大小,供大家参考。

380V低压侧短路电流计算:

1.Uk=6%时 Ik=25*Se

2.Uk=4%时 Ik=37*Se

上式中Uk:变压器的阻抗电压,记得好像是Ucc。

Ik:总出线处短路电流 A

Se:变压器容量 KVA

3。峰值短路电流=Ik*2.55

4.两相短路电流=Ik*0.866

5.多台变压器并列运行

Ik=(S1+S2+。。Sn)*1.44/Uk

第四篇:变压器的故障有开路和短路两种

变压器的故障有开路和短路两种。开路用万用表档很容易测出,短路的故障用万用表不能测出。

1、电源变压器短路的检查:(1)切断变压器的一切负载,接通电源,看变压器的空载温升,如果温升较高(烫手)说明一定是内部局部短路。如果接通电源15~30分钟,温升正常,说明变压器正常。(2)在变压器电源回路内串接一支1000瓦灯泡,接通电源时,灯泡只发微红,表明变压器正常,如果灯泡很亮或较亮,表明变压器内部有局部短路现象。

2、变压器的开路:一种是内部线圈断线,但引出线断线最常见,应该细心检查,把断线处重新焊接好。如果是内部断线或外部都能看出有烧毁的痕迹,那只能换新件或重绕。

3、变压器的重绕:取下固定夹(小变压器只能靠铁夹子紧固,大变压器是用螺丝紧固的),用改锥插入第一片硅钢的缝隙中,将第一片硅钢片撬出一缝隙,然后用钳子夹信这块硅钢片有力左右摆动,直到第一片取出为止。第一片取出后,再把其它硅钢片都取出就得到一个绕在绝缘骨架上的线圈。细心地剪开包在线圈外的绝缘纸,如果发现引出端的焊接处断开,可以重焊好。拆几十圈后发现断头,也可以接好后再按原样重新绕好。如果是烘干或断线严重,那就只能重绕了。在拆变压器时要记住它的绕向和圈数,以免重绕时出现错误。

重绕的方法:第一步应选择同型号的漆包线;第二步用手工或绕线机在原骨架上绕线,绕向应对,圈数与原变压器的圈数相差不能太多。在绕完初级线圈后,应该用绝缘纸隔开,但不能太厚,以免绕好后线圈变粗,装不进铁芯。全部绕完还要有绝缘纸包好,接好引线;再把拆下的硅钢片插好。注意:装硅钢片时不要损坏绕组,并要夹紧铁芯,以免重绕后变压器有“嗡嗡”声。

4、中周的检修:中周用万用表欧姆档测是通的,多数是好中周。

(1)断路:即用欧姆档测其直流电阻为无穷大,此时可以打开中周外壳查断线处,细心焊接好即可。

(2)短路:一般为初次级短路,可以把中周线圈的线拆开重绕一遍,一般故障可以排除。

(3)碰壳:即线圈与外壳短路,此时打开外壳,把边线处拨开即可。

(4)磁帽松动或滑扣:将中周外壳从线路板上焊下,将磁帽从尼龙支架内旋出,在磁帽和尼龙支架之间加入一根细的橡皮筋,再重新旋入磁帽。借助橡皮筋的弹力,可使磁帽较紧地卡在尼龙支架内,最后套上金属罩重新焊上线路。(5)磁帽破碎:调整中周时,经常遇到把磁帽调碎的情况,这时不必换整个中周,可以把中周外壳从线路中焊下,找一个中周磁帽换上,再把中周外壳焊入线路即可。

大型变压器一般性的维护检查项目如下:

1、变压器是否还存在设计、安装缺陷;

2、检查变压器的负荷电流、运行电压是否正常;

3、检查变压器有无渗漏油的现象,油位、油色、温度否超过允许值,油浸自冷变压器上层油温一般在85℃以下,强油风冷和强油水冷变压器应在75℃以下;

4、检查变压器的高、低压瓷套管是否清洁,有无裂纹、破损及闪络放电痕迹;

5、检查变压器的接线端子有无接触不良、过热现象;

6、检查变压器的运行声音是否正常;正常运行时有均匀的嗡嗡电磁声,如内部有噼啪的放电声则可能是绕组绝缘的击穿现象,如出现不均匀的电磁声,可能是铁芯的穿芯螺栓或螺母有松动。

7、检查变压器的吸湿剂是否达到饱和状态;

8、检查变压器的油截门是否正常,通向气体继电器的截门和散热器的截门是否处于打开状态;

9、检查变压器的防爆管隔膜是否完整,隔膜玻璃是否刻划有“十”字;

10、检查变压器的冷却装置是否运行正常,散热管温度是否均匀,有无油管堵塞现象;

11、检查变压器的外壳接地是否良好;

12、检查瓦斯继电器内是否充满油,无气体存在;

13、对室外变压器,重点检查基础是否良好,有无基础下沉,对变台杆,检查电杆是否牢固,木杆、杆根有无腐朽现象。

14、对室内变压器,重点检查门窗是否完好,检查百叶窗铁丝纱是否完整;

15、其他应该检查的项目。

变压器的故障种类较多,但常见的故障现象也不外乎短路、断路和漏电等几种。产生这些故障的原因可归纳为3个方面:一是设计有错误;二是制作质量差;三是使用条件超过了设计要求。

当变压器绕组发生短路时,所产生的现象是变压器温度过高、有焦臭味、冒烟、输出电压降低、输出电压不稳定等。若发现这些现象时,则应立即切断电源,进行检查。产生短路的主要原因有:由于变压器受潮使内部发霉,日久会使绝缘层损坏,造成严重漏电或短路;或由于变压器绝缘材料日久老化、绝缘性能降低,引起绝缘击穿,造成短路。另外电源电压突然升高也可引起绝缘击穿、绕组短路。

变压器断路时无输出电压,一次侧输入电流很小或无输入电流。产生断路的主要原因有:外部引线断线;引线与焊片脱焊;线包经碰撞断线和受潮后发生内部霉断等。

找到变压器产生的故障原因后,即可进行修理。对于外部故障,若断线、脱焊,则可重新焊接和冥换新线;若引出线端子和铁心之间打火或端子之间打火造成绝缘烧焦的,则应适当拉开端子与铁心、或端子与端子之间的距离;若绝缘层烧焦,则应予以更换或除去其烧焦部分并用环氧树脂胶封闭。

对于因受潮而产生短路或空载损耗大的变压器,若线圈已发生短路,则必须将短路的线包拆除并重新绕制。一般因受潮而还未造成短路的变压器,切记不要通电,以免造成绝缘层击穿,可放人干燥箱进行烘干,恢复它的绝缘性能。

若空载损耗大,但绝缘电阻(线圈之间、线圈与扣铁心之间)正常的变压器,对于其可能存在铁心的质量差、铁损大,或者线圈有局部短路的情况,则可用短路测试仪等进行检查,排除故障后再继续用。若确实查明发生在变压器内部的断线、短路等故障,则必须拆卸变压器进行修理时,可按以下步骤进行。

第一步拆卸铁心。变压器往往灌注沥青、蜡等材料,拆卸前应加热使其溶化脱离变压器,另外应将变压器引线从端子上焊掉,取下固定夹板,用螺钉旋具撬起第一片硅钢片,然后用钳子将硅钢片一片一片地拉出来。取出硅钢片时,必须要小心,不要损坏线圈引线,同时要避免硅钢片折断和弯曲。然后,将取出的硅钢片收集在一起,用纸包好,以免丢失和损坏绝缘。

第二步拆卸线圈。取出铁心后,首先对线圈外观作一次检查,看外观无损坏,然后再次用绝缘电阻表检查故障究竟发生在哪一个线圈,以便有目的地拆卸。拆卸时要注意记下层间绝缘、导线直径、每层圈数和层数等,以便重新绕制时参考。同时,应注意保护导线绝缘漆的表皮,以便再次使用;还要特别注意查找和发现线圈短路和断路的原因。当找到发生故障的部位并进行处理后,可按原来绕制方法重新绕制,并在绕制和修复后,进行全面测试和检查。待在各项指标均符合要求后,方可继续使用。

第五篇:变压器运行中短路损坏的原因分析

变压器运行中短路损坏的原因分析

【内容摘要】

通过近几年短路造成变压器损坏的具体实例分析,主要原因由于低压侧过载、违章加油等。在、就该原因提出了防止变压器损坏的对策。【关键字】:配电变压器 过载 损坏

论文内容:

一、原因分析

在广大农村,配电变压器时常损坏,特别是在农村用电高峰期和雷雨季节更是时有发生,笔者通过长期跟踪调查发现导致配电变压器损坏的主要原因有以下几个方面:

一)、过载

一是随着人们生活的提高,用电量普遍迅速增加,原来的配电变压器容量小,小马拉大车,不能满足用户的需要,造成变压器过负载运行。二是由于季节性和特殊天气等原因造成用电高峰,使配电变压器过载运行。由于变压器长期过载运行,造成变压器内部各部件、线圈、油绝缘老化而使变压器烧毁。

二)、绕组绝缘受潮

一是配电变压器的负荷大部分随季节性和时间性分配,特别是在农村农忙季节配电变压器将在过负荷或满负荷下使用,在夜晚又是轻负荷使用,负荷曲线差值很大,运行温度最高达80℃以上,而最低温度在10℃。而且农村变压器容量小没有安装专门的呼吸装置,多在油枕加油盖上进行呼吸,所以空气中的水分在绝缘油中会逐渐增加,从运行八年以上的配电

变压器的检修情况来看,每台变压器底部水分平均达100g以上,这些水分都是通过变压器油热胀冷缩的呼吸空气从油中沉淀下来的。二是变压器内部缺油使油面降低造成绝缘油与空气接触面增大,加速了空气中水分进入油面,降低了变压器内部绝缘强度,当绝缘降低到一定值时变压器内部就发生了击穿短路故障。

二)、运行中注意事项

对配电变压器在运行管理中必须做好如下内容:

1、在使用配电变压器的过程中,一定要定期检查三相电压是否平衡,如严重失衡,应及时采取措施进行调整。同时,应经常检查变压器的油位、温度、油色正常,有无渗漏,呼吸器内的干燥剂颜色有无变化,如已失效要及时更换,发现缺陷及时消除。

2、定期清理配电变压器上的污垢,必要时采取防污措施,安装套管防污帽,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期摇测接地电阻。

3、避免三相负载不平衡运行。变压器三相负载不平衡运行,将造成三相电流的不平衡,此时三相电压也不平衡。对三相负载不平衡运行的变压器,应视为最大电流的负荷,若在最大负荷期间测得的三相最大不平衡电流或中性线电流超过额定电流的25%时,应将负荷在三相间重新分配。

4、防止二次短路。配电变压器二次短路是造成变压器损坏的最直接的原因,合理选择配电变压器的高低压熔丝规格是防止低压短路直接损坏变压器的关键所在。一般情况下平配电变压器的高压侧(跌落保险)熔丝选择在1.2~1.5倍高压侧额定电流以内,低压侧按额定电流选用,在此情况下,即使发生低压短路故障,熔丝也能对变压器起到应有的保护作用。

几种变压器的短路问题
TOP