首页 > 精品范文库 > 11号文库
活性污泥的培养与驯化(汇编)
编辑:深巷幽兰 识别码:20-672575 11号文库 发布时间: 2023-09-03 09:11:16 来源:网络

第一篇:活性污泥的培养与驯化

一、活性污泥的培养与驯化

(一)活性污泥的培养

城市占水或与之类似的工业废水,由于营养和菌种都已具备,可用其初步沉淀水调整BOD5至200~300mg/L后,在曝气池内进行连续曝气,一般在15~20℃下经一周丐孟全出金活性污泥絮体,要及时适当地换水和排放剩余污泥,以补充营养和排除代谢产物。换水的方法分间断换水和连续换水。

间断换水--混合液在曝气到开始出现活性污泥絮体后,即停止曝气,静止沉淀1~l.5h,排放约占总体积60~70%的上清液,再补充生活污水或粪便水,继续曝气。当沉降比大于30%时,说明池中混合液污泥浓度已满足要求。第一次换水后,应每天换水一次,这样重复操作7~10d,便可达到活性污泥成熟。此时,污泥具有良好的凝聚和沉降性能,含有大量的菌胺团和纤毛虫类原生动物,并可使BOD5去除率达95%左右。

连续换水--当池容积大采用间断换水有困难时,可改用连续换水。即当池中出现活性污泥絮体后,可连续地向池内投加生活污水,并连续地出水和回流,其投加量可控制在池内每天换水一次的程度。回流污泥量可采用进水量的50%。当水温在15~20℃时,污泥经两周左右即可培养成熟。

(二)活性污泥的驯化

如果工业废水的性质与生活污水相差很大时,用生活污水培养的活烽污泥应用工业废水进行驯化。驯化的方法是混合液中逐渐增加工业废水的比例,直到达到满负荷。

为了缩短培养和驯化时间,可将两个阶段合并起来进行。就是在培养过程中,不断地加入少量的工业废水,使微生物在培养过程中逐渐适应新的环境。

二、活性污泥运行中常见的问题

(一)污泥膨胀

二次沉淀池或加速曝气池的沉淀区,有时出现污泥的膨胀与上浮现象。这时,污泥结构松散,沉降性差;造成污泥上浮而随水流失。这样不仅影响出水水质,而且由于污泥大量流失,使曝水池中混合液浓度不断降低,严重时甚至破坏整个生化处理过程。

广义地把活性污泥的凝聚性和沉降性恶化,以及处理水混浊的现象总称为活性污泥的膨胀。就字面看,活性污泥的膨胀是指污泥体积增大而密度下降的现象。描述污泥膨胀程度的指标有30min沉降比、污泥体积指数和污泥密度指数。

污泥虚胀上浮的原因很多,除了理化、生物及生化方面的原因外,还有运行管理和构筑物结构型式等方面的因素。污泥膨胀可大致区分为丝状体膨胀 和非丝状体膨胀两种。大多数污泥膨胀是由于丝状体膨胀,这是由于丝状微生物大量繁殖,菌胶团的繁殖生长受到抑制的结果。丝状体对活性污泥絮体起仲架作用,如果没有足够的丝状体,形成的绒絮不牢固,在曝气池紊动水流的冲击下,容易被破碎成细小的针点体。这时,污泥沉降快,SVI低,但出水混浊,这叫做非丝状体膨胀。

当丝状体过多,长出一般絮体的边界而伸入混合液时,其架桥作用妨碍了絮体间的密切接触,致使沉降较馒,密实性差和SVI高,但这时的上清液可能报清。

当丝状体存在的数目足以形成适宜的絮体督架而无显著分枝伸入溶液时,絮体大而浓密、沉降性好、SVI低、上清液清净,这叫做非膨胀污泥。

以沉使过的生活污水为料液的试验表明,丝状体长度小于107μm/mL者,为非膨胀污泥;反之为膨胀污泥。导致丝状体大量繁殖的原因有:(1)溶解氧浓度 曝气池内溶解氧在0.7~2.0mg/L范围内,虽然都可能出现丝状微生物,但在低溶解氧条件下却能生长良好,甚至能在厌氧条件下残存而不受影响。所以城市污水厂的曝气池溶解氧最低应保持在2mg/L左右。(2)冲击负荷 如果曝气池内有机物超过正常负荷,污泥膨胀程度提高,使絮体内部溶解氧消耗提高,在菌胶团内部产生了适宜丝状体生长的低溶解氧条件,从而促使丝状微生物的分枝超出絮体,伸入溶液。丝状体的分枝为细菌的聚合和较大絮体的形成提供了延伸的骨架,加剧了氧的渗透困难,从而又导致了内部丝状体的发展。(3)进水化学条件的变化一首先是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。其二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。其三是碳水化合物过多会造成膨胀。其四是有毒重金属的冲击负荷可抑制丝状菌,但不能使丝状菌消失并产生针点絮体,造成出水悬浮物提高和SVI降低。还有pH值和水温的影响,丝状菌灾在高温下生繁殖,而菌胶团则要求温度适中;丝状菌宜在酸性环境(pH值=4.5~6.5)中生长,菌铰团宜在pH值=6~8的环境中生长。

解决污泥膨胀的办法因产生原因而异,概括起来就是预防和抑制。预防就要加强管理,及时监测水质、曝气池污泥沉降比、污泥指数、溶解氧等,发现异常情况,及时采取措施。污泥发生膨胀后,要针对发生膨胀的原因,采取相应的制止措施:当进水浓度大和出水水质差时,应加强曝气提高供氧量,最好保持曝气池溶解氧在2mg/L以上;加大排泥显,提高进水浓度,促进微生物新陈代谢过程,以新污泥置换老污泥:曝气池中合碳高而倔碳氮比失调时,投加含氮化合物;加氯可以起凝聚和杀菌双重作用,在回流污泥中投加漂白粉或液氯可抑制丝状菌生长(加氯量按干污泥的0.3~0.4%估计),调整pH值。

(二)污泥上浮

(1)污泥脱氮上浮 在曝气池负荷小而供氧量过大时,出水中溶解氧可能很高,使废水中氨氮被硝化菌转化为硝酸盐,此过程称为硝化。这种混合液若在二沉池中经脚较长时间的缺氧状态(DO在0.5mg/L以下),则反硝化菌会使硝酸盐 转化成氨和氮气,此过程称为反硝化。反硝化过程中形成的氨重新溶于水,只有氮以气体形式存在于水中。当活性污泥上氮气吸附过多时,由于比重降低,污泥就随气体浮上水面。防止污泥脱氮上浮的办法有:减少曝气,防止硝化出现;及时排泥,增加回流量,减少活泥在沉淀池中的停留时间;减少曝气池进水量,以减少二沉池中的污泥量。

(2)污泥腐化上浮 在沉淀池内污泥由于缺氧而腐化(污泥产生厌氧分解)。产生大量甲烷及二氧化碳气体附着在行泥体上,使污泥比重变小而上浮,上浮的污泥发黑发臭。造成污泥腐化的原因有:二沉池内污泥停留时间过长;局部区域污泥堵塞。解决腐化的措施是加大曝气量,以提高出水溶解氧含量;疏通堵塞,及时排泥。

此外,曝气池结构尺寸不合理,也能引起污泥上浮,主要是污泥回流缝太大,使大量微气泡从缝隙中窜出,携带污泥上浮;还有导流区断面太小,气水分离较差,影响污泥沉淀。

(三)污泥的致密与减少

污泥体积指数减少会使污泥失去活性。在运行中,虽不及前一问题重要,但也应引起足够重视。

引起污泥致密、活性降低的原因有:进水中无机悬浮物突然增多;环境条件恶化,有机物转化率降低;有机物浓度减小。

造成污泥减少的原因有:有机物营养减少;曝气时间过长;回流比小而剩余污泥排放量大;污泥上浮而造成污泥流失等。

解决上述问题的方法有:投加营养料;缩短暖气时间或减少曝气量矿调整回流比和污泥排放量;防止污泥上浮,提高沉淀效果。

(四)泡沫问题

当废水中含有合成洗涤剂及其它起袍物质时,就会在曝气池表面形成大量泡沫,严重时泡沫层可高达1m多。

泡沫的危害表现为:表面机械曝气时,隔绝空气与水接触,减小以至破坏叶轮的充氧能力;在泡沫表面吸附大量活性污泥固体时,影响二沉池沉淀效率,恶化出水水质;有风时随风飘散,影响环境卫生。

抑制泡沫的措施有:在曝气池上安装喷洒管网,用压力水(处理后的废水或自来水)喷洒,打破泡沫;定时投加除沫剂(如机油、煤油等)以破除泡沫。油类物质投加量控制在0.5~1.5mg/L范围内,油类也是一种污染物质,投量过多会造成二次污染,且对微生物的活性也有影响;提高曝气池中活性污泥的浓度,这是一种比较有效的控制泡沫的方法。如果袍沫十分严重,在设计时,应考虑用鼓风曝气式活性污泥法系统。

三、活性污泥法运行中需要测定的主要项目

(1)反映污泥情况的项目 污泥沉降比--最好2~4h测定一次,一般而言,以SV<30%为好;污泥指数--在标准活性污泥法里,以SVI=50~150为理想,达到200以上则认为污泥可能膨胀;曝气池混合液悬浮固体浓度MLSS或MLVSS--标准活性污泥法中,通常MLSS=1500~2000mg/L。生物相的显微镜观察--好的活性污泥在显微镜下看不到或很少看到分散在水中的细菌,看到的是一团团结构紧密的污泥块;不太好的活性污泥,在显微镜下可以看到丝状菌,亦可看到一团团污泥块;很差的活性话泥,则丝状菌很多;鞭毛虫和游动型纤毛虫只能车有大量细菌时才出现;固着型纤毛虫(如钟虫),存在于有机物很少,BOD5在5~10mg/L左右的废水中;轮虫在水质十分稳定、溶解氧充分时才出现。

(2)反映污泥营养的项目属于污泥营养的测定项目有:BOD5;出水氨氮(至少1mg/L);出水磷(至少1mg/L);溶解氧(不低于l~2mg/L);二沉池出水DO不低于0.5mg/L。

(3)反映污泥环境条件及处理效果的项目水温、pH值、生化需氧量。化学需氧量、有毒物质。

向好氧池注入清水(同时引入生活污水)至一定水位,并注意水温。2.按风机操作规程启动风机,鼓风。

3.向好氧池投加经过滤的浓粪便水(当粪便水不充足时,可用化粪池和排水沟内的污泥补充。),使得污泥浓度不小于1000mg/L,BOD达到一定数值。4.有条件时可投加活性污泥的菌种,加快培养速度。

5.按照活性污泥培养运行工艺对反应池进行曝气、搅拌、沉降、排水。

6.通过镜检及测定沉降比、污泥浓度,注意观察活性污泥的增长情况。并注意观察在线PH值、DO的数值变化,及时对工艺进行调整。

7.测定初期水质及排水阶段上清液的水质,根据进出水NH3-N、BOD、COD、NO3-、NO2-等浓度数值的变化,判断出活性污泥的活性及优势菌种的情况,并由此调节进水量、置换量、粪水、NH4Cl、H3PO4、CH3OH的投加量及周期内时间分布情况。

8.注意观察活性污泥增长情况,当通过镜检观察到菌胶团大量密实出现,并能观察到原生动物(如钟虫),且数量由少迅速增多时,说明污泥培养成熟,可以进生产废水,进行驯化。

二、活性污泥的驯化步骤

1.通过分析确认来水各项指标在允许范围内,准备进水。

2.开始进入少量生产废水,进入量不超过驯化前 处理能力的20%。同时补充新鲜水、粪便水及NH4Cl。

3.达到较好处理后,可增加生产废水投加量,每次增加不超过10~20%,同时减少NH4CL投加量。且待微生物适应巩固后再继续增生产废水,直至完全停加NH4Cl。同步监测出水CODcr浓度等指标,并观察混合液污泥性状。在污泥驯化期还要适时排放代谢产物,即泥水分离后上清液。

4.继续增加生产废水投加量,直至满负荷。满负荷运行阶段,由于池中已培养和保持了高浓度、高活性的足够数量的活性污泥,池中曝气后混合液的MLSS达到5000mg/1,此过程同步监测溶解氧,控制曝气机的运行,并进行污泥的生物相镜检。

三、调试期间的监测和控制

在调试及运行过程有许多影响处理效果的因素,主要有进水CODcr浓度、pH值、温度、溶解氧等,所以对整个系统通过感官判断和化学分析方法进行监测是必不可少的。根据监测分析的结果对影响因素进行调整,使处理达到最佳效果。

1、温度

温度是影响整个工艺处理的主要环境因素,各种微生物都在特定范围的温度内生长。生化处理的温度范围在10~40℃,最佳温度在20~30℃。任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时,要将它们置于最适宜温度条件下,使微生物以最快的生长速率生长,过低或过高的温度会使代谢速率缓慢、生长速率也缓慢,过高的温度对微生物有致死作用。

2、pH值

微生物的生命活动、物质代谢与pH值密切相关。大多数细菌、原生动物的最适pH值为6.5~7.5,在此环境中生长繁殖最好,它们对pH值的适应范围在4~10。而活性污泥法处理废水的曝气系统中,作为活性污泥的主体,菌胶团细菌在6.5~8.5的pH值条件下可产生较多粘性物质,形成良好的絮状物。

3、营养物质 废水中的微生物要不断地摄取营养物质,经过分解代谢(异化作用)使复杂的高分子物质或高能化合物降解为简单的低分子物质或低能化合物,并释放出能量;通过合成代谢(同化作用)利用分解代谢所提供的能量和物质,转化成自身的细胞物质;同时将产生的代谢废物排泄到体外。

水、碳源、氮源、无机盐及生长因素为微生物生长的条件。废水中应按BOD5∶N∶P=100∶4∶1的比例补充氮源、含磷无机盐,为活性污泥的培养创造良好的营养条件。

4、悬浮物质SS 污水中含有大量的悬浮物,通过预处理悬浮物已大部分去除,但也有部分不能降解,曝气时会形成浮渣层,但不影响系统对污水的处理。

5、溶解氧量DO 好养的生化细菌属于好氧性的。氧对好氧微生物有两个作用:①在呼吸作用中氧作为最终电子受体;②在醇类和不饱和脂肪酸的生物合成中需要氧。且只有溶于水的氧(称溶解氧)微生物才能利用。

在活性污泥的培养中,DO的供给量要根据活性污泥的结构状况、浓度及废水的浓度综合考虑。具体说来,也就是通过观察显微镜下活性污环保泥的结构即成熟程度,测量曝气池混合液的浓度、监测曝气池上清液中CODCr的变化来确定。根据经验,在培养初期DO控制在1~2mg/l,这是因为菌胶团此时尚未形成絮状结构,氧供应过多,使微生物代谢活动增强,营养供应不上而使污泥自身产生氧化,促使污泥老化。在污泥培养成熟期,要将DO提高到3~4mg/l左右,这样可使污泥絮体内部微生物也能得到充足的DO,具有良好的沉降性能。在整个培养过程中要根据污泥培养情况逐步提高DO。具体参见http://www.teniu.cc更多相关技术文档。

特别注意DO不能过低,DO不足,好氧微生物得不到足够的氧,正常的生长规律将受到影响,新陈代谢能力降低,而同时对DO要求较低的微生物将应运而生,这样正常的生化细菌培养过程将被破坏。

6、混合液MLSS浓度

微生物是生物污泥中有活性的部分,也是有机物代谢的主体,在生物处理工艺中起主要作用,而混合液污泥MLSS的数值即大概能表示活性部分的多少。对高浓度有机污水的生物处理一般均需保持较高的污泥浓度,本工程调试运行期间MLSS范围在:4.4~5.6g/l之间,最佳值为4.8g/l左右。⑦进水CODcr浓度,进水中有机物浓度对处理影响很大。⑧污泥的生物相镜检

活性污泥处于不同的生长阶段,各类微生物也呈现出不同的比例。细菌承担着分解有机物的基本和基础的代谢作用,而原生动物〈也包括后生动物〉则吞食游离细菌。污水调试运行期间出现的微生物种类繁多,有细菌、绿藻等藻类、原生动物和后生动物,原生动物有太阳虫、盖纤虫、累校虫等,后生动物出现了线虫。调试运行后期混合液中固着型纤毛虫,如累校虫的大量存在,说明处理系统有良好的出水水质。

⑨污泥指数SVI,正常运行时污泥指数在801/mg左右。(谷腾水网)

如果您有污水需要处理,可以将您的排污量、污水水质以及排放要求发布到污水宝,符合要求的环保企业获知您的污水处理需求后,主动与您沟通并为您提供参考解决方案。您可以货比三家选择您最满意的!

第二篇:《活性污泥的培养与驯化》

活性污泥的培养与驯化2 转载:环境技术论坛的一片文章 查询

活性污泥的培养与驯化

1、活性污泥的培养(1)引生活污水调节BOD5至200~300mg/L,在曝气池内进行连续曝气,一般在15~20℃下经一周,出现活性污泥絮体,掌握换水和排放剩余污泥,以补充营养和排除代谢产物。当出现大量絮体时停止曝气,静止沉淀1~l.5h,排放约占总体积60~70%,调节生活污水进水量,继续曝气,当沉降比接近30%时,说明池中混合液污泥浓度已满足要求。从引水—暴气—暴气—污泥成熟—具良好凝聚和沉降性。一般7~10天为周期,BOD5去除率达95%左右。(2)扩大培养。连续换水—暴气—投入使用,回流50%,两周成熟,投入正常运行。

2、活性污泥的驯化

如果进行工业废水处理,则在培养成熟的活性污泥中逐渐增加工业废水的比例,直到满负荷,活性污泥正常运行为正。活性污泥洛运行中常见的问题

1、污泥膨胀

正常的活性污泥沉降性能好,其SVI约为50—150之间为正常。SVI=活性污泥体积/MLSS,当SVI>200并继续上升时,称为污泥膨胀(1)丝状菌繁殖引起的膨胀

原因:污泥中丝状菌过渡增长繁殖的结果,丝状菌作为菌胶团的骨架,细菌分泌的外酶通过丝状菌的架桥作用将千万个细菌凝结成菌胶团吸附有机物形成活性污泥的生态系统。但当丝状菌大量生长繁殖,活性菌胶团结构受到破坏,形成大量絮体而漂浮于水面,难于沉降。这种现象称为丝状菌繁殖膨胀。丝状菌增长过快的原因:

a、溶解氧过低,<0.7—2.0mg/l b、冲击负荷——有机物超出正常负荷,引起污泥膨胀 c、进水化学条件变化:

一是营养条件变化,一般细菌在营养为BOD5:N:P=100:5:1的条件下生长,但若磷含量不足,C/N升高,这种营养情况适宜丝状菌生活。二是硫化物的影响,过多的化粪池的腐化水及粪便废水进入活性污泥设备,会造成污泥膨胀。含硫化物的造纸废水,也会产生同样的问题。一般是加5~10mL/L氯加以控制或者用预曝气的方法将硫化物氧化成硫酸盐。

三是碳水化合物过多会造成膨胀。

四是pH值和水温的影响,pH过低,温度高于35度易引起丝状菌生长。解决办法:

a、保持一定的活性污泥浓度,控制每天排除污泥的净增量,控制回流比。b、控制F/M(污泥负荷)调节进水和回流污泥 c、保持污泥龄不变

Lo——进水有机物浓度;X——MLSS浓度; Sr——回流污泥浓度;Qw——回流污泥量

d、污泥膨胀严重时投加铁盐絮凝剂或有机阳离子凝聚剂。(2)非丝状菌膨胀

非丝状菌膨胀原因是污泥含有大量表面附着水,水质含有很高的碳水化合物而含N量低,当这些碳水化合物被细菌降解时形成多糖类物质,使代谢产物表面吸附表面水,说明C/N比失调或水温过低。

解决办法:增加N的比例,引进生活污水以增加蛋白质的成分,调节水温不低于5度。

2、污泥上浮

(1)污泥脱氮上浮

污水在二沉池中经过长时间造成缺氧(DO在0.5mg/L以下),则反硝化菌会使硝酸盐转化成氨和氮气,在氨和氮逸出时,污泥吸附氨和氮而上浮使污泥沉降性降低。

解决办法:减少在二沉池中的停留时间,及时排泥,增加回流比。(2)污泥腐化上浮

在沉淀池内污泥由于缺氧而引起厌氧分解,产生甲烷及二氧化碳气体,污泥吸附气体上浮。

解决办法:加大曝气池供氧量,提高出水溶解氧,减少污泥在二沉池中的停留时间,及时排走剩余污泥。

3、产生泡沫

废水中含洗涤剂等表面活性物质

解决办法:曝气池安喷洒清水管网或适当喷洒酸、碱等除泡剂。引起活性污泥膨胀、上浮的主要因素有如下几方面的原因:

a)、进水水质有过量的表面活性物质和油脂类化合物; PH值的被动,当PH值的增加超过一定范围后,絮凝作用下降,形起活性污泥脱絮; c)、碱度的偏高,由于进水碱性而调PH值,虽具中和碱性物质,但也产生了盐,盐溶液浓度增大形成渗透压发生突变,就会使其细胞脱水而死或胀破而亡而工程经验当活性污泥反应池内碱度超过通常数倍时,多时情况下就会发生污泥上浮;

d)、温度对活性污泥中微生物的影响幅度。一般好氧活性污泥适宜温度范围在15-35℃,超过45℃大部分活性污泥就要残废而上浮;

e)、致毒性底物包括CODcr浓度骤然升高、含酚及其衍生物,醇、醛和某些有机酚、硫化物、重金属及卤化物过高等;

f)、Do(溶解氧)过高,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也块,但时间一久,污泥被打得又轻又碎(但天气论),象雾花片似风飘满池面,随水流走。

Do甚低,污泥缺氧呈灰色,若缺氧过久则呈黑色,并常常有小气泡;

g)、反硝化引起的污泥上浮,当废水中总氮或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池厌氧,NO3-就会还原为N2,N2被活性污泥絮凝体所吸附,使得活性污泥比重<1而上浮;

h)、池底积泥引起的污泥上浮,污泥腐化产生CH4,H2S后上浮; i)、由于废水运行工况的水温和污泥负荷不能衡定,水质微生物菌种营养源缺铁,会引起菌种兑变成微丝菌,一般称丝状菌繁生而引起活性污泥上浮。

3、其它方面对污泥膨胀的影响 1)污水种类

污水种类对污泥膨胀有着明显的影响。通常来说,那些含有易生物降解和溶解的有机成份,特别是低分子量的烃类、糖类和有机酸类等类型基质的污水易引起污泥膨胀,例如酿酒、乳品、石化和造纸废水等。2)营养成分的不3)均衡

当污水中N、P不足时,易引起污泥膨胀的发生。通宵认为,N、P的合适比例为BOD5:N:P=100:5:1。很多研究表明许多丝状菌对营养物质N、P有着较强的亲和力,这可能就是缺乏营养物质导致污泥膨胀的原因。

4)pH值与温度

一般认为pH偏低易引起丝状菌的大量繁殖。而温度的对丝状菌的影响也是很普遍的。例如,冬天Microthix parvicella在丝状菌群中占优势,而温暖季节时Nocardia form,0041型或Nostocoida limnicda较易大量繁殖。

另外污水在进水处理系统前的早期厌氧消化产生的有机酸和硫化氢也可能导致污泥膨胀的发生。硫磺菌的的贝氏硫菌、硫丝菌等能从硫化氢氧化中获取能量。而这么细菌以非常长的丝状性增殖,有时能长达1厘米,从而导致污泥膨胀的发生。

2、污泥膨胀的一般解决办法 第一类:应急措施

适用于临时应急,主要方法是投加药物增强污泥沉降性能或是直接杀死丝状菌。投加铁盐铝盐等混凝剂可以直接提高污泥的压密性保证沉淀出水。另外,投加一些化学药剂,如氯气,加在回流污泥中也可以达到消除污泥膨胀现象。投加过氧化氢和臭氧也可以起到破坏丝状菌的效果。采用这种方法一般能较快降低SVI值,但这些方法并没有从根本上控制丝状菌的繁殖,一旦停止加药,污泥膨胀现象可以又会卷土重来。而且投药有可能破坏生化系统的微生物生长环境,导致处理效果降低,所以,这种办法只能做为临时应急时用。

第二类:改善生化环境

污水厂发生污泥膨胀的时候,一般无法从工艺流程、池型和曝气方式的改变来解决,只能在正在运行的流程基础上通过改变生化池内的微生物生长环境来抑制或消除丝状菌的过度繁殖。在不同的工艺和水质的情况下,很难有一个放之四海而皆准的解决方案。但生化工艺常遇见的几种应该注意的问题必须加以注意。1)污水性质的控制

首先应该检查和调整pH值,当pH值低于5以下时,不仅对污泥膨胀会有利,而且对正常的生化反应也会有一定的危害,所以当pH值偏低时应及时调整。另外在北方寒冷地区一定应注意冬季时的水温,若水温偏低应加热,因为低温也会导致污泥膨胀的发生。采用鼓风曝气能有效的在冬季较高的水温。当污水中营养成份不足或失衡时,应补充投加。N、P含量应控制在BOD:N:P=100:5:1左右。

若污水处理生化系统前已有消化现象的发生,产生的低分子有机酸将有利于丝状菌的生长,这时可以对废水在调节池内预曝气来加以改善。一般采用空气扩散器向3-5米有效水深的调节池曝气,供气量可以控制在0.5-1.0m3/废水米3·小时。它能使调节池的废水保持新鲜,并有效防止由于厌氧所会带来的臭气。2)保持池内足够的溶解氧对于高负荷的生化系统特别重要,3)一般至少应控制DO>2毫克/L。

4)沉淀池内的污泥应及时排出或回流,5)防止其发生厌氧现象。若发生厌氧现象,6)产生的各种气体吸附在污泥上,7)也会使污泥上浮,8)沉降性能变差。而9)且发生厌氧的污泥回流也会引发丝状菌的大量繁殖。这种情况时除排泥和清除沉淀池内的死角,10)并缩短污泥在池内的停留时间外,11)还应提高曝气池DO值,12)使出入沉淀池的水保持较的溶解氧,13)或者在污泥回流进入生化池前曝气再生。如左图所示。在解决了以上问题后,如果污泥膨胀现象仍得不到控制,就得根据实际情况加以分析,下面针对几中常见的工艺提出一些指导性的方法,供污水处理工作者参考。A.高负荷活性污泥工艺

目前国内对活性污泥工艺的设计通常采用中等负荷(0.3KgBOD5/(kgMLSS·d)),而在实际中人们从经济角度考虑总是采用较高的负荷,所以高负荷下的污泥膨胀在中国具体较为广泛的意义。在高负荷情况下,最常见的是DO不足,所以先采取提高气水比,强化曝气,在推流式曝气池内首端采用射流曝气等方式,观察一段时间,找出问题的所在。

如果在以上措施采取后一段时间情况仍无好转,则可考虑在曝气池头部加设软填料。这一部份对于有机酸去除率很高,从而去除丝状菌的生长促进因素,帮助絮状菌生长。这个方法比较有效,但造价较高,且对以后的维修管理造成不便。或者在曝气池前设置一个水力停留时间约为15min的选择器,一般能很有效的抑制丝状菌的生长。

对于间歇式进水的SBR工艺来说,反应器本身是完全混合式的,而且在时间上其污染物的基质就存在浓度梯度,所以无需再另设选择器。通常间歇式SBR工艺产生污泥膨胀的原因是,污泥浓度过高,而进水有机物浓度偏低或水量偏小而导致污泥负荷偏低。对于这种情况,降低排出比,提高基质初始浓度,并对SBR强制排泥,一般就能够对污泥膨胀现象进行有效的控制。而对于连续进水的SBR如ICEAS和CASS等工艺如果发生污泥膨胀的话,就有必要在进水端设置一个预反应区或生物反应器了。B.低负荷活性污泥工艺

低负荷活性污泥工艺曝气池内基质浓度较低,丝状菌容易获得较高的增长效率,所以是最容易产生污泥膨胀。除了在水质和曝气上想办法外,最根本和有效的是将曝气池分成多格且以推流方式运行,或增设一个分格设置的小型预曝气池作为生物选择器,在这个选择器内采用高污泥负荷,吸附部分有机物并消除有机酸。这个办法不但有助于抑制污泥膨胀,并能有效的改善生化处理效果。在曝气池内增加填料的方法也同样在低负荷完全混合工艺中适用。

对于A/O和A2/O工艺可通过在在好氧段前设置缺氧段和厌氧段以及污泥回流系统,使混合菌群交替处于缺氧和好氧状态,并使有机物浓度发生周期性变化,这既控制了污泥膨胀又改善了污泥的沉降性能。而交替工作式氧化沟和UNITANK工艺等连续进水的系统因为其本身在时间和空间上就有了实际上的“选择器”,所以对污泥膨胀有着效强的控制能力。如果这两种工艺发生污泥膨胀,则可通过调整曝气控制溶氧量和控制回流污泥量来调节池内的污泥负荷及DO,通过一段时间的改善,一般能够控制住污泥膨胀现象。

3、总结

总的来说,污泥膨胀由于丝状菌的种类繁多,且生长适宜的环境也不尽相同。在不同工艺不同水质的情况下,微生物的生长环境非常微妙,这就要求发生污泥膨胀时,需要水处理工作者根据实际情况作大量切实的实验和分析,大胆实践,才能解决污泥膨胀问题。这里对本文观点作一个总结。丝状菌是生长处理微生物中不可缺少的一部份。污泥膨胀现象在于丝状菌的过度生长,消除污泥膨胀的根本在于使丝状菌与活性污泥菌胶团平衡生长;完全混合式较推流式更产生污泥膨胀,低污泥负荷较高污泥负荷易易产生污泥膨胀;进水水质在水温、pH、营养成份及是否有处理前的消化反应等方面是处理污泥膨胀应该首先考察的问题;高负荷下的污泥膨胀一般在于溶氧不足;低负荷下的污泥膨胀采用生物选择器是行之有效的办法。由于丝状菌的多样性,关于污泥膨胀的理论解释和实际报道仍有很多不尽一致,引起活性污泥上浮的主要因素 进水水质

过量的表面活性物质和油脂类化合物

这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮[1-3]。2 pH值冲击

过高或过低的pH值会影响活性污泥微生物胞外酶及存在于细胞质和细胞壁里酶的催化作用以及微生物对营养物质的吸收。当连续流曝气反应池内pH<4.0或pH>11.0时,多数情况下活性污泥中微生物活性受到抑制,或失去活性,甚至死亡,以致发生污泥上浮[4]。用SBR法处理啤酒废水和化工废水的实验结果表明:当进水pH值为2.5-5.0和10.0-12.0时,pH值越低(或越高),污泥活性受抑制越严重,上浮污泥量越多。控制低pH值(3.5-7.0)的反应周期内pH值不变,两种废水的活性污泥在pH≤5.5时就开始出现污泥上浮[5-6]。另一方面,随着pH值的增加,由于胞外聚合物(Extra Celluar Polymer)的电离官能团增加,活性污泥絮凝作用增加(尽管带的负电性增加),但当pH值超过一定范围后,絮凝作用下降。可见,这时的电排斥作用增加,也会造成活性污泥脱絮(悬浮、不絮凝、反絮凝(deflocculation)和上浮[6]。盐含量的影响

对进水的pH值调整不能消除碱度对活性污泥的影响。对碱性进水调pH值,虽然中和了碱性物质,但产生了盐。盐溶液浓度不同其渗透压也不同,渗透压是影响微生物生存的重要因素之一[7]。如微生物所处的溶液渗透压发生突变,就会导致细胞死亡。4 水温过热

组成活性污泥的微生物适合的温度范围一般为15-35℃,超过45℃时会使活性污泥中大部分微生物死亡而上浮(经过长期驯化的或特殊微生物除外)[8]。另外,Klaus Kriebitzsch等在用SBR工艺测定温度对细胞内酶活性影响的试验中也发现,温度在20、30和40℃时酶活性较好,大于50℃之后,酶的活性明显下降。致毒性底物 对好氧活性污泥微生物有致毒作用的底物主要包括:含量过高的COD、有机物(酚及其衍生物,醇,醛和某些有机酸等)、硫化物、重金属及卤化物。高底物浓度可与细胞酶活动中心形成稳定的化合物,导致基质不能接近,无法被降解,甚至使细胞中毒死亡。重金属离子进人细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。微量的重金属离子还能在细胞内不断积累最终对微生物发生毒害作用(微动作用)。卤化物最常见的是碘和氯,碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。氯与水合成次氯酸,其分解产生强氧化剂。而且废水中有机物的突变,使原被驯化好的并能降解有机毒物的微生物减少或消失。2 工艺运行 1 过量曝气

微生物处于饥饿状态而引起自身氧化进人衰老期,池中溶解氧浓度(DO)上升;或者由于污泥活性差,曝气叶轮线速度过高,供氧过多。总之,DO上升,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也快,但时间一久,污泥被打得又轻又碎(但无气泡),象雾花片似的飘满沉淀池表面,随水流走。这种污泥色浅,活性差,耗氧速率下降,污泥体积和污泥指数增高,处理效果明显降低。2 缺氧引起的污泥上浮

污泥呈灰色,若缺氧过久则呈黑色,并常带有小气泡。

反硝化引起的污泥上浮

当废水中有机氨化合物含量高或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池积泥或停留时间过长,NO3-还原产生的N2会被活性污泥絮凝体所吸附,使得活性污泥上浮。4 回流量太大引起的污泥上浮

回流量突增,会使气水分离不彻底,曝气池中的气泡带到沉淀区上浮,这种污泥呈颗粒状,颜色不变,上翻的方向是从导流区壁直向沉淀区壁成湍流翻动。5 二沉池池底积泥引起的污泥上浮

如果二沉池底泥发酵,产生的CO2和H2也会附聚在活性污泥上,使污泥比重降低而上浮。污泥腐化产生CH4、H2S后卜浮,首先是一个个小气泡逸出水面,紧接着有黑色污泥上浮。活性污泥丝状菌过量生长及其控制产生的污泥上浮 1 温度与负荷

微丝菌(Mocrothrix patvicella)的最佳生长条件是温度在12-15℃,污泥负荷小于0.1kg/(kg·d)。它的天然疏水性会引起活性污泥的脱水性差,最高为490mL/g。在温度高于20℃后、即使污泥负荷是0.2kg/(kg·d),M.parvicella也不增值。它打碎成30-80μm的碎片,成浮渣形式而上浮。2 表面活性物质、类脂化合物及机械应力作用

引起低负荷膨胀和污泥上浮的最频繁的丝状菌是:微丝菌、0092型、0041型。在进水中表面活性物质和类脂化合物浓度的升高、接种和机械应力也会引起放线菌(Actinomycetes)的增长。Kappeleretal观察到机械应力(如离心泵)损坏紧密的活性污泥絮凝体并导致微丝菌的过量增长[9]。3 过量投加丝状菌抑制剂

在曝气池流出槽中注人过氧化氢,数天后,丝状菌就消失,SVI从580mL/g下降至178mL/g。且过氧化氢也有确保曝气池DO和去除H2S臭味的效果。但若加人量太多会引起活性污泥的活性抑制及污泥上浮。

2.活性污泥系统的控制周期问题 处理厂对活性污泥系统很难做到时时刻刻进行调控。那么每隔多长时间就应对工艺进行调整一次呢?也就是说,工艺控制周期应该是多长?

我们首先讨论曝气系统的调节。对曝气系统可以进行所谓的实时控制,使曝气池混合液的DO值时时刻刻维持在所要求的数值。很多处理厂一般都设有DO自动控制系统,一旦DO偏离设定值,通过调节曝气量,可在几分钟或十几分钟之内使DO恢复到设定值。对曝气系统进行实时控制是必要的,因为DO太高,将使能耗增加,DO太低将抑制微生物的活性,降低处理效果。通过实时控制,可使活性污泥时刻处于好氧状态,并且不使DO成为限制性因素。

回流的作用是补充曝气流出的活性污泥。当入流水质水量变化时,自然也希望能随时调整回流比。但污水在活性污泥系统中一般要停留8h以上,以回流比进行某种调节之后,其效果可能要几小时之后才能反映出来。因此,通过回流比调节,无法控制污水水质水量的随时变化。一般情况下,每月之内可保持恒定的回流比。在运行管理中,回流比作为应付突发情况的一种暂时手段是很有用的。例如当发现二沉池泥水界面突然升至很高时,可迅速增大回流比,将水界面降下来,保证不造成污泥流失。然后再分析原因,寻找其他措施,待问题解决之后,再将回流比调回原值。回流比虽可长期保持恒定,但必须每天检查其是否合理,如不合理,可随时作调整。

排泥操作对活性污泥系统的功能及处理效果影响很大,但这种影响很慢。例如,通过调节排泥量控制活性污泥中丝状微生物的过度繁殖,其效果一般要经过2~3倍泥龄之后才能看出来。也就是说,当泥龄5d时,要经过10~15d之后才能观察到调节排泥量所带来的控制效果。因此,也无法通过排泥量操作来控制入流水质水量的日变化,当排泥量调节见效时,发生变化的那股污水早已流出系统。但排泥量的多少,应利用F/M或SRT值每天进行核算。环境技术网!综上所述,曝气系统应实时控制;回流比可在较长的时间内维持恒定,但应每天检查核算;排泥量亦可在j较长的时段内维持恒定,但应每天核算。当进入污水流量发生变化或水质突变时,应随时采取控制对策,或重新进行运行调度。

二、异常问题对策

由于工艺控制不当,进水水质变化以及环境因素变化等原因会导致污泥膨胀、生物相异常、污泥上浮、生物泡沫出现等生物异常现象,这些问题如不立即解决,最终都会导致出水质量的降低。1.污泥膨胀及其控制

污泥膨胀是活性污泥常见的一种异常现象,系指活性污泥由于某种因素的改变,产生沉降性能恶化,不能在二沉池内进行正常的泥水分离,污泥随出水流失。发生污泥膨胀以后,流出的污泥会使出水SS超标,如不立即采取控制措施,污泥继续流失会使曝气池的微生物量锐减,不能满足分解污染物的需要,从而最终导致出水BOD5也超标。活性污泥的SVI值在100左右时,其沉降性能最佳,当SVI超过150时,预示着活性污泥即将或已经处于膨胀状态,应立即予以重视。在沉降试验中,如发现区域沉降速度低于0.6m/h,也应引起重视。在活性污泥镜检中,如发现丝状菌的丰度逐渐增大,至(d)级时,应予以重视,至(e)级时,污泥处于膨胀状态。丝状菌丰度至(f)级,说明污泥处于严重膨胀状态。

污泥膨胀总体上分为两大类:丝状菌膨胀和非丝状菌膨胀。前者系活性污泥续絮体中的丝状菌过度繁殖,导致的膨胀;后者系菌胶团细菌本身生理活动异常产生的膨胀。

(1)丝状菌膨胀的存在条件及成因

正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。活性污泥中丝状菌数量太少或没有,则形不成大的絮体,沉降性能不好;丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长速率大于丝状菌,不会出现丝状菌过度繁殖;如果环境条件发生变化,丝状菌由于其表面积较大,抵抗环境变化的能力比菌胶团细菌强,其数量超过菌胶团细菌,从而过度繁殖导致丝状菌污泥膨胀。引起环境条件变化的因素有以下几个方面: 1)进水中有机物质太少,导致微生物食料不足; 2)

进水中氮、磷营养物质不足; 3)

pH值太低,不利于细菌生长; 4)

曝气池内F/M太低,微生物食料不足; 5)

混合液内溶解氧DO太低,不能满足需要; 6)水水质或水量波动太大,对微生物造成冲击。

出现以上情况之一,均可为丝状菌过度繁殖提供必要条件,导致丝状菌污泥膨胀。另外,丝状菌大量繁殖的适宜温度在25~30℃,因而夏季益发生丝状菌污泥膨胀。以上所述的丝状菌指球衣菌,当入流污水“腐化”、产生出较多的H2S(超过1~2mg/L)时,还会导致丝状菌硫磺细菌(丝硫菌)的过量繁殖,导致丝硫菌污泥膨胀。

污泥膨胀总体上分为两大类:丝状菌膨胀和非丝状菌膨胀。前者系活性污泥续絮体中的丝状菌过度繁殖,导致的膨胀;后者系菌胶团细菌本身生理活动异常产生的膨胀。

(1)丝状菌膨胀的存在条件及成因

正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。活性污泥中丝状菌数量太少或没有,则形不成大的絮体,沉降性能不好;丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长速率大于丝状菌,不会出现丝状菌过度繁殖;如果环境条件发生变化,丝状菌由于其表面积较大,抵抗环境变化的能力比菌胶团细菌强,其数量超过菌胶团细菌,从而过度繁殖导致丝状菌污泥膨胀。引起环境条件变化的因素有以下几个方面: 1)进水中有机物质太少,导致微生物食料不足; 2)

进水中氮、磷营养物质不足; 3)

pH值太低,不利于细菌生长; 4)

曝气池内F/M太低,微生物食料不足; 5)

混合液内溶解氧DO太低,不能满足需要; 6)水水质或水量波动太大,对微生物造成冲击。

出现以上情况之一,均可为丝状菌过度繁殖提供必要条件,导致丝状菌污泥膨胀。另外,丝状菌大量繁殖的适宜温度在25~30℃,因而夏季益发生丝状菌污泥膨胀。以上所述的丝状菌指球衣菌,当入流污水“腐化”、产生出较多的H2S(超过1~2mg/L)时,还会导致丝状菌硫磺细菌(丝硫菌)的过量繁殖,导致丝硫菌污泥膨胀。

污泥膨胀总体上分为两大类:丝状菌膨胀和非丝状菌膨胀。前者系活性污泥续絮体中的丝状菌过度繁殖,导致的膨胀;后者系菌胶团细菌本身生理活动异常产生的膨胀。

(1)丝状菌膨胀的存在条件及成因

正常的活性污泥中都含有一定量的丝状菌,它是形成活性污泥絮体的骨架材料。活性污泥中丝状菌数量太少或没有,则形不成大的絮体,沉降性能不好;丝状菌过度繁殖,则形成丝状菌污泥膨胀。在正常的环境中,菌胶团的生长速率大于丝状菌,不会出现丝状菌过度繁殖;如果环境条件发生变化,丝状菌由于其表面积较大,抵抗环境变化的能力比菌胶团细菌强,其数量超过菌胶团细菌,从而过度繁殖导致丝状菌污泥膨胀。引起环境条件变化的因素有以下几个方面: 1)进水中有机物质太少,导致微生物食料不足; 2)

进水中氮、磷营养物质不足; 3)

pH值太低,不利于细菌生长; 4)

曝气池内F/M太低,微生物食料不足; 5)

混合液内溶解氧DO太低,不能满足需要; 6)水水质或水量波动太大,对微生物造成冲击。

出现以上情况之一,均可为丝状菌过度繁殖提供必要条件,导致丝状菌污泥膨胀。另外,丝状菌大量繁殖的适宜温度在25~30℃,因而夏季益发生丝状菌污泥膨胀。以上所述的丝状菌指球衣菌,当入流污水“腐化”、产生出较多的H2S(超过1~2mg/L)时,还会导致丝状菌硫磺细菌(丝硫菌)的过量繁殖,导致丝硫菌污泥膨胀。

(2)非丝状菌膨胀的存在条件及成因

非丝状菌膨胀系由于菌胶团细菌生理活动异常,导致活性污泥沉降性能的恶化。这类污泥膨胀又可分二种,一种是由于进水口含有大量的溶解性的有机物,使污泥负荷F/M太高,而进水中又缺乏足够的氧、磷等营养物质,或者混合液内溶解氧不足。高F/M时,细菌会很快把大量的有机物吸入体内,而由于缺乏氮、磷或DO不足,又不能在体内进行正常的分解代谢。此时,细菌会向体外分泌出过量的多聚糖类物质。这些物质由于分子式中含有很多氢氧基而具有较强的亲水性,使活性污泥的结合水高达400%(正常污泥结合水为100%左右),呈粘性的凝胶状,使活性污泥在二沉池内无法进行有效的泥水分离及浓缩。这种污泥膨胀有时称为粘性膨胀。

另一种丝状菌膨胀是进水中含有较多的毒性物质,导致活性污泥中毒,使细菌不能分泌出足够量的粘性物质,形不成絮体,从而也无法在二沉池内进行泥水分离。这种污泥膨胀称为低粘性膨胀或污泥的离散增长。

3)污泥膨胀的控制措施

污泥膨胀控制措施大体可分成三大类,一类是临时控制措施,另一类是工艺运行调节控制措施,第三类是永久性控制措施。

临时控制措施主要用于控制由于临时原因造成的污泥膨胀,防止污泥流失,导致SS超标。临时控制措施包括污泥助沉法和灭菌法二类。污泥助沉法系指向发生膨胀的污泥中加入助凝剂,增大活性污泥的密度,使之在二沉池内易于分离。常用的助凝剂有聚合氯化铁、硫酸铁、硫酸铝和聚丙烯酰胺等有机高分子絮凝剂。有的小处理厂还加粘土或硅藻土作为助凝剂。助凝剂投加量不可太多,否则易破坏细菌的生物活性,降低处理效果。FeCl3常用的投加量为5~10mg/L。灭菌法系指向发生膨胀的污泥中投加化学药剂,杀灭或抑制丝状菌,从而达到控制丝状菌污泥膨胀的目的。常用的灭菌剂有NaClO,ClO2,Cl2,H2O2和漂白粉等种类。由于大部分处理厂都设有出水加氯消毒系统,因而加氯量控制丝状菌污泥膨胀成为最普遍的一种方法。具体操作步骤如下:

1)运行实践及历史数据积累,确定一个临界SVI值。当污泥指数低于该临界值时,不影响二沉池的泥水分离及出水水质。该临界值为最大允许污泥指数SVIm。2)持续测定SVI超过SVIm的次数和程度,决定是否采取控制措施。3)选择最佳加氯点。首先应考虑到氯能在污泥中充分均匀混合,并尽快与丝状菌接触。其次尽量选择有机物含量较低的部位做投加点,以便降低投药量。因此,最佳加氯点是在回流污泥泵上,如果渠道上有搅拌设备,则投加点设在搅拌设备附近,如无搅拌设备,则宜设在回流泵附近。4)氯量的计算。一般按系统内的污泥总量计算加氯量:

m=K·M

式中

K--单位污泥每日加氯量,8~10kgkgCl2/(kg·d);M--系统活性污泥总量。

5)核算加氯点污泥中氯的浓度。氯是对微生物无选择性的杀伤剂既能杀灭丝状菌,也能杀伤菌胶团细菌。因此,应严格控制投加点氯的浓度。一般控制在35mg/L以下。

6)实际加氯过程中,应由小剂量逐渐进行,并随时观察SVI值及生物相。当发现SVI值低于SVIm或镜检观察到丝状菌菌丝溶液,应立即停止加氯。开始加氯量可取由(m=K·M)式计算出的加氯量的1/5,然后每日逐渐增大,一般需持续3倍泥龄长的时间能控制住。

最后需要强调,灭菌法适用于丝状菌污泥膨胀,而助沉法一般用于非丝状菌污泥膨胀。工业运行调节控制措施用于运行控制不当产生的污泥膨胀。例如,由DO太低导致的污泥膨胀,可以增加供氧来解决;由于pH值太低导致的污泥膨胀,可以通过增加预曝气来解决;由于氮磷等营养物质的缺乏导致的污泥膨胀,可以投加应用物质;由于低负荷导致的污泥膨胀,可以在不降低处理功能的前提下,适当提高F/M。另外,对混合液进行适当的搅拌,也有利于丝状菌污泥膨胀的控制。

永久性控制措施系指对现有处理措施进行改造,或设计新厂时予以充分考虑,使污泥膨胀不发生,以防为主。常用的永久性措施是曝气池前设生物选择器。通过选择器对微生物进行选择培养,即在系统内只允许菌胶团细菌的增长繁殖,不允许丝状菌大量繁殖。选择器有三种:好氧选择器、缺氧选择器和厌氧选择器。这些所谓的选择器一般只是在曝气池首端划出一格进行搅拌,使污泥与污水充分混合接触,污水在选择器中的水力停留时间一般为5~30min,常采用20min左右。好氧选择器内需对污水进行曝气充氧,使之处于好氧状态,而缺氧选择器和厌氧选择器只搅拌不曝气。好氧选择器防止污泥膨胀的机理是提供一个DO充足,食料充足的高负荷区,让菌胶团率先抢占有机物,不给丝状菌过度繁殖的机会。在完全混合活性污泥工艺的曝气池前段,设一个好氧选择器,其控制污泥膨胀的效果是非常明显的。缺氧选择器与厌氧选择器的设施和设备完全一样,它们发挥什么样的功能完全取决于活性污泥的泥龄。当泥龄较长时,会发生较完全的硝化,选择器内会含有较多硝酸盐,此时为缺氧选择器。当泥龄较短时,选择器内既无溶解氧,也无硝酸盐,此时为厌氧选择器。缺氧选择器控制污泥膨胀的原理,是绝大部分菌胶团细菌能利用选择器内硝酸盐中的化合态氧作氧源,进行生物繁殖,而丝状菌(球衣菌)没有这个功能,因而在选择器内受到抑制,增殖落后于菌胶团细菌,大大降低了丝状菌膨胀发生的可能。厌氧选择器控制污泥膨胀的原理是,绝大部分种类的丝状菌(球衣菌)都是绝对好氧,在绝对厌氧状态下将受到抑制。而绝大部分的菌胶团细菌为兼性菌。在厌氧状态下将进行厌氧代谢,继续增殖。但是,厌氧选择器的设置,会导致产生丝硫菌污泥膨胀的可能性,因为菌胶团细菌厌氧代谢会产生硫化氢,从而为丝状菌的繁殖提供条件。因此,厌氧选择器的水力停留时间不宜太长。将现有传统活性污泥系统稍加改造成一些变形工艺,如吸附再生工艺,逐点进水工艺等形式,也能有效地防止污泥膨胀地发生。另外,近年来出现的一些新工艺,如A2-O、A-B、SBR等工艺也能有效地防止污泥膨胀。

2.生物泡沫及其控制

泡沫是活性污泥法处理厂中常见的运行现象。泡沫分为两种,一种是化学泡沫,另一种是生物泡沫。化学泡沫是由于污水中的洗涤剂以及一些工业用表明活性物质在曝气的搅拌和吹脱作用下形成的。在活性污泥培养初期,化学泡沫较多,有时在曝气池表面会形成高达几米的泡沫山。这主要是因为初期活性污泥尚未形成,所有产生泡沫的物质在曝气作用下都形成了泡沫。随着活性污泥的增多,大量洗涤剂或表面物质会被微生物吸收分解掉,泡沫也会逐渐消失。正常运行的活性污泥系统中,由于某种原因造成污泥大量流失,导致F/M剧增,也会产生化学泡沫。化学泡沫处理较容易,可以用水冲消泡,也可加消泡剂。较难处理的是生物泡沫,它是由称作诺卡氏菌的一类丝状菌形成的。化学泡沫呈乳白色,而生物泡沫呈褐色,可在曝气池上堆积很高,并进入二沉池随水流走,产生一系列卫生问题。首先,生物泡沫蔓延至走道板上,使操作人员无法正常维护。另外,生物泡沫在冬天能结冰,清理起来异常困难。夏天生物泡沫会随风飘荡,形成不良气味。目前,预防医学还认为诺卡氏菌极有可能成为人类的病原菌。如果采用表明曝气设备,生物泡沫还能组织正常的曝气充氧,使混合液DO降低。生物泡沫还能随排泥进入泥区,干扰浓缩池及消化池的运行。用水冲无法冲散生物泡沫,消泡剂作用也不大。有的处理厂曾尝试用加氯解决,但收效不大,因为诺卡氏菌产生于活性污泥絮体内部。增大排泥,降低SRT,有时稍有效果,但不能从根本上解决问题。因为已发现诺卡氏菌有很多种,绝大部分的世代期长,而有的世代期仅2d,采用增大排泥方法,只能去除世代期长的那部分诺卡氏菌。综上所述,生物泡沫控制的根本措施是从根源上入手,以防为主。

已经知道,诺卡氏菌是形成生物泡沫的主要原因。这种丝状菌为树枝状丝体,其细胞中蜡质的类脂化合物含量可高达11%,细胞质和细胞壁中都含有大量类脂物质,具有极强的疏水性,密度较小。在曝气作用下,菌丝体能伸出液面,形成泡沫。诺卡氏菌在温度较高(>20℃)、富油脂类物质的环境中易大量繁殖。因此,入流污水中含油及脂类物质较多的处理厂(入大量宾馆饭店污水排入)或初沉池浮渣去除不彻底的处理厂易产生生物泡沫。在上述处理厂中,夏天又比冬天易产生生物泡沫。虽然诺卡氏菌世代期有长有短,但绝大部分都在9d以上,因而超低负荷的活性污泥系统中更易产生生物泡沫。3.污泥上浮问题及其控制

污泥上浮广义上泛指污泥在二沉池内上浮,但在运行管理中,专指由于污泥在二沉池内发生酸化或反硝化导致的污泥上浮。发生污泥上浮的污泥,本身不存在质量问题,其生物活性和沉降性能都很正常。当这些正常的污泥在二沉池内停留时间太长时,由于缺乏溶解氧而发生酸化,产生H2S气体附在污泥絮体上,使其密度减小,造成污泥上浮。当系统的SRT较长,发生硝化以后,进入二沉池的混合液中会有大量的硝酸盐,污泥在二沉池内由于缺乏溶解氧而发生反硝化,造成污泥上浮,大量流失,导致运行彻底失败。

第三篇:活性污泥的培养与驯化

活性污泥的培养与驯化

在活性污泥中,除了微生物外,还含有一些无机物和分解中的有机物。微生物和有机物构成活性污泥的挥发性部分(即挥发性活性污泥),它约占全部活性污泥的70%—80%。活性污泥的含水率一般在98%—99%。它具有很强的吸附和氧化分解有机物的能力。

活性污泥是通过一定的方法培养和驯化出来的。培养的目的是使微生物增值,达到一定的污泥浓度;驯化则是对混合微生物群进行选择和诱导,使具有降解污水中污染物活性的微生物成为优势。

一、驯化条件

一般来讲,微生物生长条件不能发生骤然的突出变化,常规讲要有一个适应过程,且要有环境适应的菌种,驯化过程应当与原生长条件尽量一致,当条件不具备时,一般用常规生活污水作为培养水源,驯化时温度不低于20℃,驯化采取连续闷曝3-7天,并在显微镜下检查微生物生长状况,或者依据长期实践经验,按照不同的工艺方法(活性污泥、生物膜等),观察微生物生长状况,也可用检查进出水COD大小来判断生化作用的效果。

二、驯化方式

(一)接种菌种

1、接种菌种是指利用微生物生物消化功能的工艺单元,如主要有水解、厌氧、缺氧、好氧工艺单元,接种是对上述单元而言的。

2、依据微生物种类的不同,应分别接种不同的菌种。

3、接种量的大小:厌氧污泥接种量一般不应少于水量的8-10%,否则,将影响启动速度;好氧污泥接种量一般应不少于水量的5%。只要按照规范施工,厌氧、好氧菌可在规定范围正常启动。

4、启动时间:应特别说明,菌种、水温及水质条件,是影响启动周期长短的重要条件。一般来讲,在低于20℃的条件下,接种和启动均有一定的困难,特别是冬季运行时更是如此。因此,建议冬季运行时污泥分两次投加,水解酸化池中活性污泥投加比例8%(浓缩污泥),曝气池中活性污泥的投加比例为10﹪(浓缩污泥,干污泥为8%),在不同的温度条件下,投加的比例不同。投加后按正常水位条件,连续闷曝(曝气期间不进水)7天后,检查处理效果,在确定微生物生化条件正常时,方可小水量连续进水25天,待生化效果明显或气温明显回升时,再次向两池分别投加10﹪活性污泥,生化工艺才能正常启动。

5、菌种来源:厌氧污泥主要来源于已有的厌氧工程,如啤酒厌氧发酵工程、农村沼气池、鱼塘、泥塘、护城河清淤污泥;好氧污泥主要来自城市污水处理厂,应拉取当日脱水的活性污泥作为好氧菌种,接种污泥且按此顺序确定优先级。①同类污水厂的剩余污泥或脱水污泥; ②城市污水厂的剩余污泥或脱水污泥; ③其它不同类污水站的剩余污泥或脱水污泥; ④河流或湖泊底部污泥; ⑤粪便污泥上清液。

(二)系统培养

1、接种菌种完成后,在连续运行已见到效果的情况下,采用递增污水进水量的方式,使微生物逐步适应新的生活条件,递增幅度的大小按厌氧、好氧工艺及现场条件有所不同。好氧正常启动可在10-20天内完成,递增比例为5-10%;而厌氧进水递增比例则要小的很多,一般应控制挥发酸(VFA)浓度不大于1000mg/L,且厌氧池中PH值应保持在6.5-7.5范围内,不要产生太大的波动,在这种情况下水量才可慢慢递增。一般来讲,厌氧从启动到转入正常运行(满负荷量进水)需要2-4个月才能完成。

2、厌氧、好氧、水解等生化工艺是个复杂的过程,每个过程都会有自己的特点,需要根据现场条件加以调整。

3、编制必要的化验和运转的原始记录报表以及初步的建章立制。从培菌伊始,逐步建立较规范的组织和管理模式,确保启动与正式运行的有序进行。

三、调试期间的监测和控制

1、温度

温度是影响整个工艺处理的主要环境因素,各种微生物都在特定范围的温度内生长。生化处理的温度范围在10~40℃,最佳温度在20~30℃。任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时,要将它们置于最适宜温度条件下,使微生物以最快的生长速率生长,过低或过高的温度会使代谢速率缓慢、生长速率也缓慢,过高的温度对微生物有致死作用。

2、pH值

微生物的生命活动、物质代谢与pH值密切相关。大多数细菌、原生动物的最适pH值为6.5~7.5,在此环境中生长繁殖最好,它们对pH值的适应范围在4~10。而活性污泥法处理废水的曝气系统中,作为活性污泥的主体,菌胶团细菌在6.5~8.5的pH值条件下可产生较多粘性物质,形成良好的絮状物。

3、营养物质

废水中的微生物要不断地摄取营养物质,经过分解代谢(异化作用)使复杂的高分子物质或高能化合物降解为简单的低分子物质或低能化合物,并释放出能量;通过合成代谢(同化作用)利用分解代谢所提供的能量和物质,转化成自身的细胞物质;同时将产生的代谢废物排泄到体外。水、碳源、氮源、无机盐及生长因素为微生物生长的条件。废水中应按BOD5∶N∶P=100∶5∶1的比例补充氮源、含磷无机盐,为活性污泥的培养创造良好的营养条件。

4、悬浮物质SS 污水中含有大量的悬浮物,通过预处理悬浮物已大部分去除,但也有部分不能降解,曝气时会形成浮渣层,但不影响系统对污水的处理。

5、溶解氧量DO 好养的生化细菌属于好氧性的。氧对好氧微生物有两个作用:①在呼吸作用中氧作为最终电子受体;②在醇类和不饱和脂肪酸的生物合成中需要氧。且只有溶于水的氧(称溶解氧)微生物才能利用。在活性污泥的培养中,DO的供给量要根据活性污泥的结构状况、浓度及废水的浓度综合考虑。具体说来,也就是通过观察显微镜下活性污环保泥的结构即成熟程度,测量曝气池混合液的浓度、监测曝气池上清液中CODCr的变化来确定。根据经验,在培养初期DO控制在1~2mg/l,这是因为菌胶团此时尚未形成絮状结构,氧供应过多,使微生物代谢活动增强,营养供应不上而使污泥自身产生氧化,促使污泥老化。在污泥培养成熟期,要将DO提高到3~4mg/l左右,这样可使污泥絮体内部微生物也能得到充足的DO,具有良好的沉降性能。在整个培养过程中要根据污泥培养情况逐步提高DO。特别注意DO不能过低,DO不足,好氧微生物得不到足够的氧,正常的生长规律将受到影响,新陈代谢能力降低,而同时对DO要求较低的微生物将应运而生,这样正常的生化细菌培养过程将被破坏。

6、混合液MLSS浓度

微生物是生物污泥中有活性的部分,也是有机物代谢的主体,在生物处理工艺中起主要作用,而混合液污泥MLSS的数值即大概能表示活性部分的多少。对高浓度有机污水的生物处理一般均需保持较高的污泥浓度。在培养同时根据污泥性状、有机污泥负荷等控制好剩余污泥排放量。⑧污泥的生物相镜检

活性污泥处于不同的生长阶段,各类微生物也呈现出不同的比例。细菌承担着分解有机物的基本和基础的代谢作用,而原生动物〈也包括后生动物〉则吞食游离细菌。污水调试运行期间出现的微生物种类繁多,有细菌、绿藻等藻类、原生动物和后生动物,原生动物有太阳虫、盖纤虫、累校虫等,后生动物出现了线虫。调试运行后期混合液中固着型纤毛虫,如累校虫的大量存在,说明处理系统有良好的出水水质。

⑨污泥指数SVI,正常运行时污泥指数在801/mg左右。

总的来说,活性污泥培菌过程中,应经常测定进水的pH、COD、氨氮和曝气池溶解氧、污泥沉降性能等指标。活性污泥初步形成后,就要进行生物相观察,根据观察结果对污泥培养状态进行评估,并动态调控培菌过程,同时控制好剩余污泥的排放。

第四篇:活性污泥的培养及驯化

活性污泥的培养及驯化

一,第一种污水活性污泥培养方法 1,污水水质条件

生活污水为主的城市污水PH=6.5~7.5,可生化条件好,有毒物质较少,污水成分不复杂。不需要培养营养源,不接种菌种,可利用污水中少量微生物作培养,成功后,不需要驯化过程。

2,培养步骤:

a,用污水将曝气池充满,如果有条件,可利用曝气池做沉淀池将污水中悬浮物部分沉降下来。方法是将曝气池连续进水5~7天,使池内污泥浓度达到5000mg/L以上。然后启动曝气机闷曝。在培养过程中使曝气池中的DO保持2~3mg/L,2~3天后,排走曝气池中约1/2的是上清液,充满新鲜污水后连续闷曝。此后连续多次排出上清液和补充新鲜污水做营养源,直到形成絮状体,开始时一般为灰褐色,SV30=4%,活性污泥镜检结果菌胶团微生物已形成,较紧密,可见游仆虫,钟虫,轮虫,草履虫等微生物的活跃,但数量不多,这时说明第一阶段以完成。(15~20天)b, 变间歇进水为连续进水,改闷曝为连续曝气。

C, 将二沉池沉降污泥及时全部回流曝气池以保证曝气池微生物的数量,使活性污泥尽快生长。这一阶段约一周左右,即可使MLSS=2000~4000mg/L,SV30=10%~20%,此时活性污泥培养成功,不需要驯化即可投入使

二,第二种污水活性污泥培养方法

1,污水水质条件

以工业废水为主,PH变化大污水成分复杂,有毒有害物质多,城市污水或可生化条件差的工业污水,有毒有害物质多的工业污水。2,培养方法:

这种污水需培养人工营养液,接菌种。3,培养步骤

将曝气池用河水或者自来水充满后,投加营养源,有条件的,可以用生活污水充满曝气池。投入菌种,然后开始闷曝2~3天后排走上清液约10%,投加新的营养源,并用河水或自来水充满,这样反复多次,直到曝气池混合液污泥浓度达到设计要求2000~4000mg/L,污泥沉降比SV30达到10%~20%(15~20天),至此,活性污泥培养成功,转入下一步骤污泥的 驯化阶段。4,驯化阶段

活性污泥的驯化工作是此类投入正常生产的关键,就其原因,培养成功后没有驯化或者没有经过非常严格的驯化失败的

驯化步骤,严格控制污水的比例,进入驯化阶段以后,不要盲目进污水,不要照搬书本经验,别人的经验受污水的水质,工艺流程的差别以及气候田间的局限性,应首先考虑自己培养的污泥适应该厂的比例范围(可做一个污水微生物适应比例实验,用十个烧杯,取等量的活性污泥分别加1%~10%的污水,充分搅拌,取样镜检)

驯化过程,及时做还微生物的镜检,驯化工程中镜检很重要,每次加入污水后,4~6小时内都要镜检(其目的是在曝气池加入适量污水后,取样镜检以观察微生物有无中毒现象)如发现微生物正常活跃,可适当加大污水比例,使微生物逐步适应污水,驯化筛选微生物,使之增加适应能力。如发现有中毒现象,则应退回到活性污泥的培养过程,待污泥长好后,减少污水加入量,使之慢慢适应。

《补充:驯化注意事项》

a,必须及时足量的投加营养源,以保证微生物有足够的营养物质。刚开始驯化时,营养源投加量要大,然后逐步加大污水量,直到全部用污水作营养源。

b,不许镜检微生物,新进污水后几个小时内必须镜检,可及时纠正以防失败,同时缩短培养驯化时间,降低成本

c,此类污水活性污泥人工培养容易,要使人工培养的活性污泥适应污水就很难,驯化工作不许非常细致,是不可省略的一步,要细心观察每一过程细小的变化。

它的关键是每次新加污水量适度,能适应微生物的生长。镜检微生物的适应情况,并及时调整,掌握好了就能达到最好的效果。

三,第三种活性污泥的培养驯化方法

1,污水水质条件

PH接进中性,成分不复杂,有毒有害物质较少的工业废水(食品工业废水),此类污水可生化条件好,可以边培养边驯化。

2,培养方法

营养源用自来水(约占总量的30%)和人工营养源(约占70%)。选择菌种。3,培养步骤

将曝气池充满约80%的自来水或者湖水,排入约20%的污水,然后投加营养源,接上菌种,闷曝。污水量逐步加大,人工营养怨逐步减少,直到全部用污水做营养源。当污水增加100%后,不等于活性污泥培养成功(此时MLSS较低,各项指标均未达到正常标准),此时,全部用污水做营养源,可以减轻活性污泥的培养成本,缩短活性污泥的培养时间。

第五篇:活性污泥的培养和驯化

活性污泥的培养和驯化

2007年11月30日 星期五 21:29 活性污泥的培养和驯化 1.活性污泥的培养

硝化菌和反硝化菌的接种最好利用ADC废水排放口的底泥或者利用同类NH3-N废水生化处理系统的活性污泥进行培养驯化。由于ADC生产厂废水排放口取泥相当困难,所以采用自行培养驯化活性污泥。污泥取自玉带河的底泥,呈黑色,有臭味,含有大量泥沙等无机物,镜检观察不到微型动物,污泥活性极差,镜检结果见图4.1。

图4.1 培养前的污泥

Figure 4.1 sludge before cultivate

图4.2 污泥培养后期

Figure 4.2 sludge after cultivate

本阶段从2004年3月13日开始,由于A/DAT-IAT反应器没有做好,污泥培养在一个有效容积为8L的SBR池进行。污泥培养初期,每天闷曝22h,静置2h,排放4L废水,再加入4L自配水。7天后,污泥颜色呈黑色,沉降性能良好,出水混浊,测得MLSS为1500mg/L,SV为6%,反应过程中pH值、COD、NH3-N浓度没有较大的变化,说明培养出的细菌量较少。14天后,污泥呈浅黑色,沉淀时泥水界面由开始模糊逐渐变得边缘清晰,镜检时可以观察到草履虫、漫游虫、裂口虫、吸管虫等。随着生物相逐渐变好,预示菌种培养出来了。测得污泥MLSS为2200mg/L,SV为11%,COD和NH3-N去除率分别达到43%和10%,污泥活性还不强,需要继续培养。此后,每天运行两周期,每周期曝气10h,静置2h。30天后,污泥的絮凝和沉淀性能良好,混合液静置半小时,上清夜清澈透明,泥水界面清晰,污泥呈黄褐色,镜检有大量新型菌胶团,较为密实,可以观察到许多活跃的钟虫(如图4.2所示)。测得污泥MLSS为4100mg/L,SV为21%,COD去除率达到90%以上,NH3-N去除率在30%以上,污泥活性较强,至此认为培养阶段结束

2.活性污泥的驯化

培养出来的活性污泥含有大量异养菌,而硝化菌是自养菌,污泥中含量非常少,需要进一步进行驯化,使之占优。与硝化菌相比,反硝化菌对环境的适应能力强,生长和繁殖快,所以在一般情况下反硝化菌受到废水物质的抑制程度要比硝化菌小。本试验中同时进行硝化菌和反硝化菌的驯化。

初步确定IAT池运行周期为5h,其中曝气3h、沉淀1h、排水1h,回流比R1为250%,回流比R2为300%。在驯化过程中每隔两天增加废水中的NH3-N和COD浓度,使污泥稳定运行两天,驯化结束时的NH3-N的浓度从51.7mg/L加大到123.4mg/L。此阶段从2004年4月13日开始到2004年5月26日结束。

在系统运行过程中,每隔两天提高一次进水COD和NH3-N浓度。污泥驯化初期,进水COD浓度251.3mg/L,NH3-N浓度51.7mg/L,COD去除率为85.59%,而NH3-N去除率仅为23.21%。这是因为异养菌占优势,生长速率快,硝化菌世代时间长,生长速率慢,含量较少,与异养菌竞争处于不利地位,硝化反应速率低。4天后,NH3-N去除率明显升高,达到了46.70%,这说明系统中的硝化菌逐渐占优势,但NH3-N处理效果还不很理想,还需要继续驯化。44天后,进水NH3-N浓度为123.4mg/L,出水NH3-N浓度稳定在10mg/L以下,去除率在90%以上,此时系统取得了良好的脱氮效果。

gaojian 2007-3-27 12:04 中段水处理中活性污泥的培养

华远造纸集团有限公司以麦草为主要原料,采用碱法蒸煮工艺生产漂白浆,在造纸和纸加工过程中产生的麦草浆中段水与铜版纸废水,溶解性有机物浓度高、悬浮物多、色度深,对环境危害严重。公司于1998年初动工兴建了日处理2万m3的中段水处理站,采用化学絮凝处理一级沉淀,二级活性污泥生化处理的工艺路线。在试车中,采用同步培驯与接种培驯相结合的方法,在15天内成功地培养出了良好的活性污泥,保证了处理系统按计划正常运行,并顺利通过国家环保总局的达标验收。结培养场所——完全混合型加速曝气池

采用14m×14m×6.5m的矩形单元的完全混合型加速曝气池,有效水深5.5m,在曝气充氧方式上选用鼓风加搅拌的联合供气方式,充氧设备采用QBGC85-10型潜水曝气搅拌机,功率8.5kW。2 结培养过程中的环境因素 2.1 适宜的温度、任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时,要将它们置于最适宜温度条件下,使微生物以最快的生长速率生长,过低或过高的温度会使代谢速率缓慢、生长速率也缓慢,过高的温度对微生物有致死作用。工业废水生物处理中最适宜的温度为30℃左右。我公司造纸废水全年在18~32℃间波动,可以保证生化细菌的酶促反应速度,使之良好生长繁殖。

2.2 适宜的pH值

微生物的生命活动、物质代谢与pH值密切相关。大多数细菌、原生动物的最适pH值为6.5~7.5,在此环境中生长繁殖最好,它们对pH值的适应范围在4~10。而活性污泥法处理废水的曝气系统中,作为活性污泥的主体,菌胶团细菌在6.5~8.5的pH值条件下可产生较多粘性物质,形成良好的絮状物。根据我公司废水特征,要控制废水的pH值在7~8.5。2.3 保证废水中要有适量的溶解氧(DO)

好养的生化细菌属于好氧性的。氧对好氧微生物有两个作用:①在呼吸作用中氧作为最终电子受体;②在甾醇类和不饱和脂肪酸的生物合成中需要氧。且只有溶于水的氧(称溶解氧)微生物才能利用。本生化处理工艺中采用的潜水曝气搅拌机将罗茨鼓风机送来的空气打碎成细小气泡并与活性污泥、废水完全混合,由导流口向四周甩出,最大程度地增加气泡、水、泥的接触面积,提高了充氧效率,保证废水中的溶解氧。

在活性污泥的培养中,DO的供给量要根据活性污泥的结构状况、浓度及废水的浓度综合考虑。具体说来,也就是通过观察显微镜下活性污泥的结构即成熟程度,测量曝气池混合液的浓度、监测曝气池上清液中CODCr的变化来确定。根据经验,在培养初期DO控制在1~2mg/l,这是因为菌胶团此时尚未形成絮状结构,氧供应过多,使微生物代谢活动增强,营养供应不上而使污泥自身产生氧化,促使污泥老化。在污泥培养成熟期,要将DO提高到3~4mg/l左右,这样可使污泥絮体内部微生物也能得到充足的DO,具有良好的沉降性能。在整个培养过程中要根据污泥培养情况逐步提高DO。

特别注意DO不能过低,DO不足,好氧微生物得不到足够的氧,正常的生长规律将受到影响,新陈代谢能力降低,而同时对DO要求较低的微生物将应运而生,这样正常的生化细菌培养过程将被破坏。2.4 要保证废水中的营养物质

废水中的微生物要不断地摄取营养物质,经过分解代谢(异化作用)使复杂的高分子物质或高能化合物降解为简单的低分子物质或低能化合物,并释放出能量;通过合成代谢(同化作用)利用分解代谢所提供的能量和物质,转化成自身的细胞物质;同时将产生的代谢废物排泄到体外。

水、碳源、氮源、无机盐及生长因素为微生物生长的条件。造纸废水中不缺乏生长因素、且富含纤维素、半纤维素等,可保证碳源(BOD5),但应按BOD5∶N∶P=100∶4∶1的比例补充氮源、含磷无机盐,为活性污泥的培养创造良好的营养条件。3 结培养过程

首先向二沉池进满CODCr≤450mg/l的中段废水;然后向曝气池进水至总容积的1/2,进水CODCr控制在600~800mg/l(BOD5约在200~400mg/l),按BOD5∶N∶P=100∶4∶1的比例补充氮源、无机盐;再次各向曝气池的每个单元投加1.5m3从附近纸厂运来的新鲜脱水污泥(含水率在70%~80%),同时投加猪粪2m3。鼓风搅拌,进行闷曝(只充氧不进水)。

7天左右,在显微镜下观察就会发现模糊的活性污泥绒絮和一些分散的菌胶团,曝气池混合液经30min沉淀后,上清液仍较浑浊,但经连续几天的闷曝后,曝气池虽然还有一定量营养料,但微生物生命活动所排泄的分泌物累积到一定浓度,会较大程度上影响它们的生长繁殖,因此需注入新鲜废水。

注入废水量不超过曝气池现有混合液的20%,按比例投加营养盐,并投加适量的粪便稀释液(粪便稀释液不宜过多否则会导致反驯化),继续闷曝。用显微镜经常观察污泥状况,并监测曝气池中CODCr的变化。若CODCr保持下降,则继续注入新鲜废水,同步投加营养盐和粪便稀释液,若CODCr下降幅度很小,则停加中段水。

若曝气池已注满,而污泥浓度较低(<3g/l),则采取间歇注水方式。即停止曝气,使混合液静沉,经1~1.5h沉淀后进入新鲜废水,排除上清液,再曝气,总操作时间以不超过2h为宜。当污泥浓度达到一定程度(MLSS在3~6g/l),便进行由二沉池至曝气池的回流循环运行,同时逐步提高进曝气池废水的浓度及废水量,合理调节各环境因素,使微生物生长、活动处于减速生长期,提高其凝聚吸附能力,形成良好的絮状结构和良好的沉降性能。4 结培养过程中的镜检分析 4.1 微生物的增长与递变模式

在培菌初期,水中有机物浓度很高,污泥尚未形成,这时曝气池中可见大量游离细菌,接着出现能通过细胞表膜渗透作用吸收水中有机物质的鞭毛虫,此外还能看到一定数量的变形虫,但不久就出现掠食细菌能力更强的纤毛虫类。先是小型掠食细菌的游泳型纤毛虫如豆形虫等大量出现,继而出现掠食小型纤毛虫的漫游虫等。随着培菌的进展,水中有机营养逐渐被消耗,异养细菌数量下降,游泳型纤毛虫让位给固着型纤毛虫,标志着活性污泥的逐步形成和增长。随着污泥日趋成熟,水中有机物减少到极低时,便相继出现了吞噬散落污泥的轮虫。培菌过程中微生物的有规律演替及与污泥结构的关系见图1。

在造纸废水活性污泥培养过程中,各类微生物出现的先后次序是:细菌—植物性鞭毛虫—动物性鞭毛虫—肉足类—游泳型纤毛虫、吸管虫—固着型纤毛虫—轮虫。

4.2 原生动物、微型后生动物与污泥培养成熟程度的关系

培养初期:鞭毛虫,变形虫。

培养中期:游泳型纤毛虫,鞭毛虫。

培养成熟期:固着型纤毛虫,纤虫、轮虫。

4.3 显微镜下观察到的微生物的主要种类(16×40倍)

鞭毛虫类:眼虫、杆囊虫、波多虫、衣滴虫。肉足虫类∶变形虫。游泳型纤毛虫:草履虫、漫游虫、裂口虫、豆形虫、肾形虫、纤虫。

固着型纤毛虫:钟虫、盖纤虫等枝虫。吸管虫类:足吸管虫、壳吸管虫。微型后生动物:轮虫、线虫。

公司中段水处理站在培养活性污泥过程中,采取投加稀释粪便、及时检测、合理调控各种环境因子等一系列措施,从快从优培养出活性污泥,使废水处理过程大大提前,保证了生产的顺利进行。

活性污泥的培养与驯化(汇编)
TOP