首页 > 精品范文库 > 13号文库
高中数学试题:解三角形单元复习题
编辑:落花人独立 识别码:22-1086439 13号文库 发布时间: 2024-07-31 20:43:58 来源:网络

第一篇:高中数学试题:解三角形单元复习题

解三角形单元复习题

一、选择题(本大题共10小题,每小题5分,共50分)

1.在△ABC中,一定成立的是()

A.asinA=bsinBB.acosA=bcosBC.asinB=bsinAD.acosB=bcosA

2.在△ABC中,cos(A-B)+sin(A+B)=2,则△ABC的形状是()

A.等边三角形 B.等腰钝角三角形C.等腰直角三角形D.锐角三角形

3.在△ABC中,由已知条件解三角形,其中有两解的是()

A.b=20,A=45°,C=80°B.a=14,b=16,A=45°

C.a=30,c=28,B=60°D.a=12,c=15,A=120°c-btanA4.在△ABC中,=,则∠A等于()tanBb

A.30°B.45°C.60°D.90°

→→→→5.在△ABC中,已知|AB|=4,|AC|=1,S△ABC=3,则AB²AC等于()

A.-2B.2C.±2D.±4

6.在△ABC中,tanA+tanB+tanC>0,则△ABC是()

A.锐角三角形 B.钝角三角形C.直角三角形D.任意三角形

→→→→→→7.在△ABC中,下列三式:AB²AC>0,BA²BC>0,CA²CB>0中能够成立的个数为()

A.至多1个B.有且仅有1个 C.至多2个D.至少2个

8.在△ABC中,若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,那么△ABC是()

A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形

9.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()

A.锐角三角形 B.直角三角形C.钝角三角形D.由增加的长度决定

10.已知△ABC中,AB=1,BC=2,则角C的取值范围是()πA.0<C6πππππB.0<C<C.<C<D.<C≤26263

二、填空题(本大题共6小题,每小题5分,共30分)

11.在△ABC中,sinA∶sinB∶sinC=2∶3∶4,则∠ABC的余弦值为___________.abc12.在△ABC中,若 = =,则△ABC的形状是_____________.ABCcos cos222

13.在△ABC中,A、B、C相对应的边分别是a、b、c,则acosB+bcosA=______.14.在△ABC中,tanB=1,tanC=2,b=100,求a=__________.15.在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b-c)·(sinA+sinB-sinC)=3asinB,则C=________.16.在不等边△ABC中,a为最大边,如果a2<b2+c2,则A的范围是_____________.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)

17.(本小题满分12分)a、b、c为△ABC的三边,其面积S△ABC=3,bc=48,b-c=2,求a.+1a18.(本小题满分14分)在△ABC中,a、b、c分别是角A、B、C所对的边长,若a2+c2=b2+ac且 =,求c2

角C的大小.tanA-tanBc-b19.(本小题满分14分)在△ABC,求∠A.ctanA+tanB

第二篇:高中解三角形复习课教学记录

高一解三角形复习课教学过程

学生在学校已经上完,自我感觉还可以,但是面对题目,一提醒就会做,不提醒略复杂的题目就卡壳。

教学过程:

1、视觉心算训练

2、指令:在脑海里画一个三角形ABC其中,AB的长是2,BC的长是3,角ABC是50°。

3、问:脑海里的三角形是唯一确定的吗?(一个学生说不确定,上黑板画出,发现他的长

度是随意的,所以感觉不唯一,精确脑海里的长度后,明确唯一确定的意思)

4、利用学生画在黑板上的三角形,判断三角形中线、角平分线是否确定,强化学生确定三

角形再确定边角的意识

5、变换条件,判断三角形是否确定,复习边角边角边角、角角边、边边边,以及大小不

确定的情况下如何确定三角形形状(知道两个角)

6、探讨边边角下的一解、两解和无解,已经SINA>0时,角A是否唯一确定。

7、题组训练指令:15道题,找出其中大小形状确定、大小不定形状确定、大小形状不确定、可能无解和两解的三角形。

8、对着前面的确定方法,思考什么情况下第一步需要用正弦定理,第一步需要用余弦定理。

9、题组训练指令:刚才的15道题,确定每个第一步需要正弦定理还是余弦定理

10、整题训练指令:

1、题目中涉及到的三角形是?

2、该三角形是否确定?确定的依据

3、该三角形确定了可以确定哪些关于这个三角形的量?

4、第一步应当用正弦还是余弦定理

11、指令:回忆刚才的解答过程,尝试用刚才的路径整理三道习题的解答思路

12、高考题共同分析(示范处理不确定时如何设定x表示,把x当做已知进行思考)

13、高考题独立尝试

14、整理解答思路,高中数学题:

1、识别三角形——数学对象

2、确定三角形——

数学对象(不确定设x表示)

3、选择算法

第三篇:解三角形公式

1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外接圆的半径,则有

2、正弦定理的变形公式:①

② sinA=sinB=sinC=

③ a:b:c=

④ a

第四篇:第一章 解三角形

第一章 解三角形

章节总体设计

(一)课标要求

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色

1.数学思想方法的重要性

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

3.重视加强意识和数学实践能力

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

(三)教学内容及课时安排建议

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

(四)评价建议

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

第五篇:解三角形

第七章解三角形

一、基础知识

在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,p

abc

2为半周长。

a

bsinB

1

2csinC

1.正弦定理:

sinA

=2R(R为△ABC外接圆半径)。

bcsinA

casinB.推论1:△ABC的面积为S△ABC=absinC

推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足

asina

bsin(a),则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=

absinC;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论

3,由正弦定理

asinA

bsinB,所以

siansiAn

sin(a)sin(A),即

sinasin(-A)=sin(-a)sinA,等价于

12

[cos(-A+a)-cos(-A-a)]=

[cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<.所以只有-A+a=-a+A,所以a=A,得证。

2.余弦定理:a=b+c-2bccosAcosA

222

bca

2bc

222,下面用余弦定理证明几个常

用的结论。

(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD=

bpcqpq

pq.(1)

【证明】因为c2=AB2=AD2+BD2-2AD·BDcosADB,所以c2=AD2+p2-2AD·pcosADB.①

222

同理b=AD+q-2AD·qcosADC,② 因为ADB+ADC=,所以cosADB+cosADC=0,所以q×①+p×②得

qc+pb=(p+q)AD+pq(p+q),即AD=

bpcqpq

pq.用心爱心专心

注:在(1)式中,若p=q,则为中线长公式AD

(2)海伦公式:因为SABC

2b2ca

4222

.14

b2c2sin2A=b2c2(1-cos2A)= b2c2

2222

(bca)122 22

[(b+c)-a][a-(b-c)]=p(p-a)(p-b)(p-c).122

4bc16

这里p

abc

.所以S△ABC=p(pa)(pb)(pc).二、方法与例题 1.面积法。

例1(共线关系的张角公式)如图所示,从O点发出的三条射线满足w, v,这里α,β,α+β∈(0, POQ,QOR,另外OP,OQ,OR的长分别为u,),则P,Q,R的共线的充要条件是

sinsinsin()

.u

v

w

2.正弦定理的应用。

例2 △ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:AP·BC=BP·CA=CP·AB。

例3 △ABC的各边分别与两圆⊙O1,⊙O2相切,直线GF与DE交于P,求证:PABC。

3.一个常用的代换:在△ABC中,记点A,B,C到内切圆的切线长分别为x, y, z,则a=y+z, b=z+x, c=x+y.例4在△ABC中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.4.三角换元。

例5设a, b, c∈R+,且abc+a+c=b,试求P

例6在△ABC中,若a+b+c=1,求证: a2+b2+c2+4abc<.212a

1

2b1

3c1的最大值。

三、基础训练题

1.在△ABC中,边AB为最长边,且sinAsinB=__________.2.在△ABC中,若AB=1,BC=2,则C的取值范围是__________.3.在△ABC中,a=4, b+c=5, tanC+tanB+__________.4.在△ABC中,3sinA+4cosB=6, 3cosA+4sinB=1,则C=__________.5.在△ABC中,“a>b”是“sinA>sinB”的__________条件.6.在△ABC中,sinA+cosA>0, tanA-sinA<0,则角A的取值范围是__________.7.在△ABC中,sinA=

52

4,则cosAcosB的最大值为

33tanCtanB,则△ABC的面积为,cosB=

3,则cosC=__________.A2tan

C213

8.在△ABC中,“三边a, b, c成等差数列”是“tan件.”的__________条

9.在△ABC中,若sinC=2cosAsinB,则三角形形状是__________.10.在△ABC中,tanA·tanB>1,则△ABC为__________角三角形.11.三角形有一个角是600,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。

12.已知锐角△ABC的外心为D,过A,B,D三点作圆,分别与AC,BC相交于M,N两点。求证:△MNC的外接圆半径等于△ABD的外接圆半径。

13.已知△ABC中,sinC=

四、高考水平训练题 1.在△ABC中,若tanA=

2sinAsinBcosAcosB

3,试判断其形状。, tanB=,且最长边长为1,则最短边长为__________.2.已知n∈N+,则以3,5,n为三边长的钝角三角形有________个.3.已知p, q∈R, p+q=1,比较大小:psinA+qsinB__________pqsinC.4.在△ABC中,若sin2A+sin2B+sin2C=4sinAsinBsinC,则△ABC 为__________角三角形.5.若A为△ABC 的内角,比较大小:cot

A8

cotA__________3.+222

6.若△ABC满足acosA=bcosB,则△ABC的形状为__________.7.满足A=60,a=6, b=4的三角形有__________个.8.设为三角形最小内角,且acos是__________.

+sin

-cos

-asin

=a+1,则a的取值范围

9.A,B,C是一段笔直公路上的三点,分别在塔D的西南方向,正西方向,西偏北30方向,且AB=BC=1km,求塔与公路AC段的最近距离。

10.求方程x11.求证:

y1yx1xy的实数解。

sin20

720

.五、联赛一试水平训练题

1.在△ABC中,b2=ac,则sinB+cosB的取值范围是____________.2.在△ABC中,若

sinBsinC

cosA2cosCcosA2cosBA2cot

B

2,则△ABC 的形状为____________.C2

3.对任意的△ABC,Tcot____________.4.在△ABC中,sin

A2

cot-(cotA+cotB+cotC),则T的最大值为

sinBsinC的最大值为____________.5.平面上有四个点A,B,C,D,其中A,B为定点,|AB|=3,C,D为动点,且|AD|=|DC|=|BC|=1。记S△ABD=S,S△BCD=T,则S+T的取值范围是____________.6.在△ABC中,AC=BC,ACB80,O为△ABC的一点,OAB10,ABO=300,则ACO=____________.7.在△ABC中,A≥B≥C≥最小值为__________.8.在△ABC中,若c-a等于AC边上的高h,则sin

CA2

cos

AC2

6,则乘积cos

A2

sin

B2

cos

C2的最大值为____________,=____________.9.如图所示,M,N分别是△ABC外接圆的弧AB,AC中点,P为BC上的动点,PM交AB于Q,PN交AC于R,△ABC的内心为I,求证:Q,I,R三点共线。

10.如图所示,P,Q,R分别是△ABC的边BC,CA,AB上一点,且AQ+AR=BR+BP=CQ+CP。求证:AB+BC+CA≤2(PQ+QR+RP)。11.在△ABC外作三个等腰三角形△BFC,△ADC,△AEB,使BF=FC,CD=DA,AE=EB,ADC=2BAC,AEB=2ABC,BFC=2ACB,并且AF,BD,CE交于一点,试判断△ABC的形状。

六、联赛二试水平训练题

1.已知等腰△ABC,AB=AC,一半圆以BC的中点为圆心,且与两腰AB和AC分别相切于点D和G,EF与半圆相切,交AB于点E,交AC于点F,过E作AB的垂线,过F作AC的垂线,两垂线相交于P,作PQBC,Q为垂足。求证:PQ

EF2sin,此处=B。

2.设四边形ABCD的对角线交于点O,点M和N分别是AD和BC的中点,点H1,H2(不重合)分别是△AOB与△COD的垂心,求证:H1H2MN。

3.已知△ABC,其中BC上有一点M,且△ABM与△ACM的内切圆大小相等,求证:AM

P(Pa),此处P

2(a+b+c), a, b, c分别为△ABC对应三边之长。

4.已知凸五边形ABCDE,其中ABC=AED=90,BAC=EAD,BD与CE交于点O,求证:AOBE。

5.已知等腰梯形ABCD,G是对角线BD与AC的交点,过点G作EF与上、下底平行,点E和F分别在AB和CD上,求证:AFB=900的充要条件是AD+BC=CD。

6.AP,AQ,AR,AS是同一个圆中的四条弦,已知PAQ=QAR=RAS,求证:AR(AP+AR)=AQ(AQ+AS)。

7.已知一凸四边形的边长依次为a, b, c, d,外接圆半径为R,如果a2+b2+c2+d2=8R2,试问对此四边形有何要求?

8.设四边形ABCD内接于圆,BA和CD延长后交于点R,AD和BC延长后交于点P,A,B,C指的都是△ABC的内角,求证:若AC与BD交于点Q,则

cosAAP

cosCCR

cosBBQ

.9.设P是△ABC内一点,点P至BC,CA,AB的垂线分别为PD,PE,PF(D,E,F是垂足),求证:PA·PB·PC≥(PD+PE)·(PE+PF)·(PF+PD),并讨论等号成立之条件。

高中数学试题:解三角形单元复习题
TOP