首页 > 精品范文库 > 14号文库
大一下学期高数小论文
编辑:落梅无痕 识别码:23-459490 14号文库 发布时间: 2023-05-10 21:31:29 来源:网络

第一篇:大一下学期高数小论文

高等数学第二学期总结

大学一年级已接近尾声,大一高数的学习也已经完成,下学期的高数学习随着知识的深入而带领我们更进一步去了解高数学习的真谛和高数的重要性。从高数的学习中我获得了更为广阔的知识和视野,下学期的学习既是上学期的学习内容的拓展又是延伸,使我们对高数有更一步的了解和认识,让我们对这门课的研究更为深入。

大一下学期的高数学习分为六章,分别是向量代数与空间解析几何,多元函数微分学,重积分,无穷级数,微分方程和差分方程。在向量代数与空间解析几何中,我们首先学习了向量代数的基本知识,从而在后来的学习中使用向量的基本知识来解决空间几何问题。本章中我们学习的解析几何是17世纪前半叶产生的一门全新的几何学。法国数学家笛卡尔是解析几何的主要创立人。空间解析几何就是用代数的方法研究空间图形的性质。向量是一种重要的数学工具,是近代数学的基本概念之一,在中学阶段,我们已经学习过如何利用向量来解决一些简单的几何问题,这一章在中学学习的基础上,以向量为工具研究空间曲面和空间曲线,介绍空间几何的基本内容,是学习多元函数微分学和积分学的基础。

这一章中,首先介绍了向量代数的基础知识,然后通过建立空间直角坐标系,研究空间中平面与直线方程、常见曲线与曲面等内容。主要的学习方向就是解决空间几何体的相关问题,例如求解空间几何体的面积、体积、距离等相关量。特别当我们在求解曲面时,应该注意使用不同的坐标系,来求解不同的曲面,比如有柱面坐标、直角坐标等。

在多元函数微分学的学习中,上一章就已经学习了一些有关一元函数的微积分,但在许多实际问题中,往往涉及多个因素之间的关系,反映到数学上就表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念。因此,我们就有必要研究多元函数的微积分问题。

本章主要采用类比的方法来帮助我们理解多元函数的定义,通过将多元函数与一元函数微分基本理论的类比,归纳总结出多元函数微分学的基本理论,主要讨论二元函数的极限与连续的概念、偏导数与全微分及其应用。要学习多元函数微分学,就必须要先了解多元函数的基本概念和极限,本章在第一节中就介绍了有关这方面的内容。学习多元函数的重点是学习二元函数和三元函数,只要掌握了二元和三元函数的微分,则多元函数就基本掌握了。在第二节中,我们学习了偏导数。在研究一元函数时,我们就已经看到了函数关于自变量的变化率的重要性,对于二元函数也同样有函数变化率的问题。所以,我们就有必要学习一下这种变化率,即偏导数。在学习了偏导数这个工具之后,我们就要开始接触全微分,全微分是我们学习微分中的一个重要组成部分。我们学习的微分其实是建立在极限的基础上,所以,接着,我们又开始学习多元复合函数的求导法则以及隐函数的微分法等等与微分和极限有关的内容。

在接下来的一章中,我们开始学习重积分,一元函数的定积分是某种形式的极限,它在实际问题中有着广泛的应用。但由于其积分范围是数轴上的区间,因而只能用来计算与一元函数及其相应区间有关的量。在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。

多元函数的积分要比一元函数的定积分复杂得多,当积分范围是平面或空间区域时,这样的积分就是重积分;当积分范围是曲线时,这样的积分就是曲线积分;当积分范围是曲面时,这样的积分就是曲面积分。定义这些积分的思想方法与定积分类似,都可以概括为分割、近似、求和、取极限四个步骤,本章讨论二重积分与三重积分的概念、性质、计算方法和它们的一些应用。

在无穷级数这一章中,课程介绍了无穷级数这个新的概念,无穷级数理论在高等数学中具有非常重要的地位,是研究微积分理论及其应用的强有力工具。研究无穷级数,是研究数列的另一种形式,尤其在研究极限的存在性及计算极限方面显示出很大的优越性。它在表示函数、研究函数的性质、计算函数值以及求解微分方程等方面都有重要的应用,在经济、管理、电学以及振动理论等诸多领域离也有广泛的应用。

无穷级数是微积分学的重要组成部分之一,是表示函数、研究函数性质和进行数值计算的有力工具。无穷级数本质上是一种特殊数列的极限。利用极限,常数项级数是把有限个数相加推广到无穷多个数相加。幂级数是把多项式的次数推广到无穷多次的结果。主要掌握常数项级数收敛性判别法和会讨论幂级数收敛性。

本章首先介绍无穷级数的概念和基本性质,然后重点讨论常数项级数的概念、性质及其敛散性的判别法,在此基础上介绍函数项级数的相关类容,以及将函数展开成幂级数的条件和方法。

正项级数的收敛判别 :各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{sn}有界,即存在某正整数M,对一切正整数 n有sn<M。从基本定理出发,我们可以由此建立一系列基本的判别法 比较判别法

设∑un和∑vn是两个正项级数,如果存在某正数N,对一切n>N都有un≦vn,则

(1)级数∑vn收敛,则级数∑un也收敛;(2)若级数∑un发散,则级数∑vn也发散 2 柯西判别法(根式判别法)

设∑un为正项级数,且存在某正整数N0及正常数l,(1)若对一切n>N0,成立不等式式则级数

l<1,则级数∑un收敛。(2)若对一切n>N0,成立不等∑un发散。第十一章学习了微分方程,微分方程是数学建模最重要、最有效的工具之一。本章重点阐述了微分方程的基本概念,讨论一些常见的一阶、二阶微分方程,并举例介绍微分方程在经济、管理等方面的简单应用。通过本章的学习,理解了微分方程的基本概念,掌握常见的一阶、二阶微分方程的基本解法,通过建立微分方程模型,解决一些简单的经济问题,培养对数学建模思想的理解。凡表示自变量,未知函数以及未知函数的导数或微分之间关系的方程称为微分方程。若方程中的未知函数为一元函数,就称为常微分方程;若方程中的未知函数为多元函数,这时导数为未知的偏导数,就称为偏微分方程。只含有未知函数的一阶导数,我们称这样的方程为一阶微分方程,而微分方程中含有未知函数的二阶导数,我们称这样的方程为二阶微分方程。一般的,若方程中未知函数的最高阶导数为n阶,则称其为n阶微分方程,并称方程中未知函数导数的最高阶数n为方程的阶。每一个微分方程转化为恰当方程之后,可以运用恰当方程的公式进行求解,因此转化成恰当方程是求解微分方程的重要步骤,转化成恰当方程需要求解出积分因子,因此积分因子的求解变得非常重要。课本中介绍了仅关于x或仅关于y的积分因子。

第十二章我们学习了差分方程,对于连续变量y(t),可以用刻画其变化率。但是在许多应用问题中,函数是否可导,甚至是否连续都不清楚,或函数根本就不可导,而只知道函数在某些时刻的函数值,这时自变量与因变量都是离散变化的。因此我们利用函数的差商△y/△t代替导数来刻画函数y(t)的变化率。我们对函数在单位时间内的增量引入了一个新的概念就是差分。本章中比较重要的是二阶常系数线性方程,这里学到了二阶常系数齐次线性差分方程的通解以及二阶常系数非齐次线性方程特解的解法。

在学习高数的时候,我们应该注重学习方法的选择,只有掌握好了学习方法,才能将这门课学好。我们在学习的时候,要先预习,然后应该好好的完成课后作业,最好要时刻的复习总结。学习高数这门课的时候,我们首先应该了解高数这门课的性质,对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解

高数以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。因此,我们在学习这些内容的时候应该掌握它们之间的联系,这样我们在学习的时候就可以做到事半功倍的效果。

我们学习高数要坚持下去,这样我们在取得良好成绩的同时就能体会到数学的独特魅力。学习好高数,对我们的生活学习都很有帮助,在数学的海洋里遨游,我们便能体会到宇宙的智慧。

第二篇:高数小论文

武汉工程大学

高数小论文

[键入文档副标题]

[键入作者姓名] 2017/6/2

[在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。]

高数小论文

高数学习对许多大一学生生来讲, 有些困 难,成绩不理想.教师一直在苦苦思考:虽 然教师在授课进程中尽了种种努力, 但还 是有许多学生学习不好, 这是什么原因? 调查显示:这部分学生或者学习兴趣不高, 或者学习不得要领.因而, 高数学习必须 充分调动学习者的积极性, 掌握适合的学习方式,才能有所收获.学习者要意识到 学习高数的重要 性, 提高学习兴趣, 变被动学习为主 动学习据懂得, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的 重要性不甚清楚,也没有学习的热情,更谈 不上积极性了

数学教育具有重要的基本性作用与素 质教育作用 现代信息、空间技巧、核能利用、基 因工程、微电子、纳米材料等引领的新技术, 以及现代人文科学的定量剖析需 要以数学为主要基本.数学学科严密的定义方法、缜密的逻 辑思维、全面的系统剖析是辩证唯物主义 思想在数学学科中的集中反应, 在大学生 素质教育中起着不可替代的作用.素质表 现在数学意识、数学语言、数学技巧、数 学思维四个方面.素质的提高有助于学生 形成良好的思想道德素质,科学文化 素质, 生理心理素质,从而提高人的素质.这是有例子可以验证的.以北京大学 地质系为例,一个系就培养了48 位中科院 院士, 而这得益于李四光先生的理念—— 加强数理基本, 原因就是学生的工科数学 基本好、逻辑思维强、头脑清晰.培养对高数的兴趣能激发学习热情 “兴趣是最好的老师”.心理学家布鲁纳 认为:“学习是主动的进程,对学生学习内因的 最好的激发是对所学教材的兴趣.”“有了兴 趣就会乐此不疲,好之不倦,就会挤时间学习了.”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活泼,注意 力集中,察看敏锐,记忆持久而准确,思维敏锐 而丰盛,强化学习的内在动力,调动学习的积 极性,激发智力和创造力,提高学习效率.提高学习高数的兴趣首先从了解数学史做起 我们可以首先懂得中国数学史,懂得中 国数学的萌芽、发展、全盛、衰弱的进程 和原因;我们还可以从高数中的微积分发现 的历史谈起,通过对历史的懂得和感受来体 会到数学的博大高深,激发探求对数学美的观赏也可以提高学习高数的兴趣 数学是美的,但是这种美不易被人觉察, 往往被人误认为数学是枯燥的.树枝的生 长和股票技巧中蕴含着斐波纳奇数列,斐波 纳奇数列中蕴含着黄金分割,黄金分割率大 到宇宙,小到微生物,无处不在,数学具有数 字美,符号美,图形美,思想美,方式美,撼人 心魄,令人着迷,可以有意识地主动懂得.学习高数要注重基本知识(基础概 念、基础理论、基础方式)的懂得及 消化 华罗庚有一句话:“我研究数学、学习数 学是从小学一、二、三、四、五、六册开始 的,研究学问要从基本做起.”少年牛顿也是 从基本知识、基础公式重新学起,扎扎实实、步步推进的.高职学生广泛基本薄弱,很多高 职学生也不注重对基本知识的懂得和掌握,往 往一知半解,好高骛远,结果是徒劳无益.基础理论体现在定理的内容和论证,以 及实际问题抽象出的理论模型.认真思考 书上每个理论模型来源,明白是从哪个实际 情况中抽象出来的,会很大程度地提高解决 综合问题的能力.证明部分也要加以重视, 因为证明进程是一个逻辑推理进程,能很好 地锻炼大脑,会加深对定理的懂得,提高运 用能力.推导正是高数的精华所在,是需要 下工夫反复揣摩的,不懂之处要多问.基础方式的领悟体现在形成一个知识关 系网络.比如高数中基础所有的重要概念 都是用它定义和研究的;用变量代替不变量 的常用技能,体现在常数变易法解微分方 程,微分的思想,非线性问题的线性化方式;化整为零、积零为整、分割求和积分的思 想,应用问题中的元素法;由特殊到一般、以 及化庞杂为简单的研究思维方式等等.学习和方式的运用中, 培养人的逻辑 思维、抽象思维、空间想象、以及自学能 力,培养科学的世界观,严密的科学态度, 增强学习意志,形成良好的个性品质.高数学习要调整心理状态, 注重学习方式 不要有畏难心理,要知道难是相对的, “面对悬崖峭壁,一百年也看不出条缝来, 但用斧凿,能进一寸则进一寸,能进一尺则 进一尺,不断积聚,飞跃必来,突破随之.” 树立三心:信心、决心、恒心.克服懒惰, 多思考、多归纳.学习进程中遇到困难时, 一定不要气 馁,增强克服困难的信心与意志,相信自己 一定能学好,积极调整状态,探索学习方式.紧跟教师的授课节奏, 做到高效听课 预习,先大略通读教材,不懂地方可以打 个问号;上课一定要认真听讲,对章节内容提 纲挈领,分清主次.感到重要的内容要记载 下来,不要一字不漏地记下来,只需简略几 笔,抓住精华即可.课后及时归纳总结,注意 思路的积聚,随时把收获、疑难、与前后知 识点的联系和区别、例题的不同解法等,一 切随时想到的体会整理下来,哪怕仅是大脑 的灵光一闪也要及时标注,以便于巩固加深 懂得.最好定期自我检查掌握情况.3.2 采用适当的数学记忆方式 学习不仅要求懂得,还要有机械的记忆, 比如符号,公式,基础定义,解题技能和方式.寻找适合的记忆法,助于知识的持久度.采用形象记忆、类比记忆、系统记忆.高数的符号较多,识记困难,造成学习障碍.可以仔细察看特点,形象记忆.很多 是其英文解释的第一个字母,比如说微分, 其中可以懂得为英文“differential”(微分)的首字母,积分号可以懂得为“sum”中首 字母的拉伸, 可以加深对定义的懂得.系 统记忆合适于对章节知识间的联系对照 学习中,有助于对知识整体脉络的梳理把握.记忆方式是相辅相成的,可以交叉运用.适当解题, 不断改正自己的思维 一定要做习题,初学新知识时,不妨参 照定理或公式依葫芦画瓢, 努力识记知识 点,再试图脱离教材独立练习,检查自己对 知识掌握程度,不会的内容,是自己思维的 断层,有些内容学习者可以自我改正,较难 内容,学习者需要请教教师或者参阅学习资 料,寻找一些知名教科书,注意察看,找出知 识的特点以及迁移,多角度、多方面地思考,过于抽象的内容不妨举出具体例子来形 象思考,自己的思维慢慢就会全面而深刻, 知识也会融会贯通,厚书也就读薄了.去探 索的知识,才是掌握得最好的.但也不提倡做大量的习题.习题并非 都有价值,尤其是现在题海中所遇到的题 目,很多都是在低级重复,反反复复并不能 得到有益启示.而有些综合题, 就是将一 些知识点揉在一起,而且明明能说得简单 的话, 却故意说得很庞杂、很曲折、绕圈子、设陷阱.学习者应该坚持清醒,思考一 些真正富有启示性的问题, 多研究问题的 意义.通常,越是简化问题,就越是能得到深刻而有价值的结论.做完一题,不停留在原有层次,多追问一些为什么,往往能导 致柳暗花明的新境界.有时要把不理解知 识暂时跳过,回过火看就解决了.积分公式:

(1)∫x^αdx=x^(α+1)/(α+1)+C(α≠-1)(2)∫1/x dx=ln|x|+C(3)∫a^x dx=a^x/lna+C ∫e^x dx=e^x+C

(4)∫cosx dx=sinx+C(5)∫sinx dx=-cosx+C(6)∫(secx)^2 dx=tanx+C(7)∫(cscx)^2 dx=-cotx+C(8)∫secxtanx dx=secx+C(9)∫cscxcotx dx=-cscx+C(10)∫1/(1-x^2)^0.5 dx=arcsinx+C(11)∫1/(1+x^2)=arctanx+C(12)∫1/(x^2±1)^0.5 dx=ln|x+(x^2±1)^0.5|+C(13)∫tanx dx=-ln|cosx|+C(14)∫cotx dx=ln|sinx|+C(15)∫secx dx=ln|secx+tanx|+C(16)∫cscx dx=ln|cscx-cotx|+C(17)∫1/(x^2-a^2)dx=(1/2a)*ln|(x-a)/(x+a)|+C(18)∫1/(x^2+a^2)dx=(1/a)*arctan(x/a)+C(19)∫1/(a^2-x^2)^0.5 dx=arcsin(x/a)+C(20)∫1/(x^2±a^2)^0.5 dx=ln|x+(x^2±a^2)^0.5|+C(21)∫(1-x^2)^0.5 dx=(x*(1-x^2)^0.5+arcsinx)/2+C

高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+...+z^n/n!+...

第三篇:高数论文 大一第二学期

学习高数心得和体会

摘要:

1、数学学习方法:

一、摒弃中学的学习方法;

二、把握三个环节,提高学习效率;

三、阶段复习与全面巩固相结合;

四、学习方法五原则。

2、如何看书:第一,“学思习”是学习高等数学大的模式;第二,狠抓基础,循序渐进;第三,归类小结,从厚到薄;第五,注意学习效率。

3、处理数学问题的基本方法

4、学习心理的调整:确定目标,树立信心,制定计划,重在落实”以上十六个字不仅是学好高等数学也是学好任何一门课程,做好任何一件事情的关键所在。

目前,每当一年高考结束,数百万高中学生通过自己的奋力拼搏,在同龄人中脱颖而出,升入自己梦寐以求的各类高等院校开始在新的环境进行学习的时候,社会上各大媒体都会不断地重复一个话题:一个高中生怎样尽快地从心理上、生理上等方面溶入新的环境,成为一名合格的大学生?而且不时的在电视新闻或报刊出现大一的学生在新的环境中沉眠于网络或电子游戏,而跟不上大学的学习进度而退学的例子。我认为:一个高中生升入大学学习后,不仅要从环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。高等数学在工科院校的教学计划中是一门基础理论课程,是大一新生必修的课程,它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校的继续学习中只有掌握高等数学的知识以后,才能比较顺利地学习其他专业基础课程,如物理、工程力学、电工电子学……等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术上的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类的大一新生在学习上一个很明确的任务就是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。

数学学习方法:

那么,怎样才能学好高等数学呢?我想就自己这将近一学年的学习经验与体会,谈几点肤浅的看法。

一、摒弃中学的学习方法

从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。

二、把握三个环节,提高学习效率

什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。其一是课前预习。这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等,这样带着一些问题去听老师讲课,效果就很明显了,同时预习的过程中也就培养了你的自学能力,这对自己来说将是终身受益的。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。其二是上课用心听讲,并且要记好课堂笔记。

三、阶段复习与全面巩固相结合。

具体步骤如下:

(一)课前预习:了解老师即将讲什么内容,相应地复习与之相关内容。

(二)认真上课:注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入----听、记、思相结合的过程。

(三)课后复习:当天必须回忆一下老师讲的内容,看看自己记得多少,然后打开笔记、教材,完善笔记,沟通联系;最后完成作业。

(四)在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架。

(五)按“新=陈+差异”思路理解深化学习知识。

(六)“三人行,则必有我师”,参加老师的辅导,向同学请教并相互讨论。

四、学习方法五原则

学习方法与学习的过程、阶段、心理条件等有着密切的联系,它不但蕴含着对学习规律的认识,而且也反映了对学习内容理解的程度。在一定意义上,它还是一种带有个性特征的学习风格。学习方法因人而异,但正确的学习方法应该遵循以下几个原则:循序渐进、熟读精思、自求自得、博约结合、知行统一。

1.“循序渐进”──就是人们按照学科的知识体系和自身的智能条件,系统而有步骤地进行学习。它要求人们应注重基础,切忌好高骛远,急于求成。循序渐进的原则体现为:一要打好基础。二要由易到难。三要量力而行。

2.“熟读精思”──就是要根据记忆和理解的辩证关系,把记忆与理解紧密结合起来,两者不可偏废。我们知道记忆与理解是密切联系、相辅相成的。一方面,只有在记忆的基础上进行理解,理解才能透彻;另一方面,只有在理解的参与下进行记忆,记忆才会牢固,“熟读”,要做到“三到”:心到、眼到、口到。“精思”,要善于提出问题和解决问题,用“自我诘难法”和“众说诘难法”去质疑问难。

3.“自求自得”──就是要充分发挥学习的主动性和积极性,尽可能挖掘自我内在的学习潜力,培养和提高自学能力。自求自得的原则要求不要为读书而读书,应当把所学的知识加以消化吸收,变成自己的东西。

4.“博约结合”──就是要根据广搏和精研的辩证关系,把广博和精研结合起来,众所周知,博与约的关系是在博的基础上去约,在约的指导下去博,博约结合,相互促进。坚持博约结合,一是要广泛阅读。二是精读。

5.“知行统一”──就是要根据认识与实践的辩证关系,把学习和实践结合起来,切忌学而不用。“知者行之始,行者知之成”,以知为指导的行才能行之有效,脱离知的行则是盲动。同样,以行验证的知才是真知灼见,脱离行的知则是空知。因此,知行统一要注重实践:一是要善于在实践中学习,边实践、边学习、边积累。二是躬行实践,即把学习得来的知识,用在实际工作中,解决实际问题。

如何看书:

学习高等数学要有一种精神,用大数学家华罗庚的话来说,就是要有“学思契而不舍”的精神。由于高等数学自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法,分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,契而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,介绍一点学习高等数学的做法,供同学们参考。

第一,“学思习”是学习高等数学大的模式。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在学中问和问中学,才能消化数学的概念,理论。方法。所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考,善于思考,从厚到薄的学习数学的方法,值得我们借鉴。所谓习,就高等数学而言,就是做练习。这一点数学有自身的特点,练习一般分为两类,一是基础训练练习,经常附在每章每节之后。这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。知识面广些不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。高等数学本身就是数学和其他学科的基础,而高等数学又有一些重要的基础内容,它关系的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函求导法及积分法关系到今后个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习高等数学时要一步一个脚印,扎扎实实地学和练,成功的大门一定会向你开放。

第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。高等数学归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其他参考书就会迎刃而解了。

第五,注意学习效率。数学的方法和理论的掌握,就实践经验表明常常需要频率大于4否则做不到熟能生巧,触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”温故而知新”都有是指学习要经过反复多次。高等数学的记忆,必建立在理解和熟练做题的基础上,死记硬背无济于事。在学习的道路上是没有平坦大道的,可是“学习有险阻,苦战能过关“。”人生能有几回搏?“人生总能搏几回!”每个学子应当而且能与高等数学“搏一搏”。

处理数学问题的基本方法:

㈠分割求和法; ㈡以直求曲法; ㈢恒等变形法:

①等量加减法;②乘除因子法; ③积分求导法; ④三角代换法; ⑤数形结合法;⑥关系迭代法; ⑦递推公式法;⑧相互沟通法; ⑨前后夹击法; ⑩反思求证法;⑾构造函数法;⑿逐步分解法。学习心理的调整:

确定目标,树立信心,制定计划,重在落实”以上十六个字不仅是学好高等数学也是学好任何一门课程,做好任何一件事情的关键所在。

(一)确定目标: 除了有一个长远的奋斗目标外,可根据自己的实际情况确定一个近期目标。

(二)树立信心: 信心来源于是否敢于挑战自己,表现在是否能吃苦耐劳,排除各种干扰与诱惑,为实现长远目标与近期目标而奋进。

(三)制定计划: 有一个一周至二周的学习计划,精细到每个小时,明确应该完成的任务,每天留下半个小时的机动余地作为未完成任务的补遗。每周根据执行情况适当调整。

(四)重在坚持: 计划能否实施,重在坚持,切忌虎头蛇尾,半途而废。关于学习高等数学课程的几点建议

(五)自学:本课程特别强调自学,包括课前、课后的预习、复习、练习、小结。这些都是在教师的视线之外,在自习时间之内学生必须去做的事。没有良好的自觉的自学习惯,谈不上能学好高等数学。

(六)听课:提高听课的效率,课前做好准备,根据教学进度表预习(粗读)内容,听课中特别注意老师指出的难点与重点,注意为加深概念与应用所举的例题,适当记笔记。

(七)习题课:高等数学特别强调做习题。概念的理解与深化,方法的灵活应用都反映在做习题上。上黑板板演固然是锻炼的好机会,而在下面做题,应看作是一种实战演习,是对自己学习的检验,而老师对每题的讲评往往是概念与方法的深化,是某种经验的总结。因此习题课绝不可光听而不动手,也不可光动手而不听,要有完整的习题课的记录。

(八)作业:作业不是任务,而是对学习内容的进一步巩固。通过练习使概念与方法真正为自己所掌握。每次作业后,要认真总结,本次作业用到哪些新概念、新知识、新方法,用在哪些地方,这些概念方法与原先掌握的概念方法有哪些相同点。作业必须认真,字迹力求工整,减少涂改。较长的分号(直线)不可信手画出,应该使用直尺去划。作业不仅是给自己看,而且是给老师批阅的,在整体上要注意美感,特别对工科学生,这是工程技术人员的必备素质,应从作业开始培养。

(九)阶段小结:每周进行一次学习小结,善于总结才有提高。

(十)关于参考读物:高等数学的参考读物很多,但良莠不齐,特别是一些题解往往贻误学子,因此参考读物的选择要慎重。

以上所谈并不全面,只有身在其中正在学习,通过实践才能悟出适合自己的好方法

第四篇:大一上学期高数论文

合肥学院 课 程 论 文

酒店管理

一班

学生姓名

张超

1514061036

论文题目

微积分在生活中的应用

王后春

微积分在生活中的应用

摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用

关键词:微积分,几何,经济学,物理学,极限,求导

绪论

作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。

希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。

一、微积分在几何中的应用

微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广!

1.1求平面图形的面积

(1)求平面图形的面积

由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线fx2和直线x=l,x=2及x轴所围成的图形的面积。分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。所以该曲边梯形的面积为

f21x22313722xdx

313332

(2)求旋转体的体积

(I)由连续曲线y=f(x)与直线x=a、x=b(a

ab(Ⅱ)由连续曲线y=g(y)与直线y=c、y=d(c

cd(III)由连续曲线y=f(x)(f(x)0)与直线x=a、x=b(0a

abx2y2例如:求椭圆221所围成的图形分别绕x轴和y轴旋转一周而成的旋ab转体的体积。

分析:椭圆绕x轴旋转时,旋转体可以看作是上半椭圆b2yax2(axa),与x轴所围成的图形绕轴旋转一周而成的,因此椭圆ax2y21所围成的图形绕x轴旋转一周而成的旋转体的体积为 a2b2

b2vy(ax2)aab2213a2(axx)aa3a2dxb2a2aa(a2x2)dx

4ab23椭圆绕y轴旋转时,旋转体可以看作是右半椭圆xa2by2,(byb),bx2y2与y轴所围成的图形绕y轴旋转一周而成的,因此椭圆221所围成的图形

ab绕y轴旋转一周而成的旋转体的体积为

a2a22vy(by)dy2bbb

a2213b422(byy)babb33b2bb(b2y2)dy

二、在几何中的应用

2.1微积分在几何学中的应用

(1)求曲线切线的斜率

由导数的几何意义可知,曲线y=(x)在点x0处的切线等于过该点切线的斜率。即f'(x0)tana,由此可以求出曲线的切线方程和法线方程。

例如:求曲线yx2在点(1,1)处的切线方程和法线方程。分析:由导数的几何意义知,所求切线的斜率为:

ky'x12xx12,所以,所求切线的方程为y-l=2(x一1),化解得切线方程为2x-y-1=0。又因为法线的斜率为切线斜率的负倒数,所以,所求法线方1程为y1(x1),化解得法线方程为2y+x-3=0。

2(2)求函数值增量的近似值

由微分的定义可知,函数的微分是函数值增量的近似值,所以通过求函数的微分可求出函数值增量的近似值。

例如:计算sin46o的近似值。

分析:令f(x)=sin(x),则f(x)=cosx,取x0450,x10,(10由微机

分的定

0180),则

义可知

0sin460sin(451)sin45f(45)18022'00.7194 22180

三、微积分在经济学的应用

在我所查找到的关于微积分在经济学领域的应用中,我发现高等数学在经济学中运用十分基础和广泛,是学好经济学 剖析现实经济现象的基本工具。经济学与数学是密不可分息息相关的。高等数学方法在经济学中的运用增强了经济学的严密性和说理性,将经济问题转化为数学问题,用数学方法对经济学问题进行分析,将数学中的极限,导数、微分方程知识在经济中的运用。

尤其我看到在经济管理中,由边际函数求总函数(即原函数),一般采用不定积分来解决,或求一个变上限的定积分;如果求总函数在某个范围的改变量,则采用定积分来解决。这个对一个企业的发展至关重要!1关于最值问题 例

设:生产x个产品的边际成本C=100+2x,其固定成本为C(0)=1000元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大?并求最大利润

解:总成本函数为

C(x)=∫x0(100+2t)dt+C(0)=100x+x 2+1000 总收益函数为R(x)=500x 总利润L(x)=R(x)-C(x)=400x-x2-1000,L’=400-2x,令L’=0,得x=200,因为L’’(200)<0。所以,生产量为200单位时,利润最大。最大利润为L(200)=400×200-2002-1000=390009(元)

在这里我们应用了定积分,分析出利润最大,并不是意味着多增加产量就必定增加利润,只有合理安排生产量,才能取得总大的利润。

2关于增长率问题 例:

设变量y是时间t的函数y = f(t),则比值为函数f(t)在时间区间上的相对改变量;如果f(t)可微,则定义极限为函数f(t)在时间点t的瞬时增长率。

对指数函数而言,由于,因此,该函数在任何时间点t上都以常数比率r增长。

这样,关系式(*)就不仅可作为复利公式,在经济学中还有广泛的应用。如企业的资金、投资、国民收入、人口、劳动力等这些变量都是时间t的函数,若这些变量在一个较长的时间内以常数比率增长,都可以用(*)式来描述。因此,指数函数中的“r”在经济学中就一般的解释为在任意时刻点t的增长率。如果当函数中的r取负值时,也认为是瞬时增长率,这是负增长,这时也称r

为衰减率。贴现问题就是负增长。

3.弹性函数

设函数y=f(x)在点x处可导,函数的相对改变量Δyy=f(x+Δx)-f(x)y与自变量的相对改变量Δxx之比,当Δx→0时的极限称为函数y=f(x)在点x处的相对变化率,或称为弹性函数。记为EyEx•EyEx=limδx→0

ΔyyΔxx=limδx→0ΔyΔx.xy=f’(x)xf(x)在点x=x0处,弹性函数值Ef(x0)Ex=f’(x0)xf(x0)称为f(x)在点x=x0处的弹性值,简称弹性。EExf(x0)%表示在点x=x0处,当x产生1%的改变时,f(x)近似地改变EExf(x0)%。

经济学中,把需求量对价格的相对变化率称为需求弹性。

对于需求函数Q=f(P)(或P=P(Q)),由于价格上涨时,商品的需求函数Q=f(p)(或P=P(Q))为单调减少函数,ΔP与ΔQ异号,所以特殊地定义,需求对价格的弹性函数为η(p)=-f’(p)pf(p)

例 设某商品的需求函数为Q=e-p5,求(1)需求弹性函数;(2)P=3,P=5,P=6时的需求弹性。

解:(1)η(p)=-f’(p)pf(p)=-(-15)e-p5.pe-p5=p5;

(2)η(3)=35=0.6;η(5)=55=1;η(6)=65=1.2

η(3)=0.6<1,说明当P=3时,价格上涨1%,需求只减少0.6%,需求变动的幅度小于价格变动的幅度。

η(5)=1,说明当P=5时,价格上涨1%,需求也减少1%,价格与需求变动的幅度相同。

除了上述几个例子之外,还有“规模报酬、等无数的经济概念和原理是在充分运用导数、积分、全微分等各种微积分知识构建的。他们极大的丰富了经济学内涵,为政府的宏观调控提供了重要帮助

四、总结与展望

数学学习是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性,因此,我们当代大学生学习高等数学的重要性就显而以见的了,我们要想在21世纪的社会有一个立足之地就需要全面的发展自己,而我们学习的高等数学又是这里面的重中重!我们只有认清当今社会的人才培养目标,深入的学习高等数学,使高等数学在我们的人生中其到应有的作用,为社会做到最大的效益!

参考文献(5号宋体)[1] 同济大学数学教研室.高等数学(第六版)【M】.北京:高等教育出版社.2007 [2] 张丽玲.导数在微观经济学中的应用【J】.河池学院学报,2007,(27).[3]百度文库http://wenku.baidu.com/search?word=%CE%A2%BB%FD%B7%D6%BC%B8%BA%CE%D3%A6%D3%C3&lm=1&od=0&fr=top_home

http://wenku.baidu.com/search?word=%CE%A2%BB%FD%B7%D6%D4%DA%CE%EF%C0%ED%B5%C4%D3%A6%D3%C3&lm=1&od=0&fr=top_home

第五篇:高数论文

摘要

一学期的高数学习即将结束,数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。上了大学我才知道之前学的数学,已经变了,它叫高等数学。大学的数学包括高等数学,线性代数,还有概率论,而这学期我们学的高数内容包括函数与极限、一元函数微分学、一元函数积分学以及常微分方程。这才让我明白,大学的数学,更加复杂多样,不是像高中那样简单那么容易学。很多概念都是抽象的,很多知识都是彼此联系的,很多应用都是综合的,相比以前所学数学,难度是挺大的。所以,我们应该要充分认识这门科目。新的《数学课程标准》提出:应加强数学与学生的生活经验相联系,从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,促进学生的主动参与,焕发出数学课堂的活力。数学学科作为工具学科,它的教学必须理论联系实际,学以致用,这就是人们常说的数学知识必须“生活化”,而且对学生实践能力、创新能力和解决问题能力的培养都是很有利的。小学数学是数学教学的基础,培养我们对数学的兴趣;初高中的数学是对小学数学的更加深入学习,重要是联系生活实际;而高等数学则是对初高中数学的细化,概念更加详细,解答更加细微,方法更加多样复杂。

关键字:高等数学、实践能力、结构

1结构

1.1结构的基本概念

数学学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。【函数及其性质(1)定义:如果当变量x在其变化范围任取一个值时,变量y按一定的法则总有确定的数值和它对应,就称y是x的函数,记作:y=f(x)或,y=F(x)等。x称为自变量,y称为因变量,或函数.自变量x的变化范围称为这函数的定义域,因变量y的取值范围称为函数的值域。(2)性质:a.有界性b.单调性c.奇偶性d.周期性】对数学结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来达到对数学知识的真正理解。

2如何利用结构加强理解

当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己

头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。

例如:第一部分 函数的应用 我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。这里重点讲前两类函数的应用。一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。下面,我就为大家讲述我亲身经历的一件事。随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。一次,我去“物美”超市购物,一块醒目的牌子吸引了我,上面说购买茶壶、茶杯可以优惠,这似乎很少见。更奇怪的是,居然有两种优惠方法:(1)卖一送一(即买一只茶壶送一只茶杯);

(2)打九折(即按购买总价的90% 付款)。其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。由此,我不禁想到:这两种优惠办法有区别吗?到底哪种更便宜呢?我便很自然的联想到了函数关系式,决心应用所学的函数知识,运用解析法将此问题解决。

设某顾客买茶杯x只,付款y元,(x>3且x∈N),则 用第一种方法付款y1=4×20+(x-4)×5=5x+60;用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.接着比较y1y2的相对大小.设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.然后便要进行讨论: 当d>0时,0.5x-12>0,即x>24;当d=0时,x=24;当d<0时,x<24.综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.可见,利用一元一次函数来指导购物,即锻炼了数学头脑、发散了思维,又节省了钱财、杜绝了浪费,真是一举两得啊!二、一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时,其利润随投资的变化关系一般可用二次函数表

示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。三、三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。在山林绿化中,须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。这便要用到锐角三角函数的知识。如右图,令C=90 ,B=α ,平地距为d,山坡距为r,则secα=secB =AB/CB=r/d.∴r=secα×d这个问题至此便迎刃而解了。

参考文献

[1]同济大学数学系。高等数学 [2]数学教育学报

[3]张定强.剖析高等数学结构,提高学生数学素质

致谢

到大学接触到微机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。感谢老师带领我们走进微积分的世界,教我们学习高等数学。

谨以此致谢最后,我还要向百忙之中抽时间对我的论文进行批阅的各位老师表示衷心的感谢。谢谢您!

姓名:周剑 学号:1505032006 班级;自动化2班

大一下学期高数小论文
TOP