首页 > 精品范文库 > 15号文库
什么是CAN-Bus总线传输技术
编辑:梦回唐朝 识别码:24-828200 15号文库 发布时间: 2023-12-08 01:12:17 来源:网络

第一篇:什么是CAN-Bus总线传输技术

什么是CAN-Bus总线传输技术

卓希智能CAN-Bus总线传输技术:

(1)数据总线:所谓数据总线,就是指在一条数据线上传递的信号可以被多个系统共享,从而最大限度地提高系统 整体通信效率和可靠性。

(2)CAN-Bus 控制器局域网(controllerareanetwork 简称CAN)最初是德国Bosch公司于1983年为汽车应 用而开发的,一种能有效支持分布式控制和实时控制的串行通讯网络,属于现场总线(FieldBus)的范畴。1993年11月,ISO正式颁布了控制器局 域网CAN国际标准(ISO11898),为控制器局域网标准化、规范化推 广铺平了道路。目前它已经成为国际上应用最广泛的开放式现场总线之一。

(3)CAN-BUS技术优势:全称为“控制器局域网总线技术(ControllerAreaNetwork-BUS)”CAN总线的通讯 介质可采用双绞线,同轴电缆和光导纤维。通讯距离与波持率有关,最大通讯距离可达10km,最大通讯波持率 可达1Mdps。CAN总线仲裁采用11位标识和非破坏性位仲裁总线结构机制,可以确定数据块的优先级,保 证在网络节点冲突时最高优先级节点不需要冲突等待。CAN总线采用了多主竞争式总线结构,具有多主站运行和 分散仲裁的串行总线以及广播通信的特点。CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息 而不分主次,因此可在各节点之间实现自由通信。CAN总线协议已被国际标准化组织认证,技术比较成熟,控制的芯片已经商品化,性价比高,特别适用于分布式 测控系统之间的数据通讯。

(4)CAN-BUS总线的应用:

①目前CAN-BUS总线在车上的应用越来越普及,不仅仅局限于高档车(比如波罗、宝来、帕萨特),中档车(如上海大众的途安)也越来越多的配备了CAN-BUS总线。

②目前CAN-BUS总线越来越多应用于工业控制系统中,主要是工业控制对系统本身要求高稳定性与环境的恶劣性 提出更高的要求。

第二篇:现场总线技术实验报告

实 验 报 告

课程名称

《现场总线技术》

题目名称

现场实验报告

学生学院

信息工程学院

专业班级

学生学号

学生姓名

指导教师

2015 年 1 月 1 日

实验一

0 STEP7 V5.0 编程基础及 S7--C 300PLC 组态

一、实验目的

通过老师讲解 STEP7 软件和硬件组态的基础知识,使同学们掌握使用 STEP7 的步骤和硬件组态等内容,为后续实验打下基础。

二、实验 内容 1、组合硬件和软件 STEP7 V5.0 是专用于 SIMATIC S7-300/400 PLC 站的组态创建及设计 PLC 控制程序的标准软件。按照以下步骤:

(1)运行 STEP7 V5.0 的软件,在该软件下建立自已的文件。

(2)对SIMATIC S7-300PLC站组态、保存和编译,下载到 S7-300PLC。

(3)使用 STEP7 V5.0 软件中的梯形逻辑、功能块图或语句表进行编程,还可应用 STEP7 V5.0 对程序进行调试和实时监视。

2、使用 STEP7 V5.0 的步骤

设计自动化任务解决方案 生成一个项目 下载到 CPU 进行调试诊断 硬件组态 程序生成 程序生成 硬件组态

图 1-1 STEP7 的基本步骤

3、启动 SIMATIC 管理器并创建一个项目(1)新建项目 首先在电脑中必须建立自己的文件:File → New →写上 Name(2)通信接口设置 为保证能正常地进行数据通信,需对通信接口进行设置,方法有 2 种:

1)所有程序

SIMATIC

STEP 7

设置 PG/PC 接口

PC Adapter(Auto)

属性

本地连接

USB/COM(根据适配器连接到计算机的方式选择); 2)SIMATIC 管理器界面

选项

PC Adapter(Auto)

属性

本地连接

USB/COM(根据适配器连接到计算机的方式选择)。

(3)硬件组态 在自己的文件下,对 S7-300PLC 进行组态,一般设备都需有其组态文件,西门子常用设备的组态文件存在 STEP7 V5.0 中,其步骤如下; 插入 →站点 →

SIMATIC 300 站点 ;  选定 SIMATIC 300(1)的Hardwork(硬件)右边 Profi

标准 → SIMATIC 300 将轨道、电源、CPU、I/O 模块组态到硬件中:

轨道:RACK-300 →

Rail;,插入电源:选中(0)UR 中 1 1, 插入电源模块 PS-300 →

PS307 5A;

插入 CPU:选中(0)UR 中 2 2,插入 CPU 模块 CPU-300→CPU315-2DP→配置 CPU 的型号(CPU 模块的最下方);  插入输入/输出模块 DI/DO:

1)选中(0)UR 中 4,插入输入/输出模块 SM-300

→ DI/DO→ 配置

输入/输出模块的型号(CPU 模块的最上方); 2)S7-300 PLC 中有些 CPU 自带输入/输出模块,此时不需进行 DI/DO组态。

(4)S7-300PLC CPU 的开关与指示灯 S7-300PLC CPU 的开关与显示灯如图 1-1 所示 模式选择器:

MRES:

模块复位功能。

STOP:

停止模式,程序不执行。

RUN:

程序执行,编程器只读操作。

RUN-P:

程序执行,编程器读写操作。

指示灯:

S F: 组错误:CPU 内部错误或带诊断功能错误。

BF: 组错误: 总线出错指示灯(只适用于带有 DP

接口的 CPU)。出错时亮。

FRCE:

FORCE:指示至少有一个输入或输出被强

制。

DC5V: 内部 5VDC 电压指示。

RUN:

当 CPU 启动时闪烁,在运行模式下常亮。

STOP:

在停止模式下常亮,有存储器复位请求时慢速闪烁。正在执行存储器复位时快速闪烁,由于存储器卡插入需要存储器复位时慢速闪烁。

(5)编程 图 1-5

CPU 开关与指示灯 图 1-1

CPU 开关与指示灯

S7-300PLC 采用模块化的编程结构,包含有通用的 OB 组织块,通用的 FC、FB 功能与功能块,西门子提供的 SFC,SFB 系统功能块,DB 数据块,各个模块之间可以相互调用。OB1 是其中的循环执行组织块,程序首先并一直在 OB1 中循环运行,在 OB1 中可以调用其它的程序块执行。

在 S7

Program 下的 Block 中,选定并打开 OB1,用梯形逻辑、功能块图或语句表编程,再保存编译和下载,即可执行程序。

(6)程序的清除(存储器复位):

图 1-2 编程界面 A、模式选择器放在 STOP 位置 B、模式选择器保持在 MERS 位置,直到 STOP 指示灯闪烁两次(慢速)

C、松开模式选择器(自动回到 STOP 位置)

D、模式选择器保持在 MERS 位置(STOP 指示灯快速闪烁)

E、松开模式选择器(自动回到 STOP 位置)

(7)运行并监控 将 CPU 打到 STOP 模式,下载整个 SIMATIC 300 站点。再将 CPU打到 RUN 模式,打开监视,程序运行状态可在 OB1 上监视到。

三、思考题 一.为什么要进行硬件组态?

PLC 是一种模块化的结构,电源、cpu、i/o 等模块都是单独成块的。而 PLC 组态是对硬件进行配置,简单的说就是告诉系统你配置了哪些东西,这样系统才能去连接你的东西。

二.硬件组态和程序生成有先后之分吗?哪种比较方便些? 没有先后之分。先进行硬件组态,然后是下载用户程序方便些。这样STEP7 在硬件组态编辑器中会显示可能的地址。而且有了系统数据块后,如果你的程序中硬件组态与你的实际硬件一致,就可以在 SIMATIC管理器中,直接选中 Blocks,然后执行下载,在提示你是否也下载系统数据块时,只要点击 Yes,就把硬件组态信息和用户程序一起下载到 CPU 中。

四、实验心得 在这次的实验中,从中了解 STEP7 V5.0 的软件,并学会在该软件下建立自已的文件,对 PLC 站组态、保存和编译,并且下载到 PLC,用软件中的梯形逻辑进行编程,还用软件进行实时监视。开始没找到正确的硬件进行组态,然后在师姐的指导下,找到完全和硬件一致的进行组态,之后的还是比较容易。

实验 二

S7-300PLC 之间的 MPI 通讯

一、实验目的 熟悉现场总线网络 MPI 网络通讯的基本原理和 STEP7 硬件组态,掌握 S7-300PLC 编程和两个 PLC 之间 MPI 网络通讯的具体方法。

二、实验内容 (1)要求:对 PLC 及 MPI 网络组态,采用 STEP 7 V5.x 编程,以 MPI 网络通讯的方式,在第二台 S7-300 的程序中编译一组密码,在第一台 S7-300 上输入八位的开关信号。如果开关信号与密码不同,则第二台 PLC 的某个输出点上的输出信号闪烁;如果开关信号与密码相同,则这个输出点上的输出信号长亮。根据需要添加实验内容和使用 PLC 内部的系统功能。

(2)实验主要仪器设备和器材:S7-300 可编程控制器,开关装置,S7-300 适配器,装有 STEP7 软件的工控机(或电脑)。

(3)实验方法、步骤及结构测试:

图 2-1 MPI 通讯示意图 具体实验步骤如下:

1、硬件连接 应用带连接头的屏蔽双绞线,通过 PLC 中的 MPI 接口进行连接,SIEMENS300(2)CPU SIEMENS300(1)CPU 全局数据

将实际线路连好,开关输入量也接好;同时全部清除两台 S7-300PLC原有的程序,并打到 STOP 挡,为硬件组态和编程作好准备。

2、组态硬件 利用 SIMATIC 管理器,在项目中为要连网的设备生成硬件站之后利用硬件组态工具逐个打开这些站。

1)打开 SIMATIC Manager,在“文件”选择“新建”。在空白处点击右键选中“插入新对象”,再选 SIMATIC 300。

2)进行组态 第一台设备:根据实际硬件配置组态。

第二台设备:根据实际硬件配置组态。

3)选“站点”,进行“保存和编译”。

3、设定 MPI 地址 组态硬件时,必须定义CPU连接在MPI网络上,并分配各自MPI地址。

1)在 SIMATIC 300(1)选中 Hardware(硬件)。

2)双击,选 CPU315-2DP。

3)双击,选属性。

4)选定 MPI(1),并设定其地址。

在硬盘上保存 CPU 的配置参数,然后分别下装到每一 CPU 中(点到点)。

4、检查网络

1)网络组态 分别在两台 PLC 硬件组态中,选菜单栏中的“选项”,然后选“组

态网络”,进行组网。选中 MPI(I)双击,将两台 PLC 组网。

用 Profibus 电缆连接 MPI 节点,可以用多条 MPI 线连接。在这里用一条 MPI 线连接即可,这样就可以与所有 CPU 建立在线连接。打开网络组态查看,还可用 SIMATIC 管理中 PLC 下的“Accessible Nodes”功能来测试连接状态。

5、设计程序 编译程序 进入程序设计时,可按以下步骤:选 SIMATIC 300(1)→CPU 315-2DP→S7 Program(1)→Blocks→OB1,双击后可开始编写程序。

第一台 S7_300 的程序框图:

读取八位开关信号 IB0,传递到 MB0:

MOVE EN

ENO IN

OUT 第二台 S7-300 的程序框图:

输入密码,输入固定数据 1280,传送到 MW2:

MOVE EN

ENO IN

OUT

开关信号数据 MW6 与密码数据 MW2 对比:

IB0 MB0 1280 MW2

CMP==1 IN1

IN2

CMP<>1 IN1

IN2

输出为 Q0.0。输出信号灯闪烁:

第二台 CPU 的时钟存储器,地址 M100 此时闪光频率为 1Hz,周期=1s,灯通=0.5s,灯闭=0.5s 程序框图

M100

Q124.5 6、生成全局数据表 应用“定义全局数据”工具可以生成一个全局数据表。将数据表编译两次然后下装到 CPU 中。

根据程序可知,数据从第一个 CPU 中的 MB0 发送到第二个 CPU中的 MW6,编译两次后,下载。

生成全局数据表步骤如下:

1)选择 MPI 网 回到前面的项目界面双击 MPI 网→选项→定义全局数据,产生或打开全局数据表。

2)分配 CPU MW2 MW6 MW2 MW6

点击 GDID 后的空格右键弹出 CPU→点击 CPU→双击 SIMATIC

300(1)→双击 CPU 3)填入发送和接收数据(注明发送方)

填入 MB0→选“选作发送器”→在后一空格用右键弹出 CPU→点击 CPU→双击 SIMATIC

300(2)→双击选中另一个 CPU→点击下一空格填入 MW6→编译→关闭→点击“查看”→选“扫描速率”及“全局数据状态”→编译→关闭→退出。

4)下载程序

定义完全局数据后下载程序。在下载程序前应先清除原有的程序。SIMATIC 300(1)→下载。

5)运行及结果 A、将两台 S7-300PLC 的开关打到 RUN 挡,S7-300CPU 上的其它灯是不亮的,这时全局数据开始自动循环交换。

B、在第一台 PLC 上输入八位开关量 IB0,数据传递到 MB0,通过 MPI 网络,运行全局数据表,数据从第一台 PLC 的 MB0 传送到第二台 PLC 的 MW6。MW6 上的数据与第二台 PLC 的 MW2 中C、密码数据相比较后,在第二台 PLC 的输出点 Qxxx.x 输出结果。若信号与密码相同,第二台 PLC 输出灯 Qxxx.x 亮。

三、思考题 1、在下载程序前如何清除原来的程序? 现在 PLC 把新的程序下载进去,会自动覆盖原本的程序的。如果要直接清除的话,则可通过复位清除寄存器内容,先把模式选择器放在STOP 位置,然后模式选择器保持在 MERS 位置,直到 STOP 指示灯闪烁两次,再松开模式选择器,模式选择器保持在 MERS 位置,此时 STOP 指示灯快速闪烁,然后松开模式选择器就可以了。

2、下载程序时应注意什么问题? A 硬件组态没有错误,组态都错了,下进去也没用。

B最好先下新硬件组态信息,然后保证按键打到STOP档位再下程序。

C 在进行了新的组态编译时,必须点击 Yes,即把新的硬件组态信息也下载到 CPU 中,否则新的硬件组态和旧的用户程序将产生冲突。

3、密码数据在开关量上是如何表示的?试着把密码设为小于 256 的数,再运行程序看结果如何?为什么? 如果字节数据转换成字,则 MB0、MB1 分别变成 MW6 的高 8 位和低 8位,MB1 没有则补 0,MB0 传送到 MW6 中变成高 8 位。如果小于 256,则输出信号长亮,因为密码相同了啊。

四、实验心得 在这次实验中,学会了 PLC 两个 PLC 之间 MPI 网络通讯的方法,同时学会了用梯形图编程,如果是简单的程序基本能自己编好。实验中开始没懂程序原理,难点就在那个密码表示,后来请教师姐才懂的。

实验三 三

S7-300PLC 之间的 DP 通讯

一、实验目的

熟悉现场总线 DP 网络通讯的基本原理,掌握 S7-300 编程和两个 PLC 之间 DP 网络通讯的具体方法。

二、实验内容

1)要求:对 PLC 及 DP 网络组态,采用 STEP 7 V5.0 编程,以 DP 网络通讯的方式,在第二台 S7-300(从站)的程序中编译一组(三个)两字节的密码,分别为 256,512,1280,在第一台 S7-300(主站)上输入 16 位的开关信号。如果开关信号与其中一组密码相同,则第一台 PLC 的一个指定的相应输出点上的输出信号亮,即输入信号是256,则 Q4.0 亮,输入信号是 512,则 Q4.1 亮,输入信号是 1280,则 Q4.2 亮;否则没有灯亮。

2)实验主要仪器设备和材料:S7-300 可编程控制器,开关装置,S7-300适配器,装有 STEP7 软件的工控机。

3)实验方法、步骤及结构测试:

1、硬件连接 将两台的 DP 口通过 PROFIBUS 电缆连接,开关输入量接在主站的DI 模块上;同时将两台 PLC 全部清除原有程序,打到 STOP 挡,为硬件组态和编程作好准备。

SIEMENS300(1)主站

交换区 PROFIBUS-DP SIEMENS300(1)从站

交换区

图 3-1 DP 通讯示意图 4)组态硬件(1)新建项目 在 STEP7 中创建一个新项目,然后选择“插入”站点Simatic 300 站点,插入两个 S7 300 站,这里命名为 Simatic 300(master)和 Simatic 300(slave)。再选择“插入”“站点”PROFIBUS。如图 3-2 所示。当然也可完成一个站的配置后,再建另一个。

(2)组态硬件 从站和主站硬件根据实际选定,原则上要先组态从站。双击 Simatic 300(slave)“Hardware(硬件)”,进入硬件组态窗口,在功能按钮栏中点击“Catalog”图标打开硬件目录,按硬件安装次序和订货号依次插入机架、电源、CPU 和输入/输出模块等进行硬件组态,主从站的硬件组态原理一样。

5)参数设定 硬件组态后,双击 DP(X2)插槽,打开 DP 属性窗口点击属性按钮进入 PROFIBUS 接口组态窗口,进行参数设定。

(1)从站设定:在“属性 DP ”对话框中选择“工作模式” 标签,将 DP 属性设为从站(Slave)。然后点击“常规”标签,点击“属

性”按钮,之后点击 Network Settings 标签,对其它属性进行配置,如:站地址、波特率等。设定完成之后,点击”保存”即可,不要进行编译。

(2)主站设定:在“属性 DP ”对话框中选择 “工作模式”标签,将 DP 属性设为主站(Master)。然后点击“常规”标签,点击“属性”按钮,对其它属性进行配置,如:站地址、波特率等。注意:这里的主站地址跟从站的地址不能重复,且同一个站的 MPI 地址和 DP地址要保持一致。

(3)连接从站:在硬件组态(HW Config)窗口中,打开窗口右侧硬件目录,选择“ PROFIBUS DPConfigured Stations”文件夹,将 CPU31x 拖拽到主站系统 DP 接口的 PROFIBUS 总线上,这时会弹出 DP 从站连接属性对话框,选择所要连接的从站后,点击“连接”按钮,再点击“确认”。注 注:如果有多个从站存在时,要一一连接。

(4)设定交换区地址 双击从站,选择“组态”标签,打开 I/O 通信接口区属性设置窗口,进行设置。或者进入“从站属性“窗口,如果没有出现表格,则要点击下面的“新建”,分两次输入表格。

地址类型:

选择“Input”对应输入区,“Output”对应输出区。

地址:

设置通信数据区的起地址。

长度:

设置通信区域的大小,最多 32 字节。本例设为 8 字节。

单位:

选择是按字节(byte)还是按字(word)来通信。

一致性:

选择“Unit”是按在“Unit”中定义的数据格式发送,即

按字节或字发送。

从站与主站设置完成后,点击“编译存盘”按钮,编译无误后即完成从站和主站的组态设置。

6)检查网络 点击“组态网络”图标

。打开网络组态查看,是否成功。

7)设计程序

输入三个 16 位的密码:

256,512,1280 结束 从站

主站 给定一个 16 位的开关量信号 开关量是 256 开关量是 512 开关量是1280 Q4.0 亮 Q4.1 亮 Q4.2 亮 结束 图 3-2 程序框图

8)程序清单

输入零字节的任一位闭合,使能接通。IW0的值传送到 QW10。

图 3-4 从站中密码设定

图 3-3 主站程序

9)运行及实验结果 输入开关量 1,则 Q4.0 亮;输入开关量 2,则 Q4.1 亮;输入开关量 5,则 Q4.2 亮,输入其它量时,信号与密码不同,无灯亮。

三、思考题

1.指出 PROFIBUS 中,DP 与 MPI 通信的特点与区别。

MPI:多点通信的接口,是一种适用于少数站点间通信的网络,多用于连接上位机和少量PLC之间近距离通信。MPI的通信速率为19.2K~12Mbit/s。在 MPI 网络上最多可以有 32 个站。MPI 允许主-主通信和主-从通信。

DP:允许构成单主站或多主站系统。在同一总线上最多可连接 126 个站点。通讯波特率最大支持 12MB,距离可达 1200M。包括以下三种不同类型设备:一级 DP 主站、二级 DP 主站、DP 从站。

2.简述数据交换过程以及数据交换区的设置方法。

由主机数据交换区的数据通过总线传送到从机的数据交换区。双击从站,选择组态标签,打开 I/O 通信接口区属性设置窗口,进行设置。或者进入从站属性窗口,如果没有出现表格,则要点击下面的新建,分两次输入表格。

3.在不改变交换区地址的情况下,QW10-QW16,IW20-IW24 可以用 M寄存器区取代吗?说明原因。

可以,取代的话还会使程序简单,不过功能也会变得简单罢了。

四、实验心得

在这次实验中,熟悉现场总线 DP 网络通讯的基本原理,弄懂了两个PLC 之间 DP 网络通讯的方法,同时又用梯形图编程,加强了编程能力。实验中 DP 通讯还是比较复杂,主要是有很多细节,常常要请教师姐,看来要多用和多了解才行。

第三篇:数字电视信号传输技术探讨论文

摘要:随着互联网信息技术的发展和应用,数字化电视在当下得到了较为广泛地应用,数字化电视能够为人们带来更多的电视节目,从而满足人们观看电视的需求。数字化电视信号传输技术的发展和应用,是保证数字化电视节目质量的关键。加强数字电视信号传输技术的应用,切实保证数字电视信号传输的质量性和可靠性,成为当下数字化电视发展过程中必须把握的一个重要议题。本文在对数字电视信号传输技术研究过程中,对数字电视信号传输技术发展现状进行了分析,并就现阶段数字电视信号传输过程中存在的问题进行了阐述,并提出了相应的解决对策。最后,就数字电视信号传输技术未来发展趋势进行了阐述。

关键词:数字电视信号;传输技术;发展趋势

数字电视信号传输技术的发展,成为当下数字化电视发展的一个重要支柱,其技术手段的进步,能够在很大程度上满足数字化电视的需要,为人们提供更加清晰的电视节目。数字电视在应用过程中,从演播现场到发射端,再到传输过程,利用了数值信号,通过采样和量化再到编码,以二进制数字流实现电视节目播放。数字电视系统在应用过程中,能够有效地实现软件下载和网络互动,可以更好地满足人们的实际需要。数字电视的发展,在很大程度上满足了人们观看电视节目的需要,这一过程中,就需要对数字电视信号传输技术进行较好把握,从而更好地提升数字电视的发展和应用。

1数字电视信号传输技术相关概述

1.1数字电视信号传输技术发展现状

数字电视信号传输技术的发展,得益于数字电视的快速发展。据互联网一份调查数据显示,截止到2015年,我国数字电视用户比例达到了68.9%,从2005~2015年期间,每年的增长率超过了15%。同时,数字电视在发展过程中,卫星电视也呈现出大幅度上升趋势。2015年,数字电视在我国的覆盖规模超过了3亿用户,占到了电视用户总量的80%以上。数字电视在发展过程中,得到了政策的支持,并且随着相关技术手段的提升,数字电视的成本不断下降,能够为人们带来更好地服务,这样一来,数字电视在未来发展过程中,势必会实现100%的普及。数字电视的发展,促进了数字电视信号传输技术的发展,目前,数字电视信号传输技术应用过程中,主要以基带传输和频带传输方式为主。基带传输主要是指将数字化信号进行转化,使之符合数字电视传输需要,之后利用光纤、电缆或是微波管道,实现对数据信息的有效传输。基带传输是一种二进制的矩形脉冲信号,在进行数据信息传输过程中,具有较高的稳定性和安全性。频带传输技术在应用过程中,主要应用了调制、解调技术对数据信息进行传输。基带传输和频带传输方式的有效结合,能够更好地实现数据信息的传输,从而使数字电视传输技术得到更好地应用[1]。

1.2数字电视传输技术特点

本文在对数字电视传输技术特点分析过程中,注重对其技术特征和技术优势进行了分析和研究。关于数字电视传输技术的特点,我们可以从以下两点进行了解:

1.2.1数字电视传输技术的特点

数字电视传输技术在应用过程中,其在进行信号传输时,特征如下:①信号传输的可靠性较高,在对信号进行抽样、量化和编码处理后,能够有效降低信号干扰,使接受设备能够对信号进行有效接收,这样一来,在进行电视节目播放过程中,可以保证画面更加清晰,节目质量更高;②在利用数字电视传输技术过程中,可以对信息进行较好的存储[2]。同时,信息存储过程中,与信号传输时间、大小关联性较小,不会对信号质量产生影响。例如信号存储设备中,帧存储器能够实现帧同步和信号转化,并且在对图像特技效果存储过程中,能够实现时分多路的目的,从而对信道容量进行较好的应用,更好地实现对节目的转播;③在进行信号传输过程中,有效性较高。数字信号传输过程中,更加倾向于“单频网络”技术方向发展,这样一来,能够节约信息量空间,保证信息传输更好地满足电视节目发展需要。例如在利用6MHz模拟电视频道在进行电视节目转播过程中,通过利用通信网络同步传播的模式,能够更好地实现服务动态组合,这样一来,有效地提升信号传输的有效性[3]。

1.2.2数字电视传输技术的优势

数字电视传输技术的应用,其优势主要体现在以下几点:①具有较快的传播速度,能够保证数字电视设备对信号进行更快的接受,并且信号接收频率较为广泛;②数字电视传播技术应用过程中,能够保证信号具有较高的质量,并且具有较好的占频效果,从而满足用户对电视节目的观看需要;③数字电视传播技术更好地实现了更多视频接收设备的普及,从而实现了数字电视节目的“移动性”,人们可以利用手机、平板、电脑等设备,实现对节目的观看;④通过利用传输设备,能够对信号更好地进行存储,并且能够根据实际情况,设置相应的存储期限,以满足人们的实际需要[4]。

2数字电视信号传输过程中存在的问题

数字电视信号传输技术在应用过程中,由于现阶段技术手段并不成熟,在实际应用时,势必会存在一定的问题。这样一来,为了更好地促进数字电视信号传输技术的发展和进步,必须有针对性的进行解决。关于数字电视信号传输过程中存在的问题,主要涉及到了以下几点:

2.1传输信道可靠性存在缺陷

数字电视信号传输技术在应用过程中,仍需要借助于电缆线等辅助设备,这样一来,若是电缆线在应用过程中,出现故障,将会对数字电视信号传输的可靠性带来不利影响。电缆线采取了半空架设、利用无线信道架设或是地下掩埋的方式,这就可能导致电缆线在进行信号传输过程中,出现故障问题。同时,一些不法分子为了谋利,偷挖电缆线的情况时有发生,这就导致传输信道的可靠性存在较大的问题。

2.2网络安全问题较大

数字电视的发展,需要借助于网络技术,并且需要支付一定的费用。电视观众用户在使用数字电视时,会链接传输网络,这就使得一些电视用户的信息被盗取,从而给用户带来了一定的经济损失。

2.3设备具有较高的安装成本

数字电视的发展,需要借助于相关设备,并且从我国国情来看,要想实现数字电视的普及,需要加大投入,提升数字电视信号传输距离,这就需要敷设更多的电缆和光纤,从而使得数字电视信号运营公司的成本不断增加[5]。同时,随着数字电视信号传输范围的不断扩大,信号传输过程中将会面临更多的误差或是信号干扰问题,从而使运营公司需要加强维修投入,这也在无形中加大了运营公司成本。而从现阶段数字电视发展情况来看,采取了补贴和用户自行支付费用的发展模式,这样一来,用户也会承担一定的费用负担。但由于一些地区的交通条件以及经济发展水平较为落后,对数字电视信号传输质量产生了较为不利的影响,从而影响到了数字电视在这一地区的普及和应用。

3数字电视信号传输技术发展对策研究

数字电视的应用,在未来发展过程中呈现出一种不可逆的发展趋势,这样一来如何采取有效措施对数字电视信号传输过程中存在的问题进行解决,成为当下必须考虑的一个重点内容。对此,我们可以从以下几点进行考虑:

3.1对光纤传输信号进行应用

利用光纤进行信号传输,能够有效地满足模拟信号和数字信号的传输需要,并且能够保证视频在传输过程中,具有较高的质量。同时,光纤传输信号的应用,其传输速率能够达到上千Mbps,可以有效地满足信号传输需要。通过对光纤传输信号方式的应用,能够有效地扩大信号传输范围,并且能够实现低损耗、可靠性较高的信号传输目标。光纤传输信号技术的发展和进步,使得这一技术手段得到了推广和应用,并且能够在很大程度上促进数字电视信号传输技术的进步,更好地推进数字电视的发展[6]。

3.2利用数字信号卫星进行信息传输

数字信号卫星的传输方式,能够很好地满足数字电视信号传输的需要。这一传播模式在应用过程中,通过利用卫星将信号传输到指定区域,并能够对信号传输卫星进行远程操控,从而更好地实现数字电视信号传输技术需要。

4我国数字电视信号传输技术未来发展趋势分析

随着互联网技术的快速发展,以及人们对数字电视信号传输技术的广泛关注,这对于促进数字电视信号传输技术的发展和进步来说,起到了至关重要的作用。在未来发展过程中,随着“三网融合”技术的不断成熟,广播电视网、互联网、通信网的有机结合,需要对数字电视信号传输技术进行改进,使其能够更好地满足“三网融合”发展需要。这样一来,数字电视的覆盖率将持续增加,并且数字电视原来的机顶盒将被内部数字电视调谐器取代[7]。同时,数字电视能够有效地实现双向传输技术,不单单能够满足人们观看电视节目的需要,还能够使数字电视的功能得到极大程度的拓展,更好地提升人们的生活水平。

5结束语

结合本文的分析,我们可以看出,数字电视在当下得到了较好的发展,并且数字电视在人们生活中的普及率也不断提升。基于这一发展形式,数字电视在未来发展过程中,必须要注重对数字电视信号传输技术水平进行不断提升,使之能够满足数字电视的发展需要,并且通过技术革新,更好地适应未来的发展。因此,数字电视信号传输技术在发展过程中,要注重加强技术革新,能够结合当下信息技术发展特点,更好地与“三网融合”发展形势保持一致性,从而使数字电视信号传输技术得到更加广泛的应用,使数字电视能够真正得到普及,满足人们多元化的需要。

参考文献:

[1]黎伟健.数字电视信号传输方式及其技术特性研究[J].科技传播,2011,16:72+59.[2]谭志远.数字电视信号传输技术的研究与分析[J].西部广播电视,2016,01:230.[3]刘俊琪.数字电视信号传输技术的研究[J].科技展望,2016,10:142+144.[4]王安琪,刘飞,白月文.数字电视信号传输技术及其应用[J].中国传媒科技,2013,08:176~177.[5]尹琛.浅析数字电视信号传输技术[J].电子制作,2015,12:138~139.[6]刘兆杉.浅谈实现移动数字电视信号传输的有效方式[J].数字技术与应用,2016,02:256.[7]李涛.数字卫星广播电视信号传输与质量分析探讨[J].无线互联科技,2014,10:182.

第四篇:有线电视网络IP传输技术比较

有线电视网络IP传输技术比较

摘要:在有线电视网络中的IP传输技术有IP over ATM、IP over SDH、IP over WDM三种形式,本文详细地介绍了这三种IP传输技术并对它们进行了比较。

关键词:IP技术,有线电视网络,IP over ATM,IP over SDH,IP over WDM。

随着全球互联网(Internet)的迅猛发展,上网人数正以几何级数快速增长,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。二十一世纪是信息产业持续发展的时期,IP技术使得信息汇集和现有网络整合成为可能,IP over everything已成为无可争辩的事实。

目前,Internet通过电信拨号的接入速度极其缓慢,一般电话的Modem只能提供几十Kbit/S的传输速率,其速率和带宽不可能很好地支持多媒体信息等宽带业务。

随着多媒体通信的发展,因特网接入宽带化的需求日益迫切。而有线电视网拥有丰富的带宽资源,同时,目前我国有线电视用户已经达到了8000万户,有线电视网络的里程超过了240万公里,中国已经成为世界第一大有线电视用户国。有线电视网络具有巨大的产业开发价值,构筑基于有线电视网的Internet宽带信息网,不仅仅是广大用户的企盼,更是有线电视网实现第二次腾飞的关键所在。

在有线电视网络中用何种技术传输IP,取决于有线电视网络所采用的传输技术。在有线电视网络中的IP传输技术有IP over ATM、IP over SDH、IP over WDM三种形式。

一、IP over ATM

ATM是一种高速率、低时延的多路复用交换技术。它是在分析、总结电路交换和分组交换的技术优缺点的基础上发展起来的,它融合了两者的优点,即面向连接、保证服务质量和统计复用以实现高带宽。它采用固定长度的短分组在网络中传送各种通信信息,便于硬件的高速处理,实现高速、大容量的宽带交换。而且,具有相当完善的流量控制功能和拥塞控制功能,保证带宽利用率,保证网络的安全性和可靠性。在有线电视网络中,应用ATM的流量控制可以实现视频传输的分级服务,ATM还可以实现电视节目实时的非对称传输,目前,部分省内和地市以下的有线电视传输网仍采用ATM技术。

IP over ATM是IP与ATM的结合,当前有两种技术方式:即重叠技术和集成技术。重叠技术是将IP网络层协议重叠在ATM之上,即ATM网与现有的IP网重叠,在ATM端点同时使用ATM和IP两种地址的映射功能,发送端在得到接收端ATM地址后,便可建立ATM/SVC连接,传送LAN数据包。集成技术是将IP路由器的智能和管理性能集成到ATM交换机形成一体化平台,仅要求标识IP地址,无须ATM的地址解析协议,简化了ATM的路由选择功能,提高了IP转发效率,同时保留了路由的灵活性。

IP over ATM技术的优点是可充分利用ATM的快速交换和完善的QoS功能,保证网络的服务质量;网络具有很好的扩展性和灵活性;支持多种业务、数据、语音、视频汇集到一个网络上,为不同业务类型提供不同的服务质量QoS;有很好的网络流量管理和控制性能,表现在ATM流量控制方面非常精细,这一点对带宽是非常宝贵的、线路费用非常高的广域网来说就显得非常重要,这是目前ATM能在广域网中被广泛采用的原因之一。

IP over ATM技术的缺点:由于IP数据包必须映射成ATM信元,由此形成的传输开销称为“信元税”,故传输效率低;网络管理比较复杂,设备昂贵;不太适用于超大型IP骨干网。

二、IP over SDH

ATM能支持多种业务曾经是它独一无二的特点,但随着IP技术的发展和网络硬件的不断完善,今天的IP已成为各种业务的核心,数据语音和视频业务都可由IP承载,ATM的优点已由IP技术取代,特别是当数据业务量超过语音和视频时,更显得ATM没有存在的必要,况且去掉ATM还可以提高传输效率。因此,IP over SDH应运而生,这一技术也极大地动摇了ATM在广域网中的地位。

SDH传送网的概念最初于1985年由美国贝尔通信研究所提出,称之为同步光网络(Synchronous Optical NETwork,SONET)。它是由一整套分等级的标准传送结构组成的,适用于各种经适配处理的净负荷(即网络节点接口比特流中可用于电信业务的部分)在物理媒质,如光纤、微波、卫星等上进行传送。该标准于1986年成为美国数字体系的新标准。国际电信联盟标准部(ITU—T)的前身国际电报电话资询委员会(CCITT)于1988年接受SONET概念,并与美国标准协会(ANSI)达成协议,将SONET修改后重新命名为同步数字系列(Synchronous Digital Hierarchy,SDH),使之成为同时适应于光纤、微波、卫星传送的通用技术体制。

SDH传输网是由一些SDH网络单元组成的,在光纤、微波或卫星上进行同步信息传送,融复接、传输、交换功能于一体,由统一网络管理操作的综合信息网。可实现网络有效管理、动态网络维护、对业务性能监视等功能,能有效地提高网络资源的利用率,能满足广播电视干线传输网的信息传输和交换的要求,对提高广播电视传输质量有了质的飞跃,因而SDH技术正成为广播电视领域传输技术方面的发展和应用热点。

IP over SDH以SDH网络作为IP数据网络的物理传输网络。它使用链路及点到点协议(PPP:Point To Point Protocol)对数据包进行封装,根据RFC1662规范把IP分组简单地插入到PPP帧中的信息段。然后再由SDH通道层的业务适配器把封装后的IP数据包映射到SDH同步净荷中,然后经过SDH传输层和段层,加上相应的开销,把净荷装入一个SDH帧中,最后达到光网络,在光纤中传输。IP over SDH,也称为PACKET over SDH(PoS),它保留了IP面向无连接的特征。

IP over SDH的优点是:对IP路由的支持能力强,具有很高的IP传输效率;符合Internet业务的特点,如有利于实施多播方式;能利用SDH技术本身的环路和网络自愈合能力达到链路纠错的目的;同时又利用OSPF协议防止链路故障造成网络停顿,提高网络的稳定性;将IP网络技术建立在SDH传输平台上,可以很容易地跨越地区和国界,兼容不同技术标准实施全球联网;声略了ATM层,简化了网络结构,降低了运行成本。在有线电视网络平台上IP over SDH适用于省际网络和省内网络上的IP传输。

IP over SDH的缺点是:IP over SDH目前尚不支持虚拟专用网VPN和电路仿真;在所有包交换技术中,ATM的QoS是最好的,它可以做到电路仿真,而IP over SDH技术只能进行业务分级,不能提供较好的QoS;对大规模的网络必须处理庞大、复杂的路由表,而且查找困难,路由信息占用比较大的带宽。

从光通信技术发展趋势看,SDH/SONET未来将让位于波分复用技术,因此,IP over SDH将最终发展成为IP over WDM(IP over OPTICAL)

三、IP over WDM 随着传输技术的发展,以IP业务为主对网络的进一步优化设计将是IP over WDM。

波分复用技术(WDM)是在一根光纤中能同时传输多个波长的光信号的一种技术,其原理是:在发送端将不同波长的光信号组合,在接收端又将组合的光信号分开送入不同的终端,这意味着,原来只能采用一个波长作为载波的单一信道,变为数个不同波长的光信道同时在光纤中传输,从而使光通信的容量成倍提高。WDM技术的实现主要由波分复用器来完成。波分复用器是一个无源光学器件,器件结构简单、体积小、易于和光纤耦合。WDM系统有三种基本结构,即光多路复用单向单纤传输,光多路复用双向单纤传输和光分路插入传输。组网灵活,对开发带宽新业务,充分挖掘和利用光纤带宽的能力,实现高速通信具有十分重要的意义。

IP over WDM就是让IP数据包直接在光路上跑,减少网络层之间的冗余部分。由于省去了中间的ATM和SDH层,其传输效率最高,节省了网络运行成本,同时也降低了用户的费用,是一种最直接、最经济的IP网络结构体系,非常适用于特大型骨干网。

IP over WDM具有以下优点:充分利用光纤的带宽资源,极大地提高了带宽和相对传输效率;对传输码率、数据格式及调制方式透明,可以传送不同码率的ATM、SDH/SONET和千兆以太网格式的业务;不仅可以和现有通信网络兼容,而且还可以支持未来的宽带业务网及网络升级,并且有可推广性和高度生存性等特点。

IP over WDM的缺点是还没有实现波长的标准化,WDM系统的网络管理应与其传输的信号和网管分离;WDM系统的网络管理还不成熟;目前WDM系统的网络拓扑结构只是基于点对点的方式,还没有形成“光网络”。

四、IP over ATM、IP over SDH、IP over WDM的比较

IP的三种传输方案各有优缺点,在实际应用中需要根据具体情况分别对待,若主干网原已采用了ATM设备,则可以采用IP over ATM方案,由于ATM端口速率高,有完善的QoS(服务质量)保证,产品成熟,因而可提高IP网交换速率,保证IP网的服务质量;若主干尚未涉及ATM,则采用IP over SDH方案,由于去掉了ATM设备,投资少,见效快而且线路利用率高。因而就目前而言,IP over SDH是较好的选择。而在城域主干网中,IP over SDH技术相对而言投入较高,采用IP over WDM技术会更实用。IP over WDM的优势是减少网络各层之间的中间冗余部分,减少SDH、ATM、IP等各层之间的功能重叠,减少设备操作、维护和管理费用。并且IP over WDM技术能够极大地拓展现有的网络带宽,最大限度地提高线路利用率,在外围网络千兆以太网成为主流的情况下,这种技术能真正地实现无缝接入,这预示着IP over WDM代表宽带IP主干网的未来。

发展宽带网络通信一直是人们的目的和理想,也是宽带综合业务网发展的一个方向。作为其技术代表的ATM技术从其产生时起,就被认为应担负起多业务(电话、电视、数据、专线)融合的使命,但由于其技术复杂,价格昂贵,因而其发展受到了限制。而如今流行的IP技术具有简单、灵活、应用广泛以及价格低廉等特性,使得IP不但在Internet、局域网等方面得到广泛运用,而且也被人们认为是宽带网络技术的一种选择。利用有线电视网络构建IP宽带接入网实现Internet数据传输,将给有线电视网络带来极大的发展机遇。

第五篇:视频信号传输技术要求及方案

监控系统--视频信号传输技术要求及方案

视频监控系统--视频信号传输方案选择

监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视。目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用?

一、同轴电缆传输

(一)通过同轴电缆传输视频基带信号

视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3-96编国标视频电缆衰减30dB/1000米, SYV75-5-96编国标视频电缆衰减19dB/1000米,,SYV75-7-96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,在周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输 150米、75-5可以传输300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术。在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及控制中心对云台、镜头的控制信号,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性。同轴视控实现方法有两类,一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外的方法是采用双调制的方式,将视频信号和控制信号调制在不同的频率点,和有线电视的原理一样,再在前、后端解调。二是利用视频信号场消隐期间来传送控制信号,类似于电视图文传送;将控制信号直接插入视频信号的消隐期,视频信号中的消隐期部分在监视器上不显示,故对图像显示不会产生干扰,不影响图像的传输质量,通过前端视频信号的预放大和接收端信号的加权放大,可以大大延伸视频信号的传输距离,如采用75-5的视频电缆,可以实现2000米、75-7电缆实现3500米、75-9电缆5000米的视频传输和反向控制。

(二)通过同轴电缆传输射频信号

射频信号是指将视频信号调制到一定的频率上进行传输,也就是采用有线电视的传输方式,通常所讲的“一线通”、“共缆传输”、“宽频传输”等就是采用的此技术。采用该技术特别适合于监控点较多但相对集中,并与控制中心距离较远的系统。采用该系统优点是布线简

单,抗干扰能力强,但调试相对麻烦,因为是一根电缆传输多路信号,而且有的还要经过放大器放大,如果调试不好就会产生相互干扰(交调);另外相对于光缆,视频电缆可靠性稍差,因为共缆系统是以串联为主,接头多,特别是靠近机房的部分,如果出问题将影响前面所有的信号(视频直传方案是一对一,一根电缆出问题只会影响一路信号)。所以采用该方案时,一定要将系统详细的设备位置图提供给 “共缆传输”设备生产的厂家及工程商,帮助设计系统传输方案,另外需要配备1台场强仪。

二、双绞线传输

利用双绞线传输视频信号是近几年才兴起的技术,所谓的双绞线一般是指超五类网线,采用该技术与传统的同轴电缆传输相比,其优势越来越明显。

(一)优点

1、布线方便,线缆利用率高。一根普通超五类网线,内有4对双绞线,可以同时传输4路视频信号,或3路视频信号、1路控制信号;而且网线比同轴电缆更好敷设。

2、价格便宜。普通超五类网线的价格相当于75-3视频线,室外防水超五类网线的价格相当于75-5视频线,但网线可以同时传输多路信号,其经济性用户可以根据具体情况核算。

3、传输距离远传输效果好。如果传输前将视频信号进行了放大提升,传输距离可以达到1500米。

4、抗干扰能力强。双绞线传输采用差分传输方法,其抗干扰能力大于同轴电缆。

(二)使用中注意的问题

1、选用双绞线的原则:一般选用国产超五类网线,每根网线内有8芯,每芯的直流电阻值应小于15欧/100米(国标小于10欧/100米)。

2、对于不同传输距离有不同的选择,如大楼内,一般不超过150米,可以选用无源收发器;距离在650米内可以选用前端无源发射、后端有源接收的设备,省去了前端加电的麻烦和设备损坏的可能;650米至1500米可以选用有源发射、有源接收的设备;如超过1500米,可以考虑增加中继器,在2200米内增加1个中继器可以保证效果,如再远建议选择同轴电缆或光缆传输。

3、室外布线,尽可以选用室外防水网线,虽然价格高了些,但可靠性可以保证。

4、对于干扰特强的地方,如电厂、变电站等地方,建议选用屏蔽网线或对普通网线外套金属管。如采用屏蔽网线一定要注意传输距离,一般控制在700米以内,并采用在监控室单端接地的原则。

5、对于电梯的干扰,建议选用电梯专用双绞线电缆,它的柔软性能够满足电梯电缆的要求。

6、网线的连接应采用可靠的焊接,在室外一定要做好防水处理,处理完后注意防止浸泡在水里。你可以将接头放在矿泉水瓶内,瓶口朝下,再将瓶口封好;

7、由于双绞线传输采用“虚地”技术,比同轴电缆更容易感应静电或雷电,选择双绞线传输设备,一定要注意选用具有防静电、防雷的产品,如果在多雷区,最好在前端做防雷接地。

8、双绞线传输技术并不复杂,市场上的生产厂家也很多,但真正能做好的并不多。首先,没有一定的视频测试设备,仅凭示波器和监视器想做好非常不容易,其次,由于双绞线更容易招静电和雷电的损坏,所以其保护措施非常重要(保护部分的成本占到总成本的1/4-1/3),所以建议大家可以选择生产时间较长、规模较大的公司的产品,它们产品的性能,包括稳定性更好。

9、总之,利用双绞线传输视频信号与同轴电缆相比具有明显的优势,对用户来讲有一个认识了解的过程;有些用户曾经用过,但没有选择合格的产品而全面否定该技术,其实你可以多选择几家试一下。

三、光纤传输

用光缆代替同轴电缆进行视频信号的传输给电视监控系统提供了高质量、远距离传输的有力条件。其传输特性和多功能是同轴电缆线所无法相比的。先进的传输手段、稳定的性能、高的可靠性和多功能的信息交换网络还可为以后的信息高速公路奠定良好的基础。

(一)、光缆传输的优缺点

1、传输距离长,现在单模光纤每公里衰减可做到0.2dB~0.4dB,是同轴电缆每公里损耗的1%。

2、传输容量大,通过一根光纤可传输几十路以上的视频信号。如果采用多芯光缆,则容量成倍增长。这样,用几根光纤就完全可以满足相当长时间内对传输容量的要求。

3、传输质量高,由于光纤传输不像同轴电缆那样需要相当多的中继放大器,因而没有噪声和非线性失真叠加。加上光纤系统的抗干扰性能强,基本上不受外界温度变化的影响,从而保证了传输信号的质量。

4、抗干扰性能好,光纤传输不受电磁干扰,适合应用于有强电磁干扰和电磁辐射的环境中。

5、主要缺点是造价较高,施工的技术难度较大。

(二)单/多模光纤光端机的选用

1、目前常用的光纤按模式分有两大类:多模光纤和单模光纤。多模光缆用于视频图像传输时,只能满足最远3~5km左右的传输距离,并且对视频光端机的带宽(针对模拟调制)和传输速率(针对数字式)有较大的限制,一般适用于短距、小容量、简单应用的场合。单模光缆由于有着优异的特性和低廉的价格已经成为当前光通信传输的主流,但其设备价格比多模光端机高。

2、视频监控光端机在技术实现上分为模拟调制的光端机和数字非压缩编码光端机两大类。模拟光端机采用的是基带视频信号直接光强度调制(简称AM)或脉冲频率调制(PFM)技术。数字光端机主要指的是非压缩编码视频光端机,严格意义上说,是一种采用数字传输方式的视频光端机,输入和输出仍然是标准模拟视频信号。

模拟光端机发展至今已有10年以上的历史,已经是比较成熟的产品,从稳定性和可维护性上说,模拟设备在温度漂移特性,老化特性和长期工作稳定性上是显然不如数字设备。单从价格上说,目前在1~2路视频光端机上模拟的价格仍然有优势,但对于4路以上视频光端机,模拟和数字的差别已经几乎没有了,如果要求需要在视频传输的同时,还要传输音频、低

四、视频信号的干扰及解决

(一)干扰的产生可以分为下面3种情况:

1、前端电源的干扰:电梯的变频电机,工厂的大功率电机,变电站等。

2、传输过程的干扰:主要是电磁波干扰,如广播电台、电信基站等,还有电缆损坏引起的干扰及地电位差干扰等。

3、终端设备干扰:主要是设备电源产生的干扰和连接引起的干扰。

(二)干扰的解决方法

1、先判断干扰的产生位置,先从前端检查摄像机有无干扰,如有,一般是通过电源进去的(可以先用12V电瓶供电验证一下是否电源干扰),可以采用开关电源给摄像机供电,也可以安装交流滤波器进行滤波。

2、如果是通过传输过程产生的干扰,首先检查视频线的连接,屏蔽网有无破损等情况,另外可以考虑选择抗干扰器。目前,市场的抗干扰器基本原理有二种,一种是将视频基带信号调制到38MHZ或更高频率,避开干扰频率,其效果可以,但遇到干扰频率与38MHZ接近的话,那就没有办法了;另一种是采用将视频信号在前端进行幅度提升放大的办法,再在终端进行压缩,因为干扰信号的幅度是不变的,相对应的干扰信号也就被压缩了,这是一种广谱的抗干扰办法,但干扰有一定的残留,抗干扰的效果取决于视频信号放大的幅度和干扰信号的位置,幅度越大、干扰越靠近前端,抗干扰的效果越好。

3、如果用了抗干扰器效果不明显,有可能是终端(机房)引起的干扰,这样需要检查连接、电源、接地和设备本身问题等方面。速数据、高速以太网数据等多业务,模拟设备就无法与数字设备相比了。

什么是CAN-Bus总线传输技术
TOP