第一篇:21.1一元二次方程(第1课时)
21.1一元二次方程(第1课时)
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,•模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 教学重难点关键
1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)详见课本P25页,题略。
解:设切去的正方形的边长为xcm,则盒底的长为(100-2x)cm,宽为(50-2x)cm,则有:(100-2x)(50-2x)=3600.整理,得x75x3500①
问题(2)如图,如果2ACCB,那么点C叫做线段AB的黄金分割点. ABAC
.cn
如果假设AB=1,AC=x,那么BC=2-x,根据题意,得:x2(2x)
整理得:x2x40.②
问题(3)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛? 解:设应邀请x个队参赛,每个队要与其他(x-1)个队各赛1场,由于甲对对乙队的比赛和乙队对甲队的比赛时同一场比赛,所以全部比赛共221x(x1)场。则有: 2
1x(x1)28整理,得x2x560③ 2
思考:方程①②③有什么共同点?
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?还是与多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:略
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=•1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:略
三、巩固练习
教材P32练习1、2
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3(2)x2=4(3)3x2-5=0(4)x2-4=(x+2)2(5)ax2+bx+c=0 x
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17•≠0即可.证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
• 练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什
么条件下此方程为一元一次方程?
/4m/-42.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
1.教材P34习题22.11(2)(4)(6)、2.
2m-12.选用作业设计.补充:若x-2x+3=0是关于x的一元二次方程,求m的值。
第二篇:实际问题与一元二次方程(第1课时)教案
21.3实际问题与一元二次方程(1)
课型:新课 课时:1 主备人:林玲 教学目标:
知识与技能:1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
过程与方法:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述
情感态度价值观:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
教学重难点
教学重点:列一元二次方程解有关传播问题的应用题 教学难点:发现传播问题中的等量关系 教学方法:引导发现法 教学过程
一、复习引入
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解应用题都是有哪些步骤?
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
说明:为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.
二、合作探究 【探究1】
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
思考:(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感;
在第二轮传染中,传染源是 人,这些人中每一个人又传染了 人,那么第二轮传染了 人,第二轮传染后,共有 人患流感.(4)根据等量关系列方程并求解
解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:
1+x+x(1+x)=121 解方程得
x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.
(5)为什么要舍去一解?
(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?
说明:使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验. 【探究2】
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
思考:(1)怎样理解下降额和下降率的关系?
(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了 元,此时成本为 元;两年后,甲种药品下降了 元,此时成本为 元。(3)对甲种药品而言根据等量关系列方程并求解、选择根?
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.
依题意,得5000(1-x)2=3000 解得:x1≈0.225,x2≈1.775(不合题意,舍去)
(4)同样的方法请同学们尝试计算乙种药品的平均下降率,并比较哪种药品成本的平均下降率较大。
设乙种药品成本的平均下降率为y.
则:6000(1-y)2=3600 整理,得:(1-y)2=0.6 解得:y≈0.225 答:两种药品成本的年平均下降率一样大
(5)思考经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?
三、巩固练习
说明:通过练习加深学生列一元二次方程解应用题的基本思路
四、课堂小结:1.列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。
2.用“传播问题”建立数学模型,并利用它解决一些具体问题.
3.对于变化率问题,若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:a(1x)nb(常见n=2)
作业:练习册
板书设计: 实际问题与一元二次方程(1)
1.归纳
2.实际问题探究 3.小结 4.作业
教学反思:
第三篇:一元二次方程
一元二次方程(英文名:quadratic equation of one unknown)是指只含有一个未知数,并且未知数的最高次数是二次的整式方程,该方程式的一般形式是:ax²+bx+c=0(a≠0),其中,ax²是二次项,bx是一次项,c是常数项,a、b是常数。a≠0是一个重要条件,否则就不能保证该方程未知数的最高次数是二次。
一元二次方程最常规的解法是求根公式法,其外亦有因式分解法和配方法等方法。
第四篇:一元二次方程
一元二次方程
知识点归纳:
1.一元二次方程的概念及其一般形式。
2.熟练掌握一元二次方程的四种解法。
3.一元二次方程根的判别式及其应用。
4.一元二次方程的应用。
5.探索根与系数的关系
一.一元二次方程
1.在整式方程中,只有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。一元二次方程的标准形式:ax2bxc0(a0,b,c为任意常数)
例1:已知方程(1)2x230;(2)11121yy10 ;(3)2x123
(4)ay2byc0;(5)(x1)(x3)x25;(6)xx20。其中,是整式方程的有_______,是一元二次方程的有________________
二.一元二次方程的解法
(1)认识形如x2a(a0)或(axb)2c(a0,c0)类型的方程,并会用直接开平方去解。
解法一:直接开平方。
若一个方程可以转化为(xh)2k(k0)就可以用直接开平方求解。例1:用直接开平方求解下列一元二次方程。
(1)x290(2)9y210(3)2x250 例2:解关于x的方程4(xa)2b(b0)
例3:若关于x的一元二次方程m(xa)2n0无实数根,则m与n的关系为__________
(2)正确理解并会运用配方法将形如x2pxq0的方程变形为(xm)2n(n0)的类型
解法二:配方法
配方法解一元二次方程的一般步骤:(1)移常数到方程的右边;(2)化二次项系数为1;(3)方程两边都加上一次系数的一半的平方;(4)写成(xm)2n的形式,再用直接开平方法求解。
例1:填空
(1)x26x____(x__)2
2(2)x25x_____(x_____)
(3)x2px___(x___)2
例2:用配方法解方程6x32x2
例3:试用配方法证明,代数式2x2x3的值不小于23 8
(3)掌握一元二次方程求根公式的推导方法,会用公式法求一元二次方程的根。
解法三:公式法
bb24ac21.axbxc0(a0)的求根公式为x(b4ac0)2a2
2.若b24ac0,则方程无实根,不必用求根公式。
例1:用公式法解下列方程
(1)2x234x;(2)x23x30
例2:用公式法解下列方程:
(1)14x235x70(2)x2x0
若原方程系数中含有公约数,一般先约公约数,再解方程。若各项系数有小数或分数,通常先化成整数,再解方程。
(4)理解用因式分解解一元二次方程,会用因式分解解某些一元二次方程。
ab=0a=0或b=0
解法四:因式分解
例1:用因式分解解下列一元二次方程
(1)x23x100(2)(x3)(x1)5
(3)3x(1x)2x2(4)(2x1)22(2x1)30 347214
三.一元二次方程根的判别式
理解一元二次方程的根的判别式,能用根的判别式判定根的情况 一元二次方程ax2bxc0(a0)的根的判别式b24ac
0方程有两个不相等的实根
0方程有两个相等的实根
0方程没有实数根
例1:对于一元二次方程2x25x30下列说法正确的是()
A.方程无实根
B.方程有一个根为0
C.方程有两个相等的实根
D.方程有两个不等的实根
例2:方程x22xk0没有实数根,则k=___________
例3:已知m,判定方程x2(2m3)x(m1)20的根的情况。1
四.用一元二次方程解决问题
会列方程解决实际的问题。解决方程的一般步骤:(1)分析,找等量关系;(2)设未知数,列方程;(3)解方程;(4)验根;(5)写出答案 例1:有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,求这个两位数。
例2:两个相邻的自然数的平方和比这两个数之中的较小数的2倍大51,求这两个自然数。
五:探索根与系数的关系
1.解下列方程,你发现发现方程的两根之和,两根之积与系数a,b,c的关系。
(1)x22x0(2)x25x60
(3)x23x40(4)ax2bxc0(a0,b24ac0)结论:韦达定理:两根之和:x1x2
两根之积:x1x2
逆命题也成立。
例1:若x1,x2是方程x22x10的两根,那么x1x2的值为
例2:设,是方程x23x50的两根,不解方程,求2223的值。
例3:已知:设关于x的方程x2(4k1)x2k10
(1)求证该方程一定有两个不相等的实数根; caba
(2)若x1,x2是方程的两个实数根,且(x12)(x22)2k3,求k的值。本节课总结:对于一元二次方程,有直接开方法,时,配方法,因式分解法,公式法四种解法。当判别式△=
其求根公式为:
二次方程无实数根。
当△≥0时,则两根的关系为:;;当判别式△=b24ac0时,一元,根与系数的这,种关系又称为韦达定理;它的逆定理也是成立的,即当时,那么则是的两根。
第五篇:一元二次方程
二、一元二次方程
1、只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。一般形式:ax2+bx+c=0(a、b、c是已知数,a 其中a、b、c分别叫做二次项系数、一次项系数和常数项。
2、一元二次方程的解法:(1)直接开平方法(2)因式分解法(十字相乘法)
(3)公式法x=(b2-4ac(4)配方法(重点见P32)
3、一元二次方程根的判别式(2-4ac)当a 时(1)>0时方程有两个不相等的实数根;(2)=0时方程有两不相等的实数根;(3)<0时方程没有实数根
4、一元二次方程根与系数关系(韦达定理):ax2+bx+c=0(a、b、c是已知数,a 当 ≥0时,设方程两根为x1,x2则x1+x2=-,x1 x2= 如 = =……
5、以x1,x2为根的一元二次方程为:
三、二次函数
2、抛物线 的对称轴是 轴,顶点是原点,当 时,开口向上,当 时,开口向下。
四、图形的全等
1、能够完全重合的两个图形就是全等图形。互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等图形的对应边相等,对应角相等。
3、全等三角形的识别(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。简记(边边边或SSS)(2)如果两个三角形有两边及其夹角分别对应相等,那么这个三角形全等。简记为(边角边SAS)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为(角边角ASA)(4)如果两个三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。简记为(HL)
4、能判断正确或是错误的句子叫做命题,命题常写成“如果……那么……”的形式,用“如果”开始的部分是题设,用“那么”开始的部分是结论。能判断其它命题真假的原始依据,这样的真命题叫做公理。有些命题可以从公理或其它真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其它命题真假的依据,这样的真命题叫做定理。根据题设,定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明。