首页 > 精品范文库 > 5号文库
碳纤维论文
编辑:心上人间 识别码:14-777109 5号文库 发布时间: 2023-10-31 11:18:30 来源:网络

第一篇:碳纤维论文

长春工业大学材料设计概论结业论文

论述碳纤维的制造技术及在航天发射领域的应用

王晓刚

20090573 1.摘要:碳纤维是一种力学性能优异的新材,在过去的二三十年里得到广泛的研究。其含碳量在90%以上,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性、纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。

关键词:碳纤维,制造,航天领域,应用 2.碳纤维的制造 2.1发展历程

碳纤维主要是由沥青、人造丝和聚丙烯腈为主要原料而制造的,目前结构材料中主要使用PAN碳纤维。

1950年,美国Wright-Patterson空军基地开始研制粘胶基碳纤维。1959年,最早上市的粘胶基碳纤维Thornel-25就是美国联合碳化物公司(UCC)的产品。与此同时,日本研究人员也在1959年发明了用聚丙烯腈(PAN)基原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院开发出了制造高性能PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。20世纪70年代中期,UCC在美国空军和海军的资金支持下,研发高性能中间相沥青基碳纤维;1975年研发成功Thornel P-55(P-55),在1980~1982年之间,又研发成功P-75、P-100和P-120,年产量为230t。P-120的模最高达965GPa,是理论值的94%,热导率是铜的1.6倍,线膨胀系数仅为-1.33×10-6/K,且在375℃空气中加热1000h仅失重0.3%~1.0%,显示出优异的抗氧化性能。它们已广泛用于火箭喷管、导弹鼻锥、卫星构件、舰艇材料等方面。在20世纪80年代早期,碳纤维开始被广泛地用在客机和航空飞行器上作为结构材料,主要在欧洲和北美进行应用。然后,人们提高了对碳纤维的认识,开始把它当成一种高质量的材料,并在20世纪80年代中期得到了飞速的增长在80年代中期,欧洲空客公司开始将CFRP(碳纤维增强塑料)作为首要的结构材料应用在飞机上,而且,随着在网球和新的体育项目的应用,碳纤维市场得到了稳步的扩展。

长春工业大学材料设计概论结业论文

2.2PAN基碳纤维

PAN基碳纤维的制造分为两步进行,长春工业大学材料设计概论结业论文

2.3沥青基碳纤维

沥青基碳纤维是仅次于PAN积极的

长春工业大学材料设计概论结业论文

硝酸、硫酸、高锰酸和过氧化氢等溶液。氧化温度一般为200~400℃。在预氧化过程中,要求纤维氧化均匀,不应该形成中心过低、边缘过高的皮芯结构。3.碳纤维的应用

3.1 航空领域应用的新进展

T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H纤维。军品

碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标――结构重量系数来衡量,国外

长春工业大学材料设计概论结业论文

方向舵、升降舵、上层客舱地板梁、后密封隔框、后压力舱、后机身、水平尾翼和副翼均采用CFRP制造。继A340对碳纤维龙骨梁和复合材料后密封框――复合材料用于飞机的密封禁区发起挑战后,A380又一次对连接机翼与机身主体结构中央翼盒新的禁区发起了成功挑战。仅此一项就比最先进的铝合金材料减轻重量1.5吨。由于CFRP的明显减重以及在使用中不会因疲劳或腐蚀受损。从而大大减少了油耗和排放,燃油的经济性比其直接竞争机型要低13%左右,并降低了运营成本,座英里成本比目前效率最高飞机的低15%--20%,成为

长春工业大学材料设计概论结业论文

美国WaterburyFiberCote Industries 公司以有充分来源的非航天级粘胶原丝新原料开发成功名为RaycarbC2TM 的新型纤维素碳布,并经受了美军方包括加工、热/结构性质及火焰冲刷试验在内的全部资格测试,在固体发动机的全部静态试验中都证明该替代品合格,2004 年十一月,该碳布/酚醛复合材料已用于阿里安娜V Flight164上成功飞行。

图 4: 法国阿里安娜V 型导弹

卫星、航天飞机及载人飞船

高模量碳纤维质轻,刚性,尺寸稳定性和导热性好,因此很早就应用于人造卫星结构体、太阳能电池板和天线中。现今的人造卫星上的展开式太阳能电池板多采用碳纤维复合材料制作,而太空站和天地往返运输系统上的一些关键部件也往往采用碳纤维复合材料作为主要材料。

碳纤维增强树脂基复合材料被作航天飞机舱门、机械臂和压力容器等。美国发现号航天飞机的热瓦,十分关键,可以保证其能安全地重复飞行。一共有8 种:低温重复使用表面绝热材料LRSI;高温重复使用表面绝热材料HRSI;柔性重复使用表面绝热材料FRSI;高级柔性重复使用表面绝热材料AFRI;高温耐熔纤维复合材料FRIC―HRSI;增强碳/碳材料RCC;金属;二氧化硅织物。其中增强碳/碳材料RCC,最为要的,它可以使航天飞机承受大气层所经受的最高温度1700℃。

随着科学技术的进步,碳纤维的产量不断增大,质量逐渐提高,而生产成本稳步下降。各种性能优异的碳纤维复合材料将会越来越多地出现在航空航天领域中,为世界航空航天技术的发展作出更大的贡献。

4.结语

长春工业大学材料设计概论结业论文

碳纤维的优异性能使得其在国防和民用领域均有广泛的应用。作为未来最有发展前景的新型结构材料,可以肯定碳纤维在21世纪将步入新的飞跃,应用领域也将更加广泛。参考文献

[1]周明英 碳纤维及其应用[J]山东纺织科技,2003(3):48 [2]高瑞林 沈曾民 中国科学院山西煤炭化学研究所 基础知识讲座

[3]陈达军 聚丙烯腈基碳纤维工厂设计实验[J].江苏纺织,2008,(8):50-54.[4]汪家铭 聚丙烯腈基碳纤维发展与应用[J].化工新型材料,2009,37(8):17.[5]毛德君 基碳纤维生产及应用[J].炼油与化工,2002,13(4):3-12.[6]毛立新,陈献桃,廖德仲等.氨基磺酸均相催化合成柠檬酸三丁酯[J].湖南理工学院学报(自然科学版),2005,18(2):36~38 [7]林德春 潘鼎 高健 陈尚开 碳纤维复合材料在航空航天领域的应用 [8]赵嫁祥 2008年世界碳纤维前景会[J].高科技纤维与应用,2008,33(5):1-6

第二篇:碳纤维复合材料论文

碳纤维复合材料

摘要

一、碳纤维复合材料的概况

二、碳纤维复合材料的结构

三、碳纤维复合材料的用途

四、碳纤维复合材料的优势

五、碳纤维的产业

六、结论

1、概况

在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。

2、结构

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。

碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

3、用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。

碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。随着尖端技术对新材料技术性能的要求日益苛刻,促使科技工作者不断努力提高。80年代初期,高性能及超高性能的碳纤维相继出现,这在技术上是又一次飞跃,同时也标志着碳纤维的研究和生产已进入一个高级阶段。

由碳纤维和环氧树脂结合而成的复合材料,由于其比重小、刚性好和强度高而成为一种先进的航空航天材料。因为航天飞行器的重量每减少1公斤,就可使运载火箭减轻500公斤。所以,在航空航天工业中争相采用先进复合材料。有一种垂直起落战斗机,它所用的碳纤维复合材料已占全机重量的1/4,占机翼重量的1/3。据报道,美国航天飞机上3只火箭推进器的关键部件以及先进的MX导弹发射管等,都是用先进的碳纤维复合材料制成的。

现在的F1(世界一级方程锦标赛)赛车,车身大部分结构都用碳纤维材料。顶级跑车的一大卖点也是周身使用碳纤维,用以提高气动性和结构强度

碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。

4、优势

1、高强度(是钢铁的5倍)

2、出色的耐热性(可以耐受2000℃以上的高温)

3、出色的抗热冲击性

4、低热膨胀系数(变形量小)

5、热容量小(节能)

6、比重小(钢的1/5)

7、优秀的抗腐蚀与辐射性能

5、碳纤维的产业

5.1 碳纤维的取材形式及比例

预浸布:51.6%,编织布:20%(其中有12.4%要经过预浸进入后段),短切纱:19%,纤维丝束通过缠绕等方式直接使用:9.9%.5.2 碳纤维产业链关联度非常紧密,上游帮扶下游就是帮自己碳纤维产业链。碳纤维制造企业因为资金和技术的优势,要成为引领整个产业链的生力军!市场培育任重道远!只有不断推进从碳纤维向纤维材料以及复合材料制品的纵深发展,完善产业链,扩大碳纤维的应用范围,才能使整个碳纤维行业实现跨越式的发展。5.3 碳纤维产业链中的价值链我们常听到关于碳纤维价值链的说法是:从石油原料到碳纤维,增值关系是1 到3,而把碳纤维做成复合材料,增值可以到10。而国际上还有一个类似的说法:一个工业用碳纤维复合材料零件的成本构成,其中碳纤维和树脂的成本占25%,把碳纤维转成预浸料或编织布(我们称之为纤维材料),转化成本为15%,而把纤维材料制造成复合材料构件,需要60%的成本,原因是这个过程的边角废料太多,主要是沿袭于航空航天的成型工艺效率太低。当很多人抱怨:碳纤维因为价格太高而影响其应用面时,我们必须重视除了25%~30%的碳纤维成本之外的其它70%~75%的纤维和构件成型的巨大成本。否则,即使碳纤维成本降得再低,做出的复合材料成本还是惊人!

6、结论

中国碳纤维“平民化”发展之路探讨

碳纤维因品种和质量的不同,价格从100 多元/kg 到5 万多元/kg(日本东丽的M60J 据说曾炒到这个价格)都有。其中,走小批量、高精尖的品种,我们不妨戏称为“贵族碳纤维”,而量大、价格相对低的碳纤维,我们则戏称为“平民化碳纤维”。中国堪称是世界碳纤维研发的“老人”,但却是产业化的“新手”,所以,对于中国众多碳纤维企业来说,探讨“平民化”之路有实质意义。

第三篇:碳纤维

碳纤维——是由有机母体纤维(例如粘胶丝、聚丙烯腈或沥青)采用高温分解法在1000~3000度高温的惰性气体下制成的。其结果是除碳以外的所有元素都 予以去除。碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在 3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到 2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模 量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材 料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。

碳纤维的用途主要是利用其“轻而强”和“轻而硬”的力学特性,广泛应用于航空、航天、军工、体育休闲等结构材料;利用其尺寸稳定性,应用于宇宙机 械、电波望远镜和各种成型品;利用其耐疲劳性,应用于直升飞机的叶片;利用其振动衰减性,应用于音响器材;利用其耐高温性,应用于飞机刹车片和绝热材料; 利用其耐药品性,应用于密封填料和滤材;利用其电气特性,应用于电极材料、电磁波屏蔽材料、防静电材料;利用其生体适应性,应用于人工骨、韧带;利用其 X-光透过性,应用于 X-光床板等。

此外,还可以活化成活性碳纤维,应用于各种吸附领域。具体应用例如:①钓鱼杆现年产量约1200万只,年碳纤维用量1200t;②高尔夫球杆随着轻量 化和长尺寸化的要求,现已占碳纤维体育用品用途的50%,年碳纤维用量为2000t;③网球拍的年市场规模约为450万只,年碳纤维用量约500t;④飞 机方面,小型商务机和直升飞机的复合材料用量已占70%一80%,军用机30%一40%,大型客机15%一20%;⑥人造卫星结构体、太阳能电池板和天线 要用高模碳纤维,先进的运载火箭和导弹壳体、发射筒等要用800H和 T300碳纤维等;⑥土木建筑领域,已用于补修加工用片材、建筑部件、代钢筋材料、屋顶构架材料等;⑦能源领域,已用于汽车的压缩天然气罐和风车叶片(长 达30-40m)、海底油田管道、升降机等;⑧交通运输方面,已应用于赛车、汽车传动轴、大型卡车车体等;⑨电子电器领域,已应用于增强热塑性树脂的挤出 成型品,如抗静电 IC盘、笔记本电脑的筐体,具有电磁波屏蔽效果;⑩其它,还有X-射线盒、医用床板、印刷、制膜、造纸等用的各种滚轴、空气或氧气呼吸用压力容器等等。

碳纤维产业是由原丝(PAN)生产再到预浸料再到具体的终端产家这么一个产业链。目前, 原丝的售价是40元~50元/公斤,碳纤维为200元/公斤,预浸料为500元/公斤,每一级的深加工都有高幅度的增值。

我国碳纤维的生产和使用尚处于起步阶段, 国内碳纤维生产能力仅占世界高性能碳纤维总产量的0.4%左右,国内用量的90%以上靠进口。而PAN 原丝质量一直是制约我国碳纤维工业规模化生产的瓶颈。另外,碳纤维长期以来被视为战略物资,发达国家一直对外实行封锁。因此,有关专家认为,强化基础研究 是创新之本, 是发展国内碳纤维工业的根本出路。美国联合碳化物公司(UCC)于1959年开始最早生产粘胶基碳纤维,五六十年代是粘胶基碳纤维的鼎盛时期,虽然时期已开始衰退,但是它作为耐烧蚀材料至 今仍占有一席之地。1959年,日本研究人员发明了用聚丙烯腈(PAN)原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院研制出了制造高性能 PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。1974年,美国联合碳化物 公司开妈了高性能中间相沥青基碳纤维Thornel-35的研制,并取得成功。目前Thornel-P系列高性能沥青碳纤维仍是最好的产品,这样就形成了 PAN基、沥青基和粘胶基碳纤维的三大原料体系。

世界碳纤维的主要生产商为日本的东丽、东邦人造丝、三菱人造丝三大集团和美国的卓

尔泰克(ZOLTEK)、阿克苏(AKZO)、阿尔迪拉(ALDILI)和德车的SGL公司等。其中日本三大集团占世界生产能力的75%。世界CT型碳纤维总生产能力为22100吨/年,LT型碳纤维总生产能力为9550吨 /年;实际生产量约为7000吨/年。

在20世纪90年代中期以前,军事工业、航天与航空工业与体育休闲业一直是CT型碳纤维的主要市场。自1996年美国成功地将LT型碳纤维工为化以后,CT型碳纤维与LT型碳纤维竞争十分激烈。

当前世界上PAN基炭纤维正处于迅速增长的发展期:产品性能趋向于高性能化,T700S加快取代T300作通用级炭纤维;产量增加较 快,1996~2000增长48.1%;航天航空和体育用品用量增加稳定,民用工业用量增幅较大,已超过前两者,特别是随着大丝束炭纤维的大规模生产,价 格的降低,民用工业需求增加迅猛。

目前,国内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。下面分别对各地区的开发情况作一简介。

(1)上海地区。最近上海石化公司召开了碳纤维原丝发展研讨会,该公司准备投资过亿元,采用NaSCN一步法生产数千吨PAN基原丝,真正形成工业规模生产。上海星楼实业有限公司也制定了一套碳纤维产业化发展计划,拟 建立400t/a 大丝束碳纤维生产线,总投资也超亿元(包括下游产品)。此外,上海市合纤所采用亚砜两步法研制和小批量生产PAN基原丝以及碳纤维; 上海碳素厂也有小型碳化线及碳纤维下游产品。

(2)安徽地区。“十五”期间,国家已批准在安徽蚌埠建立500t/aPAN 原丝和200t/a碳纤维生产线,总投资过亿元。PAN原丝采用亚砜一步法,技术由国外引进; 产品以12K的T300级碳纤维为主,并准备引进成熟的预浸料生产线。华皖集团(原蚌埠灯芯绒集团公司)二期建设规模将使碳纤维产量翻一番,达到 400t/a。下游产品的开发也列入发展规划。

(3)浙江地区。中宝碳纤维责任有限公司在浙江嘉兴拟建400t/a大丝束碳纤维生产线,技术和设备引进,投资数亿元,并配套300万m2预浸料。该项目国家已批准,并积极开展了前期论证和考查工作。根据国内外市场动向及投资与回报等问题,暂缓建立碳纤维生产线,而集中力量开发预浸料等下游产品。同 时,还成立了浙江省碳纤维工程技术研究开发中心,全面推进碳纤维事业。

(4)广西地区。桂林市化纤总厂拟建200t/a碳纤维生产线,产品为3—12K的小丝束碳纤维,投资也过亿元。

(5)山东地区。山东省已把碳纤维列入全省十大高技术产品开发工程首位项目。有以下几个单位从事碳纤维及其制品的研究与生产,或准备介入碳纤维事业。

●山东天泰碳纤维有限责任公司。作为国家计委示范工程将建立400t/a生产线,碳纤维性能为T300级水平,产品以12K 为主。计划 400t/a 投产后,再翻一番到800t/a,投资超亿元。技术协作单位是山东工业大学等。同时该公司积极开发和生产多种下游产品。●青岛将建立50t/a左右的碳纤维生产线,青岛化工学院高分子工程材料研究所(恒晨公司)的介入,引起国内同行们的极大关注。

●山东威海光威渔具集团有限公司主要从事钓竿生产,碳纤维预浸布的规格有30余种。根据发展趋势,有可能向上游即PAN基原丝和碳纤维发展。此外,山东省东营生产力促进中心也在考虑招商引资建立碳纤维生产线,认为石油等工业是碳纤维的潜在市场。

(6)北京化工大学与吉化公司树脂厂,将依靠自己的技术建立 500t/a 原丝和200t/a碳纤维生产线。放弃硝酸法,采用亚砜一步法技术路线生产原丝。目前,正在进行中试实验。

(7)兰化集团化纤厂已有100t/a原丝生产线和预氧化生产装置,计划配套碳化装置生产碳纤维。原丝采用NaSCN一步法。该单位的晴纶生产线是我国从国外首次引进的,有丰富的生产经验和技术积累。

(8)吉林碳素厂是我国小丝束碳纤维生产基地,已向用户提供50 余吨小丝束碳纤维,为

国家作出了积极贡献。目前,该厂正在建立新的小丝束碳纤维生产线,扩大产量,以满足市场需求。

(9)中科院山西煤化所研制碳纤维已有30多年历史。在70年代中期,建成我国第一条纤维中试生产线;在90年代末期,又建成我国第一条吨级粘胶基碳纤维生产线。目前该所与扬州聚酯责任有限公司共建碳材料联合实验室,研制高 性能PAN 基碳纤维,并准备在扬州建立产业化基地。此外,山西榆次化纤厂是我国唯一用亚砜一步法生产PAN基原丝达数十年的单位,目前仍在生产。

从以上信息可以看出,当前发展态势有以下几个特点:①投入力度大;②规模大;③参与单位多,特别是大企业的参与;④起点高,采用多项新技术、新工艺;⑤自动化程度高,工控、程控在线配套使用;⑥逐步建立起质量控制和质量检测方法,特别是在线检测。

三、重视基础研究,建立自己的知识产权

当前,除极个别单位外,大多数准备引进项目的技术和设备水平属国际中下等,产品碳纤维也是这个档次,引进后的消化、吸收与创新是面临的重大课题。因 此,在引进的同时应该组织自己的技术队伍,在消化吸收的基础上求创新。如果只是沿着别人的脚印前进,就永远是跟在别人后面,不会占据制高点。从大量国外资 料可以清楚地看出,即使他们生产的碳纤维质量和产量占据世界榜首,但其新思维、新方法、新设备、新成果仍不断涌现,而不是墨守成规。日本东丽、东邦人造丝 和三菱人造丝公司的小丝束碳纤维产量占世界总产量的74%左右(表1),而这3个公司发表的专利也相当多。例如:东丽公司目前生产的碳纤维T1000,抗 拉强度最高(7.02GPa)、单丝直径最细(5.3um),可代表世界先进水平,但公司最新专利报道,其实验室已研制出新一代碳纤维,抗拉强度已达到 9.03GPa,比T1000提高了28.6%;单丝直径降到3.2um,比T1000细了39.6%。同时,该公司还开发截面形状为三叶形的PAN原丝 及碳纤维,以拓宽其用途。

基础研究是创新之源,已引起各级领导和有关单位的重视,上下认识一致,有的已开始实施,这是提高我国碳纤维工业技术水平的关键之一。目前国家“863 计划”以及有关部委都在关心我国碳纤维工业的发展及其产业化步伐,并给予强有力的支持。许多材料专家也扎扎实实的做了许多工作。无疑,“十五”将是我国碳 纤维工业产业化的黄金时代。

为了充实G大元的资产质量,大股东大连实德将旗下的中宝碳纤维公司部分股权以8.6折出售给上市公司。在此之前,G大元所持中宝碳纤维公司49%股权是全价受让所得。5月10日,G大元和大连实德下属的北京实德签署受让中宝碳纤维公司17.74%股权协议,受让金额约为984万元。相对中宝碳纤维公司的股本,等于 说G大元是以8.6折价格受让这部分股权的。在此次受让之前,G大元已经持有中宝碳纤维公司49%股权,但那是股权分置改革前全价受让所得。

G大元的公告说,此次重大资产购买的目的,是为了优化公司主营业务结构,增强核心竞争力和持续经营能力,改善公司的资产状况、提高盈利能力,以实现公司价值的最大化,从根本上保证长期健康发展,最大限度地保证广大中小投资者的利益。

中宝碳纤维公司于2004年1月正式投产,当年实现主营业务收入3010万元,2005年实现主营业务收入6600万元,净利润444万元。

碳纤维的发展在20世纪80年代表现为碳纤维的性能不断提高,新品种的不断问世;到了20世纪90年代,碳纤维的性能没有多大发展,市场需求主要是成本的降低,表现在商用大丝束的发展和碳纤维复合材料在建筑,交通运输等领域的扩大应用。

⑪产品性能不断提高

老品种性能不断提高,以日本东丽公司T300为例:T300在20世纪70年代初的拉伸强度为2450MPa;到20世纪80年代初,拉伸强度提高到 2940~3140MPa;在20世纪80年底中期拉伸强度为3300~3430MPa;从1988年起,拉伸强度稳定在3530MPa上下。

象东丽公司T300这样的标准模量级的高强度碳纤维占世界高性能碳纤维的90%;类似的品种还有Amoco的ThornelT300,Hercules的 AS4和BASF的CelionG30~500等,其性能为拉伸模量为207~235GPa,拉伸强度3450~3800MPa.⑫中模高强型碳纤维的开发复合材料的力学性能主要取决于增强碳纤维的力学性能。因此,提高纤维的性能对改善复合材料的性能起着关键的作用。对航空工业中广 泛使用的碳纤维,提高其性能尤为重要。事实上,随着飞机性能的提高以及复合材料在飞机上的应用部位的扩大,复合材料的设计师很快发现典型的T-300一级 碳纤维的性能偏低(主要表现在拉伸强度和断裂应变偏低),不能满足新的设计思想对减轻飞机结构质量,提高飞机性能,降低成本,节省能源等方面的要求,尤其 是对机翼,机身等主承力结构更是如此,因此开发性能优于T300的中模量高强度的碳纤维就显得极为重要。

⑬高强高模MJ系列碳纤维

1989年东丽公司在原高模量碳纤维M系列的基础上,开发了相应的高强高模MJ系列碳纤维新产品,使高模量碳纤维的强度得到较大的提高。开发使基于碳纤维微晶取向的最佳化从而得到高模量,使纤维缺陷降到最少得到高强度。

⑭高模量沥青基碳纤维

在开发高模量碳纤维过程中,要达到同样的模量,PAN基要比沥青基的处理温度高数百度。美国联碳公司开发的沥青基P系列碳纤维,碳纤维的模量已接近理论模量。

第四篇:碳纤维

碳纤维的应用

纤维复合材料的性能日臻完善,应用领域逐步拓宽。它不仅应用于航天航空和军事工业领域,而且在能源交通、信息通汛和建材领域等方面的应用与日俱增。新材料是新技术发展的物质基础,市场的需求促进了新材料的发展,加快了材料的更新换代。

一、碳纤维复合材料在高科技领域中的应用

1.在宇宙航天及战略武器方面的应用 随着科学技术的进步,人类活动范围已进入太空,各种宇宙飞行器、探测器、空间站和人造卫星等在太空轨道中飞行,航天飞机和战略武器重返大气层需经苛刻的高温环境,在这些恶劣的环境中飞行,碳纤维复合材料以它具有密度小;高温下具有较高的比强度和比模量;而且在高温下不熔不燃,仅仅是烧蚀;巳热膨胀系数小,尺寸稳定;抗热冲击力强;热导率高,耐磨抗磨抗辐射;使用寿命长的特点,起到了不可代替的特点。

(1).运用碳纤维混杂增强树脂基复合材料,可以用来制造航天飞机的舱门、机械臂和压力容器等,还可以混杂些硼纤维来增强铝或钛基金属复合材料用来制造机体、推力支撑件。由于碳纤维的密度小,还实现了航天飞机自身减重的目的。

(2).战略导弹弹头的材料采用的是一种耐热、耐腐蚀的酚醛树脂材料,用碳纤维参杂其中合成后,可以用来制造导弹头部大面积放热层。

(3).人造卫星大量采用以碳纤维复合材料为主体的先进复合材料。它们具备轻、刚和减振吸能的性质以及热膨胀系数小、热导率大的特性,以满足发热时的振动、入轨后在温度恶劣的环境中得以工作。

2.在高新技术方面的应用

(1).正负电子对撞机配套的CFRP构件

采用碳纤维来增强环氧树脂复合材料的湿式缠绕工艺制得束流管漂移室内、外筒构件,不仅满足设计要求,还大大提高了功效。

(2).在核聚变方面的应用 在核聚变过程中,氢(H)原子同位素氘(D)和氚(T)形成燃料生成氦(He),除了释放大量能量之外,还释放出高能中子(n),用碳纤维来替代石墨作为第一内壁的热内衬,可以在失控或者运行不当时作为原液的紧靠件。

(3).铀的分离与浓缩

由于碳纤维材料强度高、密度低,可以用来作为分离铀旋转体的材料之一,使得分离效果倍增。

3.航空领域中的应用

在保证飞行安全的前提下,飞机自重愈轻,飞得愈快、愈高,就可以增加航程或增加净载质量。这就要求使用的材料具有轻质、耐磨擦的特点,而碳纤维复合材料在这一领域中也展露出头角。

(1).先进飞机的制造

过去,铝合金和钛合金是制造飞机的主要材料之一,而现在一些先进飞机采用的则是一种比铝合金还轻的碳纤维增强复合材料(CFRP),CFRP的比强度、比模量优于金属材料,特别是线膨胀系数大大低于金属材料,使得CFRP在飞机上的应用变得逐渐广泛。

(2)战斗机

战斗机结构材料轻量化,可以减少油耗,延长作战时间,而且能飞得更高更快,机动性变得灵活,大大提高了战斗机的生存和作战能力。例如隐形轰炸机B-2采用的是一种异性截面碳纤维,其雷达散射面积降到0.1~0.3㎡,大大提高作战能力。

(3).制动刹车材料

飞机着陆依靠刹车制动装置才能在有效长度的跑道上停下来。采用碳纤维复合材料制造的刹车片可以减重降耗,可以使在制动刹车过程中产生的摩擦热能够较快的散逸,从而减少刹车片的磨损量,以提高刹车片的使用寿命。

二、碳纤维复合材料在民用领域中的应用

1.汽车及其交通运输领域中的应用(1).汽车工业

在汽车轻量化汽车工业大量采用新材料使其轻量化,可显著提高汽车的整体性能并节省燃油,减小行驶阻力和提高机械效率都能降低汽车的耗油,最有效的措施就是减轻车的质量和改善发动机的有效功率。采用碳纤维复合材料制造汽车构件不仅可以使汽车轻量化,还可以是其具有许多功能特性。例如用CFRP制造的发动机挺杆,里哦那个其阻尼减振性能,可以降低振动和噪声,行驶有舒适感。又如用CFRP制造的传动轴,不仅具有阻尼特性,而且由于CFRP高的比模量可以提高转速,使得行驶速度加快。同样,用CFRP制造的板簧性能也优越于钢制板簧。此外,碳纤维制造的非石棉刹车片不仅使用寿命长还无污染;碳纤维增强橡胶制造制造轮胎的胎面胶,可以延长轮胎的使用寿命;利用碳纤维的导电性能,制造座位的坐垫和靠枕,冬季行车舒适;用活性炭纤维制造空气净化器,可以消除车内的污染空气。

(2).铁路交通

磁悬浮高速列车由无接触的电磁悬浮、导向和驱动工系统组成。电流通过线言圈在周围产生浮动磁场,并受到安装在高速列车下方的些悬浮磁铁的吸引或激发而推动列车前进。磁铁的核心部分是超导线圈,并以液氦(4.2K)冷却。该线圈在大气温度(300K)下的磁铁外槽内由负载支撑体支撑,支撑体除要求刚性和强度外,还应具备隔热性能。这可采用纤维复合材料。在室温(300K)附近GFRP的热导率最低;在液氦(4.2K)低温下,CFRP的热导率较低;在较宽温度范围内,AFRP的热导率都比较低。就综合力学和热性能而言,可采用CFRP制造支撑体。

铁路机车由钢材料制造→铝合金材制造→铝合金与不锈钢混杂制造不断的演变成现在的用耐火性优异的酚醛树脂为基体的CFRP,不仅实现了车辆轻量化,而且防火,运行中的噪声低。

2.新能源

(1).质子交换膜燃料电池

采用超薄石墨纤维布或者碳纤维纸来制造质子交换膜,不仅具有气体扩散层作用,又具有传递电子的功能。

(2).锂电池

以低结晶性碳纤维材料作为锂电池的负极材料,低温热处理碳材料的结晶较低,尤其是难石墨碳化,不同于石墨插层化合物(GIC)的结构。在这种低取向的乱层结构中,锂离子可以插层到局部微晶碳层中,也可嵌入到它们之间的开孔中。酚醛树脂、糠醛树脂等在1100℃炭化后属于难石墨化碳,呈现出较大的充放电容量。特殊结构的有机化合物,经热解处理后,大多属于这类难石墨化碳,同样呈现出较大的充放电容量。它们作为二次锂离子电池的负极材料具有优良的性能价格比,是当前开发的重要实用性课题,有着广阔的市场前景。

(3).双层电容器近年来,双垫层电容器与二次电池配合使用,通过其平衡或抵消所需短时间的高负荷,可作为电动汽车的电源等。双层电容器的正极和负极采用超级表面活性炭或活性碳纤维布;电解质采用水溶性电解质或有机溶液系电解质,前者耐压低,在1.2V以下;后者耐压高,在2.8—3V之间。但前者的导电率是后者的10倍左右,充放电的电流较大。电容量C与电极比表面积S成正比,因此所用电极材料的比表面积应在2000~3000㎡/g之间,同时,离子半径一般以A为单位,要求有纳米尺寸的孔径,也就是说,要求活性炭或活性碳纤维布为中孔发达的材料,2nm以下的孔要尽可能少。而酚醛基活性炭微球或酚醛基活性碳纤维布在制造过程中可调控比表面积和孔径尺寸,易制得大比表面积的中孔型制品,是较理想的双层电容器的电极材料。

此外,碳纤维还可以改善传统铅酸蓄电池的性能,在铅粉活性物质中加入短碳纤维(2mm长)和聚乙烯粉末(熔点为120℃),混匀,热熔,加入硫酸水溶液调制成糊状铅膏,涂糊到板栅上,可防止活性物质的脱落和膨胀,提高其放电容量

3.在太阳能领域中的应用

太阳能领域中的应用衬板太阳能是取之不尽、用之不竭的无污染再生能源。太阳能的开发利用已是当今社会获取洁净能源的一条有效途径

(1).航天器的太阳能电池

充分利用碳纤维复合材料的比强度、比模量高,热膨胀系数小和抗辐射的特性,用来制造蜂窝结构与碳纤维或石墨纤维蒙皮复合而成的轻型太阳能电池板已广泛的适用于各种韦新及宇宙航天器上。

(2).太阳能电池

在设计和制造半导体太阳能电池时,基板的热性能要与半导体相近,而且要求电阻率比半导体层低,碳纤维复合材料完全满足这一条件,它具有的导电性好、热膨胀系数小和耐热性好使得它成为制造半导体太阳能基板和电池的首选。

(3).太阳能暖屋

太阳能暖屋太阳能暖屋是目前开发的零能源住宅。核心部分是碳纤维薄板集热器、碳纤维薄板和嵌入式碳纤维薄板集热器。它们吸收太阳光的光能后与室内冷空气通过热交换器进行热交换,另一部分热能则贮存在蓄热材料中;如果冷水与热交换器进行热交换,则可得到热水而贮存在热水贮罐中。如果将嵌入式碳纤维薄板集热器与碳纤维薄板集热器联用并与屋壁、屋顶组装一体化,则既可暖屋,又有热水可用。

4.土木建筑和基础设施(1).建筑及住宅材料

短切碳纤维增强水泥(CFRC)可以制造各种幕墙版,实现现代材料的轻量化。特别是沿海建显示出来的耐腐蚀性。利用碳纤维的导电性可以用来制造发热元件为碳纤维制的面状发热体,从而制造暖地板。

(2).维修加固材料

碳纤维复合材料在维修加固土木建筑和基础设施方面的应用已取得长足发展,成为碳纤维市场的新增长点。现在,年久失修的桥梁、旧码头都采用CFRP维修加固的。此外,CFRP也是维修加固文物建筑的优良材料。

(3).电磁屏蔽材料

在信息化高度发展的今天,信息通讯遍布全球,电磁波干扰和机密泄露等新问题需要解决,解决方法之一就是建造电磁波屏蔽室,可以用碳纤维增强水泥(CFRC)和增强木材(CFRW)来制造建筑材料的屏蔽室。此外,可以用短切碳纤维增强热塑性树脂(CFRTP)来制造电子设备的屏蔽壳体。

5.医疗器械和医用器材(1).高性能医疗器械

在为患者使用X射线机检查是,使用CFRP床板,大大减轻了X射线对患者的危害,而且可以得到清晰的诊断信息。CFRP还广泛的应用在超声波诊断仪、CT扫描、手术台、放射用床板、轮椅、担架上。

(2).生物体用材料

碳纤维与生物具有良好的组织相容性和血液相容性,可作为生体植人材料;同时发现,碳纤维具有诱发组织再生功能,促进新生组织的再生并在植入碳纤维周围形成。例如人造器官、人造关节以及人造牙根牙床等,都在医疗上得到了充分的利用。

(3).医用材料

碳纤维还广泛的用于外伤包扎带、医用电热毯和防毒衣服和口罩的生产上,具有一定的拉伸强度和柔软性、透气性和杀菌功能。

6.体育娱乐器材

世界碳纤维总量的三分之一用来制造体育娱乐器材。高档的羽毛球拍、网球拍、钓竿、高尔夫球棒和赛车等几乎都是以碳纤维复合材料制造的

(1).钓竿

CFRP钓竿轻而强、刚而挺勃,不仅大大降低了垂钓者的操作强度,而且钓竿微妙的振动可快速地传递给垂钓者,大大增加了垂钓的概率。

(2).高尔夫球棒

为提高球棒击出后飞行的距离和把握方向性,球棒的长柄要轻棒头要重而且不能扭曲,采用具有高强大的拉伸作用的CFRP制造的球棒是最佳选择。

(3).网球、羽毛球球拍

为保证接球之后球拍的弦线紧绷而不断,球拍框的几何形状不变,采用高比强度、比模量和具有减振阻尼左右的CFRP制造的球拍能好好的保证这一效果。

7.碳纤维密封材料

碳纤维增强聚四氟乙烯(PTFE)等复合材料是优异的密封填料,也是石棉密封填料的更新换代产品。这种新型密封填料具有耐高温、耐高压、耐磨损、耐腐蚀、热膨胀系数小、自润滑和使用寿命长等一系列优异性能,广泛用于化学化肥、石油化工、发电能源、轻工造纸和轻纺机械等许多领域。

8.耐热织物

以预氧化纤维制造耐燃织物及特种服装的工艺流程如图13.49所示。由预氧丝经纺纱织布制得的布柔软性、服用性好,形状不易变形,尺寸稳定,适于制造各种特殊服装。同时,由预氧丝布可以进一步深加工成碳纤维布、活性碳纤维布和石墨纤维布。在生产过程中,牵切制条和粗纺、细纺有一定的技术难度,预氧丝不同于一般的纺织纤维,因为预氧丝有一定刚性,不易卷曲,抱合力差,制成均匀的条很不容易。这个技术难点已被突破,已经进行了批量生产。

9.环保方面的应用

(1).净化气体和回收溶剂

用活性炭纤维毡或者活性炭纤维布制成的具有瓦楞结构的ACF纸,不仅能大大减少同气阻力,还能提供很大的接触面积,提高了吸附速度和吸附容量,在净化空气和回收溶剂上的道理实际的应用。

(2).净化水 传统的净化水机中使用颗粒状的活性炭作为吸附器里的吸附物质,而用纤维状活性炭比颗粒状活性炭对水中残留氯的分解速度快得多,对引饮用水的净化更为有效。

(3).脱硫及回收硫酸

发电厂及一些冶炼厂排废气时需要进行脱硫,并以硫酸的行驶回收。含硫化物废气进入活性炭吸附塔,二氧化硫被吸附,在加热的再生塔中脱附出二氧化硫,进入活性炭纤维层时,被ACF表面活性点吸附,二氧化硫被氧化成三氧化硫,再与体系中的水反应生成硫酸。

参考文献:

周玉娟.美国载人宇宙飞船再人热防护系统发展概况.材料工艺,1973,3:76—97 韩红硕.航天飞机轨道器结构材料的热防护材料.材料工艺,1980,5:24—49 贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1995 霍肖旭.碳纤维复合材料在固体火箭上的应用.高科技纤维与应用,2000,25(3):1一7

第五篇:如何粘贴碳纤维材料

如何粘贴碳纤维材料?

粘贴碳纤维材料是碳纤维施工中非常重要的一部分。粘贴的好坏直接影响到施工的质量,如何粘贴才是最好的呢?

在粘贴碳纤维材料之前,首先应确认粘贴表面干燥。气温在-10℃以上,相对湿度RH>85%时,如无有效措施不得施工。为防止碳纤维受损,在碳纤维材料运输、储存、裁切和粘贴过程中。应用钢直尺与壁纸刀按规定尺寸切断碳纤维材料,每段长度一般以不超过6m为宜。为防止材料在保管过程中损坏,材料的裁切数量应按当天的用量裁切为准。碳纤维纵向接头必须搭接20cm以上。该部位应多涂树脂,碳纤维横向不需要搭接。其施工工艺要点如下:

(1)粘贴树脂的主剂、固化催促剂和固化剂应按规定的比例称量准确,装入容器,用搅拌器搅拌均匀。一次调和量应以在可使用时间内用完为准。

(2)粘贴时,在碳纤维和树脂之间尽量不要有空气。可用罗拉(专用工具)沿着纤维方向在碳纤维材料上滚压多次,使树脂渗浸入碳纤维中。

粘贴碳纤维材料后,需自然养护1-2小时达到初期固化,应保证固化期间不受外界干扰和碰撞,这样加固之后才会非常的牢固。

碳纤维论文
TOP