第一篇:六年级数学复合应用题总复习
小学教师网 http://百G试卷、课件源程序、全册教案等,无须注册任意下载!
复合应用题
姓名_______________
一、解答下列应用题
1.有三根绳子,第一根7/8米,比第二根
2、某机械厂扩建厂房计划投资4.2万元,长1/4米,第三根比第二根长2/5米,第实际投资降到3.4万元,实际降低了 三根绳子有多长?百分之几?(只列式不计算)
3.李师傅改进技术后,每天制造零件1204、果园里有桃树150棵。梨树的棵数个,比原来每天多生产1/5,李师傅原是桃树的2/3,又是苹果树的2/7。来每天制造零件多少个?苹果树有多少棵?
5.一根绳子,第一次剪去全长的1/5,第6.生产小组生产一批零件,原计划
二次剪去3/4米,还剩2.05米。这根21天,平均每天生产1800个,实际生产 绳子原来长多少米?(列出方程不用计算)的零件是计划的105﹪,实际生产了多少个零件?
7.一套课桌椅的价钱是105元,其中椅子8.电视机厂五月份计划生产电视机2400台的价钱是课桌的5/7。椅子的价钱是上旬完成全月计划的2/5,中旬完成计划全多少元?月计划的50﹪,上旬和中旬一共生产电视机多少台?http://试卷、课件源程序、全册教案等,无须注册任意下载!
9.一辆汽车从甲地开往乙地,已经行了全10.饲养场有鸡250只,比鸭的1/3程的5/7,这是离乙地还有80千米。甲、多25只,饲养场有鸭多少只?乙两地相距多少千米?
11.一堆沙子,用汽车已经运走了24吨,12.一个长方体的宽是长的3/4,余下的比运走的多1/5,这堆沙子原来长是高的8/5。它的宽是24厘米,重多少吨?它的高是多少厘米?
13.打印一份稿件,若由甲单独打印,要14.一项工程,甲、乙两队合做42/3小时完成。若由乙单独打印,要45天完成这项工程的2/3,甲独做
分钟完成。两人合打,多少小时可以打8天完成,如果乙独做,需要 印完?多少天完成?
15.小琴妈妈七月份的工资收入是1350元,16.仓库里有15吨水泥。第一天用扣除800元后按5﹪的税率缴个人所得税。去总数的20﹪,第二天用去1/2小琴妈妈应缴个人所得税多少元?吨。仓库里 还剩下水泥多少吨?
17.爸爸2000年6月1日把5000元钱存入银行,定期三年,年利率为2.25﹪,到期时国家按所得利息的20﹪征收个人所得税。到期时爸爸应缴个人所得税多少元?爸爸这次储蓄实际收入多少元?
第二篇:六年级数学应用题总复习教学反思
六年级数学应用题总复习教学反思
田公中心学校 邓洪成
小学数学应用题是教学的重点,又是教学的难点。因此在总复习中它至关重要。应用题的系统复习有助于学生理解概念,掌握数量关系,培养和提高分析问题、解决问题的能力。现就结合我的教学实践,谈一谈对应用题的复习教学的体会。
一、强化基础训练,掌握数量关系基本的数量关系是指加、减、乘、除法的基本应用,比如:求两个数量相差多少,用减法解答;求一个数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。任何一道复合应用题都是由几道有联系的一步应用题组合而成的。因此,基本的数量关系是解答应用题的基础。在复习时,我特意安排了一些补充条件的问题和练习,目的是强化学生的基础知识。使学生看到问题立刻想到解决问题所必需的两个条件;看到两个条件能迅速想到可以解决什么问题。在此基础上再出些有助于训练发散性思维的练习题。如给出两个条件:甲数是10,乙数是8,要求学生尽可能的多提出些问题。练习时,先要求学生提出用一步解答的问题,如:“甲数比乙数多多少”,“乙数比甲数少多少”“乙数占甲数的几分之几”等。然后再要求学生提出用两步解答的问题,如“甲数比乙数多几分之几”,“乙数比甲数少几分之几”“乙数占两数和的几分之几”等。对于常用的数量关系,复习时我还采用给名称让学生编题的练习形式。如已知单价和总价,编求数量的题目;已知路程和时间,编求速度的题目等。通过这种形式的训练,使学生进一步牢固掌握基本的数量关系。为解答较复杂的应用题打下良好基础。在编题训练的过程中,还要注意指导学生对数学术语的准确理解和运用。只有准确理解,才能正确运用。如增加、增加到、增加了,提高、提高到、提高了,扩大,缩小等。发现错误,及时纠正。对易混的术语,如减少了和减少到等要让学生区别清楚。
二、综合运用知识,拓宽解题思路能够正确解答应用题,是学生能综合运用所学知识的具体表现。应用题的解答一般采用综合法和分析法。我们在复习时侧重教给分析法。如:李师傅计划做820个零件,已经做了4天,平均每天做50个,其余的6天做完,平均每天要做多少个?分析方法是从问题入手,寻找解决问题的条件。即:①要求平均每天做多少个,必须知道余下的个数和工作的天数(6天)这两个条件。②要求余下多少个,就要知道计划生产多少个(820个)和已经生产了多少个。③要求已经生产了多少个,需要知道已经做的天数(4天)和平均每天做的个数(50个)。在复习过程中,我注重要求学生把分析思考的过程用语言表述出来。学生能说清楚,就证明他的思维是理顺的。既要重视学生的计算结果,更要重视学生表述的分析过程。
三、系统整理归纳,形成知识网络在应用题复习中,一题多解是沟通知识之间内在联系的一种行之有效的练习形式。它不但有助于学生牢固地掌握数量关系,而且可以开阔解题思路,提高学生多角度地分析问题的能力。例如:一个修路队,原计划每天修80米,实际每天比原计划多修20%,结果用12.5天就完成任务。原计划多少天完成任务?可有下列解法: 1、80×(1+20%)×12.5÷8=15(天)2、12.5×(1+20%)=15(天)
3、设计划用x天完成。80x=80×(1+20%)×12.5 x=15
4、设原计划用x天完成。80∶80×(1+20%)=12.5∶x x=15
上述四种解法分别是按解一般应用题的思路、分数应用题的思路、方程的思路和用比例解的思路进行分析的。通过本题的复习,引导学生找出各知识点之间的联系,使学过的解应用题的各种知识得以融会贯通和综合应用,拓宽了学生的解题思路。
2015.6.10
第三篇:六年级数学总复习百分数应用题练习
亿库教育网
http://www.teniu.cc 百万教学资源免费下载
五年级分类练习百分数应用题
班别:
姓名:
学号:
1、五年级有学生160人,已达到《国家体育炼标准》(儿童组)的有120人。五年级学生的达标率是多少?
2、榨油厂的李叔叔告诉小静:“2000kg花生仁能榨出花生油760kg。“这些花生的出油率是多少?
3、小飞家原来每月用水约10吨,更换了节水龙头后每月用水约9吨,每月用水比原来节约了百分之几?
4、西藏境内藏羚羊的数量1999年是7万只左右,到2003年9月增加到10只左右。藏羚羊的数量比2003年增加了百分之几?
5、我国著名的淡水湖——洞庭湖,因水土流失引起沙沉积等原因,面积已由原来的大约4350km²缩小为约2700km²,洞庭湖的面积减少了百分之几?
6、学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
亿库教育网
http://www.teniu.cc 百万教学资源免费下载 亿库教育网
http://www.teniu.cc 百万教学资源免费下载
五年级总复习分类练习百分数应用题
7、龙泉镇去年有小学生2800人,今年比去年减少了0.5%。今年有小学生多少人?
8、为了缓解交通拥挤的状况,某市正在进行道路拓宽。团结路的路宽由原来的12m增加到25m,拓宽了百分之几?
9、新城市中小学校开展回收废纸活,共回收废纸87.5吨。用废纸生产再生纸的再生率为80%,这些回收的废纸能生立多少吨再生纸?
10、小明和妈妈到邮局给奶奶寄了2000元。汇费是1%。汇费是多少元?
11、百花胡同小学有480人,只有5%的学生没有参加意外事故保险。参加保险的学生有多少人? 12、2002年,中国科学院、中国工程院共有院士1263人,其中男院士有1185人。女院士占院士人数的百分之几?
13、2003年6月~10月,有3只绿海龟在我国香港的南丫岛深湾产下亿库教育网
http://www.teniu.cc 百万教学资源免费下载 亿库教育网
http://www.teniu.cc 百万教学资源免费下载
约900只海龟蛋,孵化率在40%~60%之间,这些海龟蛋可以孵化出多少只绿海龟?
14、爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
15、爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
五年级总复习分类练习
应用题(11)百分数应用题
17、李老师为某杂志社审稿,审稿费为200元。为此她需要按3%的税率缴纳个人所得税,她应缴个人所得税多少元?
18、爸爸妈妈给贝贝存了2万元教育存款,存期为三年,年利率为3.24%,到期一次支取,支取时凭非义务教育的学生身份证明,可以免征储蓄存款利息所得税。
亿库教育网
http://www.teniu.cc 百万教学资源免费下载 亿库教育网
http://www.teniu.cc 百万教学资源免费下载
(1)贝贝到期可以拿到多少钱?
(2)如果是普能三年期存款,应缴纳利息税多少元?
21、李平家用600kg稻谷碾出420kg大米。他家稻谷的出米率是多少?
24、文化宫电影院正在播放一部新电影,每张票价20元。丁丁和父母拿着优惠卡去买票,每张票打八五折,买三张票共花了多少钱?
25、一种电脑降价了,第一次比原价7600元降低了10%,第二次又降低了10%。电脑现价多少元?
亿库教育网
http://www.teniu.cc 百万教学资源免费下载
第四篇:六年级数学_总复习_资料___应用题_公式
六年级数学
小学数学图形计算公式
1.正方形
C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长
S=a×a 2.正方体
V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长
V=a×a×a
3.长方形
C周长 S面积 a边长
周长=(长+宽)×2 C=2(a+b)面积=长×宽
S=ab 4.长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高
V=abh.三角形
s面积 a底 h高
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6.平行四边形
s面积 a底 h高
面积=底×高
s=ah
7.梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r(2)面积=半径×半径×∏
9.圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10.圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3 和差问题的公式;
总数÷总份数=平均数
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
浓度问题 :
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
(一)整数和小数的应用
应用题解答思路 简单应用题
(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2)解题步骤:
a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。复合应用题
(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
(2)含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
比较两数差与倍数关系的应用题。
(3)含有两个已知条件的两步计算的应用题。
已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。
已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。
(4)解答连乘连除应用题。
(5)解答三步计算的应用题。
(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。
(3)解答加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4)解答减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。
(5)解答乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
(6)解答除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
(7)常见的数量关系:
总价= 单价×数量
路程= 速度×时间
工作总量=工作时间×工效
总产量=单产量×数量
3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数
最大数与各数之差的和÷总份数=最大数应给数
最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为
+ = , 汽车的平均速度为 2 ÷
=75(千米)
(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。693 0 ÷(477 4 ÷ 31)=45(天)
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量
单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米,6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 × 6 ÷ 4=1200(米)
(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数
大数-差=小数
(和-差)÷2 = 小数
和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12,由此得到现在的乙班是(9 4 - 12)÷ 2=41(人),乙班在调出 46 人之前应该为 41+46=87(人),甲班为 9 4 - 87=7(人)
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数
标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。
列式为(115-7)÷(5+1)=18(辆),18 × 5+7=97(辆)
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数(或者 和-小数=大数)
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1)= 标准数
标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)÷(3-1)=17(米)„乙绳剩下的长度,17 × 3=51(米)„甲绳剩下的长度,29-17=12(米)„剪去的长度。
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数(或 小数+差=大数)
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米,两人同时同向而行,甲每小时行 16 千米,乙每小时行 9 千米,甲几小时追上乙?
分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。
已知甲在乙的后面 28 千米(追击路程),28 千米 里包含着几个(16-9)千米,也就是追击所需要的时间。列式 2 8 ÷(16-9)=4(小时)
相遇问题 :
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题 :
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20(千米)2 0 × 2 =40(千米)40 ÷(4 × 2)=5(小时)28 × 5=140(千米)。流水问题 :
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43(人)
一班原有人数列式为 168 ÷ 4-6+2=38(人);二班原有人数列式为 168 ÷ 4-6+6=42(人)三班原有人数列式为 168 ÷ 4-3+6=45(人)。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1
棵树=总路程÷株距+1
株距=总路程÷(棵树-1)
总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×(301-1)÷(201-1)=75(米)植树问题 :
1.非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1)株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1)株距=全长÷(株数+1)封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(11)盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足,总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了(25-5)=20 支,2 个人多出 20 支,一个人分得 10 支。列式为(25-5)÷(12-10)=10(支)10 × 12+5=125(支)。
盈亏问题 :
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27(岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是(4-1)倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21(48-21)÷(4-1)=12(年)
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2 兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头,170 条腿。问鸡兔各有多少只?
兔子只数(170-2 × 50)÷ 2 =35(只)
鸡的只数 50-35=15(只)
-d=2r
第五篇:四年级数学复合应用题
四年级数学 复合应用题
学校
姓名
例
1、工艺玩具厂原计划生产700件玩具,已知做了5天,平均每天做86件,剩下的要在3天里完成,平均每天应做多少件?
试一试:
(1)一个车间要加工540个零件,前10天平均每天做32个,余下的要在5天内完成,平均每天要做多少个?
(2)小明看一本260页的故事书,每天看25页,看了4天,其余的计划每天多看15页,还需几天可以看完?
例
2、工程队修一条公路,原计划每天修45米,8天完成,实际提前2天完成,实际平均每天修多少米?
试一试:
(1)果园收苹果,用小筐每筐装35千克,需要装70筐,如果改用大筐装,每筐多装14千克,需要装多少筐?
(2)小明看一本故事书,每天看12页,15天可以看完。如果要提前5天看完,平均每天要看多少页?
例
3、生产小组要加工780个零件,计划13天完成。实际每天比原计划多做18个,实际用了多少天?
试一试:
(1)一个拖拉机手,接受了6天耕300亩的任务,他为了提前完成,每天比原计划多耕10亩,几天可以耕完?
(2)培新小学运来3600千克的煤,计划烧40天。如果每天节约10千克,这些煤可以烧多少天?
综合练习
(1)5箱蜜蜂一年可以采蜜375千克,照这样计算,20箱蜜蜂可以采蜜多少千克?
(2)动物游泳健将海豹,3小时游了225千米,照这样计算,游600千米需要多少小时?
(3)小明走一段路,每小时走3千米,需要8小时到达。如果要提前2小时到达,每小时需行多少千米?
(4)张叔叔生产一批480个零件,需要8小时完成。如果每小时多生产20个,几小时可以完成?
(5)一个修路队修一条路,每天修60米,14天可以完成,如果要10天完成。每天要多修多少米?(6)学校小工厂要做一批小玩具共4200个,原计划30天完成,实际25天完成,平均每天比原计划多做多少个玩具?
(7)新华中学每来8张办公桌和12把椅子,每张办公桌245元,每把椅子75元,买这些办公桌和椅子一共用去多少元?
(8)收购站收进油菜籽6250千克,这些油菜籽被分装在50个大袋子和25个小袋子内,每个大袋子装100千克,每个小袋子装多少千克?
(9)工厂里有一批煤,原计划每天烧6吨,可以烧70天,实际每天节约了1吨,实际可以烧多少天?
(10)和平村计划25天修渠道1350米,实际提前7天完成。实际平均每天比计划多修多少米?