第一篇:直埋电力电缆绝缘电阻降低故障的原因
www.teniu.cc
直埋电力电缆绝缘电阻降低导致电缆线路故障的现象经常发生,也是电缆用户与电缆制造厂发生质量事故纠纷最多的项目。需要从电缆材料、电缆制造和电缆施工的角度,对电缆绝缘电阻下降的原因进行全面的解释,包括电缆材料、电缆制造、使用环境、自然条以及敷设施工等方面。主要有以下几点:
一、电缆绝缘受潮
1、电缆原材料受潮
电缆绝缘和护层所用的原材料,主要是塑料类和橡胶类材料,并由此改性衍生出许多种具有特殊功能的材料。材料制造厂在制造材料时,经过配合剂混合、混炼、造粒、冷却和烘干等过程,以及在材料运输、储存期间,往往会发生程度不等的受潮,使材料含有程度不等的潮气。因此,电缆制造厂在把材料挤包在电缆导体上之前,都要把材料进行烘干处理,挤出机组上都配有材料烘干装置,使挤出的绝缘层和护层内不会发生气泡和砂眼、表面不会起泡等缺陷。这是电缆制造厂的硬性工艺规定,否则电缆成品通不过出厂耐电压试验。
2、电缆制造过程受潮
在绝缘挤包过程中,绝缘层被刮伤,造成绝缘层破洞或脱胶,绝缘线芯在冷却水槽中进水,导致绝缘电阻下降。或者在挤包护层时,发生护层被损伤而进水,使绝缘层受潮,绝缘电阻下降。当制造多芯电缆时,即使绝缘层挤包完好无损,但在绝缘线芯绞合成缆时,以及在挤包护层时也可能发生损坏而进水受潮,于是成品电缆通不过出厂耐电压试验。
3、电缆施工过程受潮
在直埋电缆施工过程中,如果电缆沟开挖、电缆埋设作业、电缆中间接头和终端接头制作不规范等,都很有可能损伤电缆护层和绝缘层。如果土壤潮湿或者电缆沟积水,一定会发生电缆进水。绝缘受潮后,使电缆绝缘表面电阻降低而表面泄漏电流增加,绝缘电阻下降,还会引起导体与绝缘层之间的电场畸变。绝缘内电场分布不均匀,会引发绝缘内部游离放电,甚至引起电缆击穿。售后服务实践证明,有95%以上的直埋电缆绝缘电阻下降事故是由施工不当引起的。
二、电缆使用环境
1、环境温度
根据介质物理学理论和工程实践,绝缘材料的电阻随温度升高而呈指数式下降,而电导则随温度降低而按指数式增大。温度升高导致绝缘电阻下降。这是由于绝缘温度升高时,材料内的分子热运动增强,使导电离子的产生和迁移数量都随之增大。电缆通电运行后,在电压的作用下,由导电离子运动所形成的传导电流增大,绝缘层温度升高,势必造成绝缘电阻下降。
实验证明,电缆绝缘材料在70℃时的绝缘电阻值只有20℃时的10%。也就是说,电缆在导体工作温度70℃时的绝缘电阻,只有在导体工作温度20℃时绝缘电阻测量值的10%。如果
www.teniu.cc
供电线路发生过负荷,电缆导体温度超过70℃,绝缘电阻下降会更严重。
电缆的敷设环境温度对绝缘电阻也有很大影响。在不同气候带地区(热带、亚热带、温带和寒带)测量的直埋电力电缆的绝缘电阻是不同的。在中国,虽然电缆产品标准中都规定了导体允许的长期工作温度,以确保电缆的绝缘水平,但在南方亚热带和热带地区,直埋敷设电力电缆的绝缘电阻下降数值,比在北方温带和寒带地区下降数值大得多。这就是地区气候条件不同对电工产品性能要求的重要差异。
2、环境湿度
众所周知,电缆在制造和敷设运行过程中进水受潮,是危及电缆电气性能和使用寿命的主要因素。不论电缆制造厂还是用户,都对此非常重视。
实践经验证明,造成电缆进水受潮的主要原因如下。
1)材料纯度
如果电缆绝缘料中混入杂质,特别是金属杂质,甚至所使用的不同颜色的颜料,都会直接影响绝缘的电气性能,使绝缘电阻下降。其原因,一是绝缘层内非金属杂质在电缆受潮时,会吸收水分,形成众多的导电点;二是绝缘层内的金属杂质直接就是导电点。在导体运行温度和外部环境温度联合作用下,这些导电点在绝缘层内形成导电通道,导致绝缘电阻减小和泄露电流增大,进而导致绝缘被击穿。
2)材料受潮
如果电缆绝缘材料已受潮,在挤包在导体上之前又没有烘干,将会出现绝缘层内有大量气孔、挤出表面不光滑以及机械强度降低、甚至开裂等质量缺陷。因此,电缆厂家在挤出电缆绝缘层时,都要进行材料烘干。挤出低烟无卤料时,更要注意烘干。这些已是电缆厂家的基本工艺常识。
3、线路过负荷
实验证明,在供电线路不发生过负荷,电绝缘介质处于工作电场强度比较低的情况下,介质材料内的导电离子迁移率与电场强度大小成正比,即介质内的导电离子迁移率随电场强度的增强而增大。当电场强度比较高时,介质内的导电离子迁移率随电场强度的增强而增大的趋势,逐渐由线性关系变为指数关系。介质内的导电离子迁移率增大到一定程度时,绝缘电阻突然大幅度降低,进而发�“离子雪崩”,使绝缘层发生瞬间击穿。当电缆长期超负荷运行时,通常会发生这种故障。电缆制造厂在产品出厂前,都要按产品标准进行成品耐电压试验。电缆用户应根据线路额定电压,正确选择电缆型号,尽量避免电缆线路长期超负荷运行。
三、自然条件
1、白蚁损伤
www.teniu.cc
白蚁是地下电力电缆的大敌,特别是东南亚和我国南方湿热地区,经常发生白蚁侵蚀电缆塑料护层的事故。白蚁遇到电缆时,除了啃咬之外,还会分泌出蚁酸,严重腐蚀电缆绝缘和护层,导致电缆绝缘性能下降甚至短路。因此,在电缆使用部门制定的敷设规程中,都有关于电缆线路防蚁措施的明文规定。
电缆的防蚁性能试验方法有三种,即国家标准GB2951.38和机械行业标准JB/T10696.9-2011规定的击倒法、群体发和蚁巢法防蚁试验。以往多年来,采用最多的是群体法。但经过多年来电缆蚁害防治经验教训,击倒法和群体法试验,并不能真实地反映电缆在不同环境中的防蚁性能。于是,广东电网公司从2009年起的电力电缆招标中,规定防蚁电缆必须通过蚁巢法试验,电缆试样的被蛀蚀状况必须要达到I级水平。
2、鼠类损伤
鼠类对地下电缆的损害主要是啃咬造成的机械损伤,当电缆护层材料的硬度低于老鼠门齿的硬度时,电缆就很有可能被老鼠啃咬。世界上还没有统一的电缆防鼠试验标准,但各国都有自己制定的试验方法。我国JB/T10696.10-2011规定了大鼠啃咬试验方法。另外,由山东华能线缆有限公司牵头制定的国家标准《防鼠和防蚁电线电缆通则》,已于2016年3月19日召开了编制工作启动会,不久我国即可拥有正式的防鼠防蚁电缆产品标准。
3、霉菌损伤
早在上个世纪50年代末,有些国家就已经规定湿热带地区使用的电器产品应具有防霉性能。我国针对出口到这些地区的电线电缆,制定了相关的湿热带用电线电缆防霉性标准。在我国南方部分地区,由于各年份中气候的湿热程度、延续时间不同、地域以及电线电缆使用环境的差异,直埋电缆霉害程度也不等。
根据有关微生物霉菌繁殖研究报告,霉菌生长的主要条件是温度和湿度。适合霉菌生长的一般温度是15℃~35℃,而最适宜的温度是25℃~30℃,当温度低于0℃或高于40℃时,霉菌实际上停止生长。适合霉菌生长的相对湿度为80%~90%,而当相对湿度超过95%时,是霉菌生长最为旺盛的条件。因此环境温度为30℃±2℃和相对湿度大于95%时,最适合于霉菌大量繁殖。海南岛的湿热气候正好适合于霉菌大量繁殖生长。
如果电缆表面大量生长霉菌,对电缆的性能有较大影响,会引起:电缆表面变色、起麻点、腐烂;绝缘电阻、体积电阻率、介电强度下降,引起漏电,甚至绝缘击穿;绝缘和护套材料分子发生化学降解,材料机械性能明显降低,丧失其保护作用;潮气水分进入电缆内部,引起严重的电气性能故障等。
4、雷电影响
在雷暴发生时,如果线路上使用的避雷器等品质不良或接地保护不妥,落雷会击中避雷器,使线路负荷突然增大产生过电压,导致电缆中产生过电压冲击浪涌,造成电缆绝缘击穿。在我国南方包括海南岛雷雨频繁的地区,电缆线路遭受雷击事故屡见不鲜。
www.teniu.cc
四、化学腐蚀
1、敷设环境化学腐蚀
如果电缆沟内的积水或直埋土壤中含有腐蚀性成分,例如硫酸或硝酸等,电缆表面长期与这些腐蚀性物质接触,会发生严重的化学腐蚀。如果电缆护层被损坏,水分进入电缆后会左右纵向扩散。在某些地区的地下水质和土壤严重受化学污染的情况下,如果电缆路径选择不当,电缆沟构筑不良,回填物腐蚀性太大,都会使电缆绝缘和护套有机材料的分子发生化学降解而导致电缆被腐蚀现象,使电缆绝缘电阻下降,甚至丧失绝缘电阻。
2、酸雨化学腐蚀
对电缆危害严重的化学腐蚀因素,除了敷设环境的水质和土壤状况以外,还有现代酸雨的严重影响。
所谓酸雨,是由于大量燃烧化石燃料(煤炭、石油、天然气)或生物物质燃料,将酸性化合物(如二氧化硫,、二氧化碳和二氧化氮,主要是二氧化硫)排放至空气中,造成降雨中含硫酸、硝酸等酸性物质的现象。酸雨的主要成分是二氧化硫。一般认为,如果雨水的PH值小于5.6,可被认为是酸雨。形成酸雨的主要原因是工厂二氧化硫排放过量造成的。现在,世界上正在实施的“节能减碳”和“节能减排”,其目的主要是减少硫化物和碳化物的排放量,以保护清洁的大气环境。
我国已有20多个省市发生酸雨灾害,主要分布在长江以南地区。酸雨不但对农作物、森林、草原、鱼类等造成非常严重的灭绝性危害,而且对金属物品的腐蚀也相当严重,对电线电缆、铁路轨道、船舶车辆、输电线路、桥梁、房屋、机电设备等均会造成严重损害。
四川大学学报曾发表一份研究报告《酸雨作用下酸性土壤酸化过程中铜的腐蚀行为》。实验证明,酸雨会增大铜的腐蚀速率。铜的受腐蚀表面主要是氧化亚铜(Cu2O)和氧化铜(CuO)。
酸雨对直埋电缆的危害途径是:空气中的二氧化硫与雨水反应生成亚硫酸,亚硫酸被氧化成硫酸:
SO2+H2O=H2SO3
2H2SO3+O2=2H2SO4
含有硫酸的雨水,在高气温环境中,从电缆护层破损点或电缆接头处进入电缆,对绝缘层、护层和铜导体都会发生腐蚀作用。硫酸腐蚀电缆护层和绝缘层,使其分子结构发生降解而损坏,使绝缘电阻严重下降,甚至失去绝缘和保护作用。硫酸与铜反应生成蓝色的硫酸铜(CUSO4)结晶体,遇水成为蓝色硫酸铜溶液。
CU+2H2SO4=CUSO4+SO2↑+2H2O
www.teniu.cc
前几年,土壤腐蚀性大、酸雨重灾区的重庆市某供电部门,就在电缆端部发现了蓝色液体和绝缘层损坏的现象。如果电缆外皮损坏严重,特别是在高温、高湿、强日光的季节,如果发生酸雨,或者土壤中的硫酸含量较大,电缆进水很多,这种蓝色硫酸铜溶液会迅速沿着电缆长度上扩散,直到从电缆破损处和电缆端部溢出。硫酸铜溶液可以导电,渗入绝缘层内后,更曾强了绝缘层的导电性,进而使绝缘层的电阻急剧下降,失去绝缘作用,发生电缆短路事故。
五、机械损伤
多年来的电缆产品售后服务经验证明,在用户投诉的电缆机械事故案例中,有95%以上是由电缆安装敷设不当或线路维护不善引起的。某供电部门曾经总结出以下几个方面。
1)安装损伤:安装时违反操作规程;施工人员技术不熟练;制作电缆中间接头和终端接头时不遵守施工工艺;电缆沟不符合要求;任意野蛮牵拉;电缆弯曲半径太小等等。这些都会导致发生电缆机械损伤。
2)外力损伤:在电缆敷设路径上或附近,有其他工程施工作业,而造成电缆损伤,此现象屡见不鲜。
3)车辆损伤:若电缆埋设深度不够,敷设后电缆沟覆盖保护不良,在车辆频繁行驶振动情况下,电缆频繁遭受很大压力和振动,导致电缆结构变形和损伤。
4)自然损伤:由气候过于湿热、气温过高、湿度过大、台风、地震等自然现象引起的电缆损伤,即所谓的不可抗拒力损伤。
发生机械损伤对电缆的使用寿命影响很大,尤其是在热带亚热带地区。在这些地区“高温、高湿、强光”的季节里,直埋电缆在非常苛刻的环境中工作,每时每刻都处于湿热环境中,就像在经受“湿热老化试验”。如果直埋电缆护层破损,水分潮气进入电缆,会引起绝缘电阻急剧下降。即使损伤不很严重,敷设后通电检验正常,但时间久了,也会有水分潮气进入电缆,使绝缘电阻下降。这一过程,根据敷设环境、自然条件和破坏程度不同,一般为2~12个月,就很可能发生运行故障。
以上,从电缆绝缘受潮、电缆使用环境、自然条件、化学腐蚀和机械损伤五个方面,分析介绍了直埋电力电缆绝缘电阻下降、导致发生线路运行故障的原因,并提出了一些相应的纠正措施。只有电缆材料制造厂、电缆制造厂和电缆施工既用户单位密切配合,各司其责,才能不断提高电缆质量,保证供电线路安全。
第二篇:10kV电力电缆直埋敷设的施工方法
电缆直埋敷设的施工方法
1、电缆埋入地下的深度不应小于700 mm(由地面到电缆外皮),所以开挖电缆沟的深度应大于700 mm。为了便于开挖,电缆沟的宽度为350 mm。
2、挖沟完毕,应按设计进行验收。沟底应平整,深浅一致,沟底必须有一层良好土层,防止石头或杂物凸起,同时要处理好易塌陷的地段,无防腐功能的电缆,经过带有化学物质的土壤要准备好塑料
管,敷设时电缆穿入塑料管,以防直接和带有化学物质的土壤接触。
3、敷设电缆时应从电缆盘上方引出电缆,严禁将电缆扭成死角。所以放电缆时应顺电缆圈慢慢拉直,并要注意不能把电缆放在地面拖拉以免破坏外保护层。直埋电缆除了考虑在制作终端头有足够的长度外,还要留有电缆全长0.5%~1%的备用长度。
4、电缆施放后检查电缆外观应无机械损伤。检查合格后就可在电缆上面铺上100mm的砂层,然后在砂层上面铺设事先准备好的保护盖板,其宽度应超出电缆直径两侧各50mm。在用土回填电缆沟时要求逐层夯实以防下陷。直埋的电缆应在两端和改变路线的弯曲处设有“高压电缆、禁止挖掘”的标示牌。
5、从电缆沟道引出的电缆距地面2m的一般应穿镀锌管保护,镀
锌管应去毛刺,不应有穿孔、裂缝等。
6、电缆必须经过直流耐压试验合格、核对相序准确后才能投入
运行。
第三篇:螺旋缝埋弧焊管与直缝电阻焊管比较
螺旋缝埋弧焊管与直缝电阻焊管的对比 关于钢管选用问题
国内关于油气输送干线钢管选用问题,进行了多次学术讨论,其中有两次重大学术讨论会,一次是1998年“大中直径长输管线用埋弧型直缝焊接钢管研讨会”,一次是2000年“天然气管道输送技术及制管技术高级研讨会”。前一次大中直径长输管线讨论会主张发展直缝双面埋弧焊管取代螺旋管,后一次会议提出“继续坚持油气输送干线钢管以国产螺旋焊管为主的技术路线”。这两次研讨会的结论显然相反,因此,对制管业影响也不同。前一次讨论会引导珠江钢管公司上了HME及UOE大口径直缝双面埋弧焊管生产线,以及其它的直缝焊管生产线。后一次的讨论会催生了石油天然气系统新上了6条大口径螺旋埋弧焊管生产线,以及非石油天然气系统新上了十多条大口径螺旋焊管生产线。
目前国内螺旋焊管用途方面的范围已达成共识,在输送天然气的长输管线上只能用于1类地区(山区、荒漠等人烟稀少地区)。西气东输工程是我国标志性工程,X70 级埋弧焊管 182 万吨,约100 万吨为螺旋缝双面埋弧焊管,从板卷到制管,全部国产化,2003 年10 月前完成西气东输工程所需 100 万吨螺旋焊管,使国产螺旋焊管达到了一个新阶段,提升到一个新水平。
一直以来,业界对于螺旋焊管和直缝埋弧焊管的使用存有争议。具体到西气东输工程上,该工程管道距离长、口径大、压力高,沿途地形地貌复杂多变,对钢管的安全可靠性要求很高。采用高压输送和高钢级管材是国际管道工业的发展趋势。过去,国外有一种观点认为,螺旋钢管不能用于高压输气管道,高压输气管道只能采用直缝钢管,可当时国内不能生产直缝钢管。按照这个逻辑,西气东输工程所需的全部管材就只能依赖进口。
集团公司焊管专家黄志潜在一次国际学术会议上提出“联合使用螺旋和直缝埋弧焊管建设油气管道可靠而经济”的观点,并随后参与组织冶金行业和制管厂开发高韧性、高强度管线钢板卷,不断完善制管设备及成型焊接工艺,制定与国际标准接轨的、更严格科学的技术规范,使螺旋焊管的生产技术和质量水平逐步提高。最终他肯定地提出:在高压输气管道的管型选择上,只要能够满足管道的具体技术要求、经济上划算、质量上有保证,直缝埋弧焊管和螺旋缝焊管都可以采用,并不存在必须使用哪种钢管的问题。
"天然气输送管道从不使用螺旋焊管的美国,在2004年新上的一条X80钢级10MPa的管道上就使用了80%的螺旋焊管。2螺旋缝埋弧焊管与直缝电阻焊管的对比 螺旋缝埋弧焊管
目前,在我国油气输送螺旋焊管已形成了以石油系统所属钢管厂为主的基本格局。采用低残余应力成形和管端机械扩径等先进技术生产的、经过严格质量控制的螺旋焊管,在质量上可与直缝埋弧焊管相媲美,在我国西气东输等油气长输管道工程中获得了广泛应用,是我国油气长输管道工程采用的主要管型。不仅能够满足我国油气长输管道工程建设的需要,而且由于我国螺旋缝埋弧焊管其生产技术水平和产品质量具世界先进水平,目前大量螺旋缝埋弧焊管出口。
直缝电阻焊管(ERW)
直缝电阻焊管在输油、输气将是发展方向。目前,我们国家只有宝鸡而且直径在426以下的直缝电阻焊管解决了技术、质量问题,能满足油气输送要求,石油管材研究所检测、研究结果,由于宝鸡ERW引进了日本技术,使焊缝韧性有了质的变化,得到很大提高,达到了焊缝与管体同强同韧水平,除此以外,国内其它ERW都没有解决这个问题,韧性偏低,特别是近两年引进和建设的生产线,其产品质量还不过关、没有油气输送管线业绩。因此必须下大气力彻底解决消除 ERW 焊管的灰斑缺陷等关键技术,使新投产的大口径 ERW 焊管机组的产品质量尽快达到国际先进水平,避免重蹈我国 ERW 焊管发展过程中因出现重大质量事故而走入低谷的覆辙。
另外,螺旋缝埋弧焊管和直缝电阻焊管(ERW)相比,焊缝抗腐蚀性能要好,螺旋缝埋弧焊管焊缝抗腐蚀性能高于管体母材,而直缝电阻焊管(ERW)抗腐蚀性能低于管体母材。两种钢管在受力上,螺旋缝埋弧焊管由于焊缝与轴向有一个夹角,焊缝避开了受力方向。
第四篇:通信电缆的绝缘电阻
通信电缆的绝缘电阻的维护指标应不低于每公里10M。绝缘电阻测试电压为100~1000V,绝缘电阻分辨率为5 k,实际系统采用的供电电压为3V~24V,为降低设计困难输入电压采用24V,输出最高电压为1000V,输出纹波小于200mV,采用分压模块产生不同的电压。由于电缆绝缘电阻值很大,因此对功率要求比较小,在最小标准绝缘电阻10M时功率大约为10W。由于该便携式测试仪供电电源为蓄电池供电,对系统的功耗有很高要求。在保证基本需求的同时最大程度降低电源电路自身的功耗。
第五篇:东风4B型内燃机车电阻制动故障原因分析及处理
东风4B型内燃机车电阻制动故障原因分析及处理
摘 要:文章从东风4B型内燃机车电阻制动装置的结构和原理入手,针对呼铁局东风4B机车使用电阻制动时无制动电流、430r/min主手柄置保位,励磁电流自动增加到740A左右、电阻制动时一、二级不转换、使用电阻制动时励磁电流波动很大等故障,对其产生的原因及处理方法进行分析和总结。 关键词:内燃机车;电阻制动;故障;分析处理 1 概述
电阻制动是机车电气制动方式的一种,它是利用直流电机的可逆原理,在制动工况时将直流牵引电动机改为直流发电机。通过轮对将列车的动能转变为电能,消耗在制动电阻上,再以热能的形式逸散到大气中。在这个过程中,牵引电动机轴上所产生的反力矩作用于机车动轮上而产生制动力。
采用电阻制动具有很多优点,可以提高机车在长大下坡道上的运行速度,大大降低闸瓦和轮箍的磨损。最小限度地使用空气制动,使闸瓦和轮箍的发热减少,确保列车有足够的缓解充风时间,提高使用空气制动时的制动效果。尤其是采用了两级电阻制动以后,大大提高了机车在低速运行区的电气制动力。能够满足铁路自动闭塞区、施工区段慢行以及进站侧线停车的需要。这样不但增加了行车的安全性,而且可以加大行车密度,提高运输能力。如果电阻制动装置出现故障不能使用,上述优点将不能体现。本人从东风4B型内燃机车电阻制动装置的基本原理入手,结合工作中遇到的实际问题,对东风4B型内燃机车电阻制动装置出现的常见故障原因进行分析,并总结出一些比较有效的查找和处理方法。 2 电阻制动控制原理简介
分析电阻制动出现的故障原因,必须从电阻制动控制原理入手进行分析。下面我将电阻制动控制原理简单介绍如下:
当机车从牵引工况转入电阻制动工况时,首先是将牵引电动机的电枢回路与主整流柜断开,并与各自的制动电阻接成闭合回路,其次是将各台牵引电动机的励磁绕组全部串联后接到主整流柜的输出端,由主发电机提供励磁电流(见图1)。
制动力的大小既可以通过调节牵引电机的励磁电流IL来实现,也可以通过调节制动电流Iz来实现。在东风4内燃机车中为了扩大机车在不同速度下制动力的调节范围,这两种方法都采用,对牵引电动机的励磁电流ILd的调节,既可以通过调节主发电机的励磁电流ILf,也可以通过调节励磁机的励磁电流ILL或者调节柴油机测速发电机CF的励磁电流Icf来实现,为了既能调节功率又不使串联的调节环节过多而增加系统动态校正困难,我们采用调节励磁电流ILL来调节牵引电动机的励磁电流IL的方法,对于制动电流Iz的调节是通过调节制动电阻的阻值来实现的。即当机车速度降低到某一指定速度时,自动短接一部分制动电阻,从而增大制动电流Iz的数值。
电阻制动工况时,根据柴油机转速信号,确定制动电流和制动励磁电流的基准值,并将实际的制动电流和制动励磁电流与基准值进行比较,通过PID计算,同样通过输出一信号去控制励磁系统的励磁电流,将制动电流和制动励磁电流限制在规定的范围内,此外,系统还根据机车速度信号去控制机车电阻制动的I、II级转换以及机车在高速时对制动电流进行电流限制(见图2)。 3 电阻制动工况下的故障原因分析及处理
通过对电阻制动控制装置原理的了解,和多年来工作经验的积累,对配属于我局东风4B型内燃机车使用电阻制动过程中出现的各种故障原因和处理方法进行了认真的分析和总结。具体如下:
3.1 故障现象:电阻制动控制箱运转位,柴油机转速430r/min,主手柄置“保位”,制动电流自动升到800A左右。
故障原因:制动电流霍尔传感器坏了或断线,此时电阻制动控制箱无制动电流反馈信号,造成控制箱工作不正常。
处理办法:遇此故障,检修人员检查各线有无断路或短路现象,用万用表检查控制箱面板上的制动电流反馈测试孔K11~K16是否有信号(为负信号)、测量各传感器有无±15V电源。
3.2 故障现象:电阻制动控制箱运转位,柴油机转速430r/min,主手柄置“保位”,励磁电流自动升到740A左右。
故障原因:①柴油机转速传感器2CF输出电压过高。②监控装置TAX箱故障及监控装置所用速度传感器线路有短路处所。③励磁机励磁绕组负端与CF电机电枢绕组负端形成回路。④无Idl反馈信号,3LH励磁电流传感器坏了或断线。⑤调节板坏了。
处理办法:①柴油机转速430r/min时,用万用表测量2CF的1~3端子输出电压应为1.0V左右。②更换TAX箱或检查测量监控装置所用速度传感器线路各通道无短路处所。③电阻制动正常位工况下,励磁机励磁绕组负端与CF电机电枢绕组负端之间应该是断路状态。④可由调节板的K0~K3测试孔测量是否有负电压反馈信号。检查3LH励磁电流传感器插头接口之间1~3为+15V,4~3之间为-15V,3为地线0V。⑤检查各线是否有断的,必要时更换调节板。
3.3 故障现象:电阻制动控制箱运转位,使用电阻制动时,随着速度的增加或减少,I级II级制动不转换。
故障原因:①机车速度传感器故障;②转换板上转换点的电压整定不对。
处理办法:遇此故障应检查速度传感器通往控制箱的相关线路是否良好,用发码器发码试验。用过渡插件将转换板引出来,测W2电位器中点电压应达到2.8V左右。检查TAX箱接线排上的接线,将接线排上废弃不用的与速度传感器无关的接线甩掉,并包扎处理。 3.4 故障现象:励磁电流波动很大,在运行时制动电流也有波动。 故障原因:各传感器的电源或反馈信号线有虚接或励磁机输出电压反馈回路故障,导致系统动态特性变坏。
处理办法:遇此故障应检查各传感器连线,测试斩波板测试孔K0~K2之间应有电压反馈信号(当有励磁电流时)。在检查电路过程中,特别注意控制箱20芯的两个插座不能调换错插,一旦插错,110V电压便接到15V电源上,会将运算放大器烧损。 3.5 故障现象:使用电阻制动时,无制动电流。
故障原因:电控接触器主触头1~6C或转换开关常开主触头1~2Hkg未闭合。
处理办法:遇此故障应检查1~6C和1~2Hkg制动位电控伐是否失电或其驱动风缸是否犯卡,造成触头未闭合或接触不良。
3.6 故障现象:使用电阻制动时,励磁电流不随柴油机转速及机车速度变化而变化。
故障原因:调节板或斩波板故障。
处理办法:遇此故障应更换调节板和斩波板。
3.7 故障现象:控制箱故障开关GK置运行位和故障位时均无励磁电流。
故障原因:①控制箱插头1未插好;②控制箱内J1继电器损坏;③外电路接错或断线等。
处理办法:遇此故障应将插头插牢,检查外部电路各接线是否正确。将控制箱断电,拔掉插头,应测得CT1的接口1~3和1~13相通,接口1~4和1~8相通。 3.8 故障现象:电阻制动柜接地、烧损、主电路接地。
故障原因:①电阻柜的E线破损;②风机电动机引出线破损;③乘务员操纵主手柄时“飞升飞降”,特别是降转速时1位停留时间太短,励磁电流没有降至零,造成励磁电流大,ZC触头拉弧严重烧损;④雨天、雪天频繁使用电阻制动,使雨水、雪水吸入电阻制动柜,造成制动电阻带短路烧损;⑤自负荷试验频繁、试验时间长,电阻带长时间通过大电流,造成电阻带过热变形,磁瓶爆裂,绝缘下降,造成接地烧损。
处理办法:①更换破损的E线或风机电动机引出线。②要求乘务员合理操纵主手柄,1位停留时间稍长一些,待制动电流和励磁电流降为零,主手柄再回零位。③雨天、雪天禁止使用电阻制动,防止雨水、雪水进入电阻制动柜,烧损制动电阻带。④规范自负荷试验程序,每次满载试验不超过30min。要求主手柄回1位后停留3min以上,确保电阻带散热良好。 4 结束语
通过以上的分析和总结,我们了解了东风4B型内燃机车电阻制动控制装置的工作原理和一些故障原因及处理方法。通过大量实践,以上办法极大的提高了机车运用和检修人员对电阻制动装置出现故障的准确判断和处理水平。为确保机车电阻制动装置的正常使用提供了可靠保障。