首页 > 精品范文库 > 11号文库
我国东部某污水处理厂运营成本分析(5篇范文)
编辑:夜色微凉 识别码:20-546056 11号文库 发布时间: 2023-06-26 16:02:23 来源:网络

第一篇:我国东部某污水处理厂运营成本分析

中国东部某污水处理厂运营成本分析

1.东部某污水处理厂运营成本测算

(1)项目总投资

该项目总投资由固定资产投资和铺底流动资金组成,其中:固定资产投资总额为19,392万元,铺底流动资金为112万元,共计19,504万元,项目工程投资如下:

固定资产投资估算总览

序号 内容 百分比(%)估算合价(万元)建筑安装工程费用 35.28 6841.2 2 设备购置 34.72 6733.2 3 待摊费用 25.34 4913.3 4 其他费用 0.43 84.1 5 建设期利息 4.22 820

合 计 100 19392

(2)项目资金来源

该项目总投资为19,765万元,其中建设部、财政部拨款190万元;省、市财政拨款5,936万元;奥地利政府贷款5,278万元,利率按4.75%计算,还款期限为17年;建设银行贷款2,800万元,利率按7.4%计算(其中:1000万元4年期,1800万元10年期);开行贷款2,700万元,利率按7.4%计算(3年期),国债资金2,200万元,利率按5.5%计算(10年期)。

(3)污水处理厂项目计算期及经营负荷

由于项目实际建设及运行情况较为复杂,本次测算将简化处理,项目计算期定为22年,其中建设期为2年,经营期为20年。经营期第一年负荷为70%,第二年为85%,第三年起为满负荷运转。

(4)总成本估算

估算说明:本项目成本估算除折旧费和财务费用外,其余各项是根据1999年实际运营所发生数额为依据。

A、原材料、燃料、动力

正常年份为768.7万元,其中材料费用占单位成本的27%。

B、折旧、摊销费

折旧费采用分类直线折旧法计提,固定资产中建筑物(预备费并入该项)按40年折算,残值率5%。

计算本项目建筑物年折旧费用162.5万元

设备费用6817.285万元,按10年折算,残值率5%。

计算本项目设备年折旧费用647.64万元

递延资产按5年摊销,项目运营1~5年递延资产摊销费为982.7万元。

C、人员工资

根据项目的规模,项目定员为150人,考虑目前当地人民生活水平,经营期每人平均年工资、福利14500元计,每年工资、福利费用总计217万元。

D、修理费用

按固定资产折旧的10%估算

E、管理费用

项目管理费用及其他费用参照该公司的实际支出情况结合本项目的经营方式按销售(营业)收入的20%估算。

F、财务费用

财务费用对本项目来说就是固定资产投资和流动资金利息。本项目固定资产投资借款来源复杂,且利率不同,还款年限各异,已分别计算了各种贷款的利息。

以上六项构成项目的总成本费用,经测算,该项目经营期年平均总成本为3355.99万元,年平均经营成本2033.6万元。

(5)营业收入

本项目建成后日处理污水16.5万吨/日,一年按300个工作日计算,则正常生产全年共计处理污水4950万吨。

A、污水处理单价为0.585元/吨,则全年的经营收入为2895.75万元。此时,项目在经营期内,自有资金的财务内部收益率为0%,投资回收期为15.77年(含建设期2年);全部投资财务内部收益率为0.2%,投资回收期20.71年(含建设期2年)。项目能够按期还本付息,企业能够维持正常的生产经营。B、污水处理单价为0.888元/吨,则全年的经营收入为4395.6万元。此时,项目在经营期内,自有资金的财务内部收益率为11.38%,投资回收期为11.89年(含建设期2年);全部投资财务内部收益率为7.63%,投资回收期10.9年(含建设期2年)。项目能够按期还本付息,企业既能够保持正常的生产经营,又有一定的赢利能力。

(6)实际运营成本分析

污水处理厂自运行以来,各年的污水处理量见表,预计2000年达到日处理16.5万吨的总体设计规模。目前污水处理厂是全额拨款的事业单位,不考虑各类借款的还本付息,运行管理费用中也没有考虑固定资产折旧等费用。由于配套管网未建,雨污不分流,使得目前单位运行成本不高。

若按企业化运营,2000年污水处理厂运行管理费用预计约1400万元,借款本金余额11,578万元,正常情况下需偿还利息678.91万元,2000年共需资金2078.91万元,污水处理成本为0.43元/吨,尚低于0.585元/吨的还本付息、正常运营的成本价。该市2000年应征收的污水处理费为2200万元,应该可以满足污水处理厂的资金需要。

第二篇:关于污水处理厂运营成本管理对策模块的分析

关于污水处理厂运营成本管理对策模块的分析

一、关于污水处理厂成本管理环节的分析

1.随着市场经济体制的发展,我国的污水处理厂体系也在不断的健全,其污水处理效率不断得到优化。但是现阶段来说,我国污水处理厂的运作效率依旧是比较低的,为了更好的进行污水处理厂运营成本的控制,进行设计模块的优化是必要的。受到经济效益这一因素的影响,我国很多的污水处理厂都处于停产或者半停产的状态,这就需要进行污水处理厂正常运作模块的优化,进行早期建设污水厂设备及其技术的更新。目前来说,我国相关城市的污水处理厂污水管网建设体系都是不健全的,其运作成本比较低,并且存在较大的财政资金问题,比如资金的缺乏,也影响了污水处理厂的正常运作。我国的污水处理政策也是不健全的,不能实现污水处理行业的经济效益的提升,影响了污水处理厂的建设及其运营成本的控制。

在现阶段污水处理模块中,影响其成本管理的因素非常多的。随着我国可持续发展道路的开展,污水处理作为公益性事业逐渐引起了社会的广泛关注,这与政府的责任是密切相关的。污水处理厂的资金大多来自于财政拨款,通过对污水处理任务的开展,进行环境效益的保证,保证社会经济效益与环保效益的结合。但是目前来看,相关污水处理厂领导人员的成本管理意识并不强烈,其内部也缺乏有效的成本核算管理,这就需要进行成本运行问题的考虑,保证污水处理模块的有效开展。毕竟我国现阶段的污水处理都是半企业化的模式,没有真正意义上的自负盈亏,其与政府财政密切相关的,这就需要进行相关措施的开展,进行成本控制模块的优化。

2.改革开放以来,我国市场运行机制不断得到优化,一系列的污水处理模式不断得到应用,比如TOT模式、BOT模式等,这些模式是当下污水处理厂市场化投资的重要模式,实现政府与企业之间的结合,在该模块中,企业的经营目的就是进行营利,这样一定程度提升了污水处理厂的经营管理水平。这也需要进行不同利益参与者的协调,保证成本控制利益的协调。

二、污水处理成本体系的优化

1.在现阶段污水处理模块中,进行运营成本的管理是必要的,这需要进行相关工作模块的优化,这需要引起相关管理者的重视,保证成本控制体系的优化,进行先进经验的总结,保证污水处理厂的经营管理水平的提升,从而实现污水处理运营成本的优化。这需要进行不同模块的成本策略的应用,保证生产成本核算模式的优化,进行其科学性、时效性的应用,保证核算模块中的积极探索及其创新,保证相关应对策略的应用。

在现阶段会计成本费用核算模块中,进行人员薪酬模块、管理费用模块、固定资产折旧模块等的控制是必要的,从而针对其处理量的变化而产生变化,保证其设计规模、投资额度的控制,保证各种费用的积极控制,保证其随着处理量的变化而变化,保证实际成本的有效核算,保证其成本支出额的具体控制及其核算,以提升其综合运作效益,满足现阶段工作的需要。更要关注产生这些费用的各类生产指标、能耗指标,将每月的耗电量、污泥运输耗油量、药剂耗用量及相应的单价及污泥产量、运输距离也导入成本核算体系,直观地反映各类成本的单耗指标,为成本控制打好基础。第二、制定科学的成本目标,建立成本考核激励机制。

2.为了提升成本控制的效益,展开全目标成本管理方案的更新是必要的,这就需要进行定额管理模块、计量模块、原始记录应用模块等展开分析,进行科学化制度及其方法的应用,保证成本目标的有效考核及其控制,进行主要变动成本指标的关键点控制,保证该指标模块的控制,比如药剂费、运输燃料费、维修费。电费考核需要考虑处理水量,考核单位电耗指标;药剂费需要考虑出泥量及药剂的单价,考核污泥单耗成本;运输燃料费根据运输距离,考核每公里运输成本。

在现阶段的培训模块及其讲解模块中,管理人员及其技术人员要进行污水处理工作的控制,保证其工作原理的有效讲解,进行设备维修管理体系的健全,保证系统的有效操作管理,保证设备维修小组工作的有效开展,积极进行生产车间及其相关设备的有效维护,保证工作内容的有效维护,保证设备维修工作的有效开展。建立健全污水处理设备的维修管理责任制度,对设备的维修建立专门的档案并做好维修记录,设备管理人员要做好各项设备的验收入库、造册登记以及保管和报废的工作,同时根据设备的运行情况和生产的需求,科学合理的进行设备的更新和改造工作。

在现阶段污水处理模块中,进行检测模块及其化验管理模块的协调是必要的,这需要进行检测及其化验管理目标的优化,保证检测模块及其化验模块的协调,进行污水处理厂运作状态参数的积极控制,保证污水处理厂检测模块及其化验模块的有效开展。有效而又准确的得到污水处理厂的适时运行状态参数。而对于污水处理厂的检测和化验的管理就是要使得该项工作开展的正规化,以确保污水处理系统的正常运行同时也能保证化验员以及操作人员的职业健康和工作的安全。

在污水处理厂检测及其化验过程中,进行科学化的作业指导书的应用是必要的,从而进行检测内容的控制及其优化。这需要进行专业人员的水质监测工作的开展,进行设备及其运作技术的协调。进行化验的工作人员必须具有相应的上岗证书,同时污水处理厂也要定期的培训化验员以提高其专业技术水平,确保检测化验结果的公信力。

为了进一步提升成本管理的效益,进行维修费用的考核是必要的,这样可以避免产生短期行为,实现对成本的积极控制,保证设备的有效维护管理,这也需要进行检查模块及其考核模块的控制,进行考核设备完好率的控制,进行维修及其保养记录的积极检查,从而满足现阶段设备正常运作的需要,从而针对成本展开考核,以提升其综合效益。成本考核经由生产、设备、财务部门组成考核组,按照考核办法逐项实施检查、考核、奖惩,确保实现降低成本的目的。第三、建立健全成本内控制度,强化执行力度。要想达到降低成本的目标,建立一套适合的内部控制制度至关重要。

3.在污水处理厂成本控制过程中,要做好物资采购工作、出入库管理工作,保证其质量控制、合同管理等制度的健全,保证详细的工作流程的制定,进行责任制度的优化,从而满足现阶段决策方案的应用需要,确保其采购模块及其维修项目模块的有效开展,进行各种项目管理制度的健全,保证其工作流程体系的健全,保证其内部各个环节的协调。

三、结语

通过对污水处理设备及其技术的更新,更有利于提升污水处理的综合效益,随着生产知识化水平的提高和污水处理设备的不断更新换代,各大企业的污水处理工作也必将更加简单易行。各污水处理厂在成本管理工作中,应根据自身的特点和具体条件,认真进行成本的分析,抓住影响成本的关键,采取有效措施节约污水处理成本。

第三篇:东西部两污水处理厂运营成本效益案例分析

东西部两污水处理厂运营成本效益案例分析

点击:2122

现提供我国东部地区的某污水处理厂和西部地区的某污水处理厂按企业化运行模式进行运营成本测算的案例,供大家参考。由于各项目具体情况千差万别,本案例仅供参考,不具有代表意义。1.东部某污水处理厂运营成本测算

(1)项目总投资

该项目总投资由固定资产投资和铺底流动资金组成,其中:固定资产投资总额为19,392万元,铺底流动资金为112万元,共计19,504万元,项目工程投资见下表:

固定资产投资估算总览

序号 内容 百分比(%)估算合价(万元)1 建筑安装工程费用 35.28 6841.2 2 设备购置 34.72 6733.2 3 待摊费用 25.34 4913.3 4 其他费用 0.43 84.1 5 建设期利息 4.22 820

合 计 100 19392

(2)项目资金来源

该项目总投资为19,765万元,其中建设部、财政部拨款190万元;省、市财政拨款5,936万元;奥地利政府贷款5,278万元,利率按4.75%计算,还款期限为17年;建设银行贷款2,800万元,利率按7.4%计算(其中:1000万元4年期,1800万元10年期);开行贷款2,700万元,利率按7.4%计算(3年期),国债资金2,200万元,利率按5.5%计算(10年期)。

(3)污水处理厂项目计算期及经营负荷

由于项目实际建设及运行情况较为复杂,本次测算将简化处理,项目计算期定为22年,其中建设期为2年,经营期为20年。经营期第一年负荷为70%,第二年为85%,第三年起为满负荷运转。

(4)总成本估算

估算说明:本项目成本估算除折旧费和财务费用外,其余各项是根据1999年实际运营所发生数额为依据。

A、原材料、燃料、动力

正常年份为768.7万元

B、折旧、摊销费

折旧费采用分类直线折旧法计提,固定资产中建筑物(预备费并入该项)按40年折算,残值率5%。

计算本项目建筑物年折旧费用162.5万元

设备费用6817.285万元,按10年折算,残值率5%。

计算本项目设备年折旧费用647.64万元

递延资产按5年摊销,项目运营1~5年递延资产摊销费为982.7万元。

C、人员工资

根据项目的规模,项目定员为150人,考虑目前当地人民生活水平,经营期每人平均年工资、福利14500元计,每年工资、福利费用总计217万元。

D、修理费用

按固定资产折旧的10%估算

E、管理费用

项目管理费用及其他费用参照该公司的实际支出情况结合本项目的经营方式按销售(营业)收入的20%估算。

F、财务费用

财务费用对本项目来说就是固定资产投资和流动资金利息。本项目固定资产投资借款来源复杂,且利率不同,还款年限各异,已分别计算了各种贷款的利息。

以上六项构成项目的总成本费用,经测算,该项目经营期年平均总成本为3355.99万元,年平均经营成本2033.6万元。

(5)营业收入

本项目建成后日处理污水16.5万吨/日,一年按300个工作日计算,则正常生产全年共计处理污水4950万吨。

A、污水处理单价为0.585元/吨,则全年的经营收入为2895.75万元。此时,项目在经营期内,自有资金的财务内部收益率为0%,投资回收期为15.77年(含建设期2年);全部投资财务内部收益率为0.2%,投资回收期20.71年(含建设期2年)。项目能够按期还本付息,企业能够维持正常的生产经营。B、污水处理单价为0.888元/吨,则全年的经营收入为4395.6万元。此时,项目在经营期内,自有资金的财务内部收益率为11.38%,投资回收期为11.89年(含建设期2年);全部投资财务内部收益率为7.63%,投资回收期10.9年(含建设期2年)。项目能够按期还本付息,企业既能够保持正常的生产经营,又有一定的赢利能力。

(6)实际运营成本分析

污水处理厂自运行以来,各年的污水处理量见表,预计2000年达到日处理16.5万吨的总体设计规模。目前污水处理厂是全额拨款的事业单位,不考虑各类借款的还本付息,运行管理费用中也没有考虑固定资产折旧等费用。由于配套管网未建,雨污不分流,使得目前单位运行成本不高。

若按企业化运营,2000年污水处理厂运行管理费用预计约1400万元,借款本金余额11,578万元,正常情况下需偿还利息678.91万元,2000年共需资金2078.91万元,污水处理成本为0.43元/吨,尚低于0.585元/吨的还本付息、正常运营的成本价。该市2000年应征收的污水处理费为2200万元,应该可以满足污水处理厂的资金需要。2.西部某污水处理厂运营成本测算

该项目建设规模为20万立方米,总投资30940万元。本次测算以日处理20万吨的设计能力为依据,并参考1998年7月至1999年7月正式运行一年内实际发生的费用,未考虑未来物价涨幅和改、扩建等因素。

(1)成本构成

A、电费:年用电量约1960万千瓦时,按市电业局公布的单位平均电价0.345元/千瓦时计算,年电费676.2万元。

B、水费:按一年累计用水量288000立方米计年水费为24.5万元。

C、药剂费:根据处理工艺要求所需药剂主要是液氯和絮凝剂,以设计规模每年液氯消耗量约为120吨,絮凝剂消耗量约为55吨,按照两种药剂现行市价分别是1800元/吨和55000元/吨计算,每年药剂费为324万元。

D、职工工资福利费:该厂职工编制人数260人,每年需支出工资、劳保、三金等费用总额为348万元。

E、管理费:全年总计66万元。

F、固定资产折旧费:该厂可转固定资产总额为26976万元,按工业企业固定资产分类计提折旧费,综合折旧率为5.3%,年折旧费总额为1429.7万元。

G、维修费:按固定资产总额计提2%,年维修费总额为539.5万元。

H、清偿国外贷款本息:项目总投资30940万元人民币,包括1000万美元国外贷款。国外贷款还款期限12.5年,年息5%(含转贷业务费),每年利息费折合人民币415万元,本金折合人民币664万元,两项合计每年还本付息总额为1079万元。

(2)运行成本测算

第一种情况:按照成本构成中A+B+C+D+E五项之和计算出每年污水处理厂运行成本为1438.8万元,折成单位污水成本为0.20元/吨;

第二种情况:按照成本构成中前7项之和,即将固定资产折旧费和设备修理费分摊到运行成本中,计算出每年运行成本为3408万元,折算为单位成本0.47元。

第三种情况:将每年偿还国外贷款本息计入运行成本中,即成本构成各项之和作为年运行成本,总额为4487万元,折算成单位成本为0.62元。

(3)成本测算结论

第一种情况下测算出日处理20万吨污水的单位成本为0.20元,是污水厂建成后短时期内勉强维持正常运转的基本成本,未考虑固定资产折旧和设备更新、改造、大修等费用的补偿。照此条件运转3~5年后,由于缺少设备的更新改造资金,污水处理厂将陷入难以维计的困境。

在第二种情况下测算出的污水处理单位成本为0.47元,是污水处理厂在物价涨幅不大的条件下,维持正常运行的基础上,有能力进行设备的更新改造和维修,保证在较长时间内维持简单再生产的成本补偿,不具备清偿债务的能力。第三种情况下测算出的单位成本为0.62元,表明污水处理厂在维持较长时间内正常运转的前提下,还具有了偿还债务,进行资金积累的能力,可实现污水处理厂生产运转的良性循环。

从上述两个企业成本案例可以看出,虽然东西部经济发展水平不同,污水处理收费标准也有差异,同时企业自身资金成本、工艺流程也不尽相同,但只要企业经济效益和污水处理收费挂钩,合理确定单位污水处理收费标准,并及时足额到位,污水处理厂还是可以企业化管理运行,具有合理投资回报收益,有广泛的投资前景。

来源:漳州建设信息网

上传时间:2005年3月18日 23:57 最后修改时间:2005年3月18日 23:57 本文关键字:成本

第四篇:城市污水处理厂运营常见问题分析

城市污水处理厂运营常见问题分析

在工业化的发展道路上,几乎每个国家都遭遇过经济发展、资源利用和环境保护之间的失衡,这一失衡在国际上被称为“增长的代价”。有些国家较好地补偿了“增长的代价”,而走上了持续发展的道路。有些国家则被“增长的代价”所绊倒,而走向了衰落。

今天的中国也来到了这一历史性关口。近三十年来城镇生活污水和工业废水的排放量逐年增加,给水环境造成了严重了污染,这已经成为严重制约我国社会经济持续发展的突出问题。中国的未来将向何处去?答案只有是实现经济结构转型,将高消耗型转为“节约型”,将高污染型转为“清洁型”,走建设资源节约型和环境友好型社会的路。为此,国家制定了一系列节能减排政策。

节能减排在不同行业内的具体内涵有所不同。对于城市污水处理行业,节能主要是节电、节水(自来水),而减排主要是从减少污染物排放,即做到污水与污泥处理的完全达标。

在我国,与上百年的城市给水处理相比,很多地方在城市污水处理方面的实际经验相对较少。而城市污水处理工艺的类型又很多,并各有特点,也各有利弊,操作技术要求高。同时,城市污水收集管网往往又很难与污水处理厂同步建成,以及存在一定的偷排废水情况,使得设计的城市污水处理工艺很难适应进水水质变化。这些方面都成为制约城市污水处理节约、高效、稳定达标运行的瓶颈,在技术和管理上给污水处理厂运营单位带来了很大挑战。

本文就城市污水处理厂实现污水与污泥处理的达标,以及节能降耗方面会遇到的常见问题进行归纳与分析。

一、进水水量与水质

(一)进水水量

在我国,城市污水处理厂进水水量不足的现象普遍存在,这种吃不饱的原因既有通常被提到的污水收集管网建设滞后问题,也有设计能力超前的问题。这两方面原因导致许多地方的污水处理厂已经建成几年仍不能满负荷运行,有些污水处理厂甚至只能抽取厂区周边的河水进行处理,使得污水处理工艺控制增加了难度,也增加了工程投资的成本,造成资产的闲置与浪费,无谓地过多消耗本来就已非常紧张的污水处理资金。相反,有的污水处理厂存在长期超负荷运行状态,例如某污水处理厂一期工程规模为40万m3/d,二期工程规模为24万m3/d,但由于资金短缺而使二期工程建设滞后,一期实际处理量已达到52万m3/d,处理出水水质有所下降。为此,合理确定污水处理厂建设规模与分期,高效使用治污资金,以及尽量提高污水收集率,是实现污水减排的前提。

(二)进水水质 由于城市污水收集管网不配套,雨污合流制管网较普遍,管网管理不到位,致使进入城市污水处理厂的进水中雨水、河道水和工业废水的比例较大。

以下进水水质情况均不利于污水处理厂的正常运行:

(1)进水中BOD、COD含量比设计值低,而氮、磷等指标则等于或高于设计值,从而增加污水脱氮除磷处理达标排放的难度;

(2)工业废水中的夹带油污或有毒物质对城市污水处理厂的生物系统造成巨大影响,在极端情况下这些油污或有毒物质会使整个生物系统瘫痪,微生物菌种死亡,整个污水处理厂不得不重新培养活性污泥;

(3)进水水质偏高,供氧与污泥脱水设备规格不能满足污水与污泥处理要求。其中垃圾渗滤液引入给城市污水处理厂运行所造成的影响需要给予足够重视。

对于污水收集与污水处理能力不协调问题,需要有关主管部门将城市排水管网和污水处理厂建设纳入城市建设近、远期总体规划,保证污水收集系统与污水处理厂同步或先行建设。同时做好新建污水处理厂服务范围内污水水质调查,以合理确定设计进水水质。

二、出水水质

我国近年建设的城市污水处理厂基本要求达到国家GB18918-2002中的一级B标准,在一些地区还有要求达到一级A标准。即使是原有已建项目,也在逐渐进行升级改造,以提高污水减排效果。

根据规定的污水处理排放标准要求,各城市污水处理厂采用适合于本地进水水质等客观条件的污水处理工艺技术,并加强运营管理。然而,在污水处理厂的实际运行管理过程中,仍会遇到一些来自不同方面的问题而导致处理出水水质不达标。

(一)有机物超标

传统活性污泥工艺的主要功效是去除城市污水中的有机污染物质,设计与运行良好的活性污泥工艺,出水BOD5和SS均可小于20mg/L。

影响有机物处理效果的因素主要有:(1)营养物

一般城市污水中的氮磷等营养元素都能够满足微生物需要,且过剩很多。但工业废水所占比例较大时,应注意核算碳、氮、磷的比例是否满足100:5:1。如果污水中缺氮,通常可投加铵盐。如果污水中缺磷,通常可投加磷酸或磷酸盐。

(2)pH 城市污水的pH值是呈中性,一般为6.5~7.5。pH值的微小降低可能是由于城市污水输送管道中的厌氧发酵。雨季时较大的pH降低往往是城市酸雨造成的,这种情况在合流制系统中尤为突出。pH的突然大幅度变化,不论是升高还是降低,通常都是由工业废水的大量排入造成的。调节污水pH值,通常是投加氢氧化钠或硫酸,但这将大大增加污水处理成本。(3)油脂

当污水中油类物质含量较高时,会使曝气设备的曝气效率降低,如不增加曝气量就会使处理效率降低,但增加曝气量势必增加污水处理成本。另外,污水中较高的油脂含量还会降低活性污泥的沉降性能,严重时会成为污泥膨胀的原因,导致出水SS超标。对油类物质含量较高的进水,需要在预处理段增加除油装置。

(4)温度

温度对活性污泥工艺的影响是很广泛的。首先,温度会影响活性污泥中微生物的活性,在冬季温度较低时,如不采取调控措施,处理效果会下降。其次,温度会影响二沉池的分离性能,例如温度变化会使沉淀池产生异重流,导致短流;温度降低会使活性污泥由于粘度增大而降低沉降性能;温度变化会影响曝气系统的效率,夏季温度升高时,会由于溶解氧饱和浓度的降低,而使充氧困难,导致曝气效率的下降,并会使空气密度降低,若要保证供气量不变,则必须增大供气量。

(二)总磷超标

城市污水处理厂除磷主要是依靠生物除磷,即在好氧段前增加厌氧段,使聚磷菌交替处于厌氧和好氧状态,实现磷酸盐的释放与吸收,并通过排放剩余污泥来达到除磷目的。在生物除磷难以达标的条件下,还可以考虑投加化学药剂来辅助除磷。化学除磷主要是通过混凝、沉淀和过滤等方法使磷成为不溶性的固体沉淀物,从污水中分离出来。

导致生物除磷出水总磷超标的原因涉及许多方面,主要有:(1)污泥负荷与污泥龄

厌氧-好氧生物除磷工艺是一种高F/M低SRT系统。当F/M较高,SRT较低时,剩余污泥排放量也就较多。因而,在污泥含磷量一定的条件下,除磷量也就越多,除磷效果越好。

对于以除磷为主要目的生物系统,通常F/M为0.4~0.7kgBOD5/kgMLSSd,SRT为3.5~7d。但是,SRT也不能太低,必须以保证BOD5的有效去除为前提。

(2)BOD5/TP 要保证除磷效果,应控制进入厌氧区的污水中BOD5/TP大于20。由于聚磷酸菌属不动菌属,其生理活动较弱,只能摄取有机物中极易分解的部分。因此,进水中应保证BOD5的含量,确保聚磷酸菌正常的生理代谢。但许多城市污水处理厂实际进水存在碳源偏低,氮、磷等浓度较高等现象,导致BOD5/TP值无法满足生物除磷的需要,影响了生物除磷的效果。

(3)溶解氧

厌氧区应保持严格厌氧状态,即溶解氧低于0.2mg/L,此时聚磷菌才能进行磷的有效释放,以保证后续处理效果。而好氧区的溶解氧需保持在2.0mg/L以上,聚 磷菌才能有效吸磷。因此,对于厌氧区和好氧区溶解氧的控制不当,将会极大影响生物除磷的效果。另外,有些污水处理厂的进水为河道水,污水中溶解氧含量较高,若直接进入厌氧区,则不利于厌氧状态的控制,影响了聚磷菌放磷效果。

(4)回流比

厌氧-好氧除磷系统的的回流比不宜太低,应保持足够的回流比,尽快将二沉池内的污泥排出,防止聚磷菌在二沉池内遇到厌氧环境发生磷的释放。在保证快速排泥的前提下,应尽量降低回流比,以免缩短污泥在厌氧区的实际停留时间,影响磷的释放。

在厌氧-好氧除磷系统中,若污泥沉降性能良好,则回流比在50~70%范围内,即可保证快速排泥。

(5)水力停留时间

污水在厌氧区的水力停留时间一般在1.5~2.0h的范围内。停留时间太短,一是不能保证磷的有效释放,二是污泥中的兼性酸化菌不能充分地将污水中的大分子有机物分解成低级脂肪酸,以供聚磷菌摄取,从而也影响了磷的释放。

污水在好氧区的停留时间一般在4~6h,这样即可保证磷的充分吸收。(6)pH 低pH有利于磷的释放,高pH有利于磷的吸收,而除磷效果是磷释放和吸收的综合。因此在生物除磷系统中,宜将混合液的pH控制在6.5~8.0的范围内。

由于对出水总磷指标要求的不断提高,除生物除磷外,化学除磷也得到越来越多地应用。但化学除磷在提高除磷效果的同时,也会因投加化学药剂而使剩余污泥量大大增加,进而增加污泥处理量与泥饼处置量。

实际中应根据实验来确定化学药剂的投加点与投加量,并及时调整,确保出水磷含量稳定达标,并尽可能降低药耗。

(三)氨氮超标

污水中氨氮的去除主要是在传统活性污泥法工艺基础上采用硝化工艺,即采用延时曝气,降低系统负荷。

导致出水氨氮超标的原因涉及许多方面,主要有:(1)污泥负荷与污泥龄

生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。

(2)回流比 生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。

(3)水力停留时间

生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。

(4)BOD5/TKN TKN系指水中有机氮与氨氮之和,入流污水中BOD5/TKN是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水处理厂的运行实践发现,BOD5/TKN值最佳范围为2~3左右。

(5)硝化速率

生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量。硝化速率的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素,典型值为0.02gNH3-N/gMLVSSd。

(6)溶解氧

硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。

(7)温度

硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。

(8)pH 硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。因此,应尽量控制生物硝化系统的混合液pH大于7.0。

(四)总氮超标

污水脱氮是在生物硝化工艺基础上,增加生物反硝化工艺,其中反硝化工艺是指污水中的硝酸盐,在缺氧条件下,被微生物还原为氮气的生化反应过程。

导致出水总氮超标的原因涉及许多方面,主要有:(1)污泥负荷与污泥龄

由于生物硝化是生物反硝化的前提,只有良好的硝化,才能获得高效而稳定的的反硝化。因而,脱氮系统也必须采用低负荷或超低负荷,并采用高污泥龄。(2)内、外回流比

生物反硝化系统外回流比较单纯生物硝化系统要小些,这主要是入流污水中氮绝大部分已被脱去,二沉池中NO3--N浓度不高。相对来说,二沉池由于反硝化导致污泥上浮的危险性已很小。另一方面,反硝化系统污泥沉速较快,在保证要求回流污泥浓度的前提下,可以降低回流比,以便延长污水在曝气池内的停留时间。

运行良好的污水处理厂,外回流比可控制在50%以下。而内回流比一般控制在300~500%之间。

(3)反硝化速率

反硝化速率系指单位活性污泥每天反硝化的硝酸盐量。反硝化速率与温度等因素有关,典型值为0.06~0.07gNO3--N/gMLVSSd。

(4)缺氧区溶解氧

对反硝化来说,希望DO尽量低,最好是零,这样反硝化细菌可以“全力”进行反硝化,提高脱氮效率。但从污水处理厂的实际运营情况来看,要把缺氧区的DO控制在0.5mg/L以下,还是有困难的,因此也就影响了生物反硝化的过程,进而影响出水总氮指标。

(5)BOD5/TKN 因为反硝化细菌是在分解有机物的过程中进行反硝化脱氮的,所以进入缺氧区的污水中必须有充足的有机物,才能保证反硝化的顺利进行。由于目前许多污水处理厂配套管网建设滞后,进厂BOD5低于设计值,而氮、磷等指标则相当于或高于设计值,使得进水碳源无法满足反硝化对碳源的需求,也导致了出水总氮超标的情况时有发生。

(6)pH 反硝化细菌对pH变化不如硝化细菌敏感,在pH为6~9的范围内,均能进行正常的生理代谢,但生物反硝化的最佳pH范围为6.5~8.0。

(7)温度

反硝化细菌对温度变化虽不如硝化细菌那么敏感,但反硝化效果也会随温度变化而变化。温度越高,反硝化速率越高,在30~35℃时,反硝化速率增至最大。当低于15℃时,反硝化速率将明显降低,至5℃时,反硝化将趋于停止。因此,在冬季要保证脱氮效果,就必须增大SRT,提高污泥浓度或增加投运池数。

(五)悬浮物超标

出水中的悬浮物指标是否达标,主要取决于生物系统污泥的质量是否良好、二沉池的沉淀效果以及污水处理厂的工艺控制是否恰当。

造成二沉池出水悬浮物超标的原因有以下几个方面:(1)二沉池工艺参数选择

二沉池设计参数是否选择恰当是出水悬浮固体指标会否超标的重要因素。许多 城市污水处理厂在设计之初,为节约建设成本,将水力停留时间大大缩短,并尽量提高其水力表面负荷,造成运行时二沉池经常出现翻泥现象,致使出水悬浮固体超标。另外,某些污水处理厂由于实际工艺调整需要,需将生物池污泥浓度控制在较高的水平时,也会造成二沉池固体表面负荷过大,影响出水水质。因此,一般认为应对二沉池的这几个工艺参数的设置留有较大的余地,以利于污水处理厂工艺的控制与调整。

一般来说,影响沉淀池沉淀效果的主要工艺参数为水力停留时间、水力表面负荷和污泥通量。

 二沉池水力停留时间

污水在二沉池的水力停留时间长短,是二沉池运行的重要参数。只有足够的停留时间,才能保证良好的絮凝效果,获得较高的沉淀效率。因此,建议二沉池的水力停留时间设置在3~4h左右。

 二沉池水力表面负荷

对于一座沉淀池来说,当进水量一定时,它所能去除的颗粒的大小也是一定的。在所能去除的这些颗粒中,最小的那个颗粒的沉速正好等于这座沉淀池的水力表面负荷。因此,水力表面负荷越小,所能去除的颗粒就越多,沉淀效率就越高,出水悬浮物的指标就越低。设计二沉池较小的水力表面负荷,有利于污泥等悬浮固体的有效沉淀。一般建议二沉池的水力表面负荷控制在0.6~1.2m3/m2h。

 二沉池固体表面负荷

二沉池的固体表面负荷的大小,也是影响二沉池沉淀效果的重要因素。二沉池的固体表面负荷越小,污泥在二沉池的浓缩效果越好。反之,则污泥在二沉池的浓缩效果越差。过大的固体表面负荷会造成二沉池泥面过高,许多污泥絮体来不及沉淀就随污水流出,影响出水悬浮物指标。一般二沉池固体表面负荷最大不宜超过150kgMLSS/m2d。

(2)活性污泥质量

活性污泥质量的好坏是影响出水悬浮物是否超标的重要因素。高质量的活性污泥主要体现在四个方面:良好的吸附性能,较高的生物活性,良好的沉降性能以及良好的浓缩性能。

胶体状态的污染物首先必须被吸附到活性污泥絮体上,并进一步被吸附到细菌表面附近才能被分解代谢,因而吸附性能较差的活性污泥去除胶态污染物质的能力也差。活性污泥的生物活性系指污泥絮体内的微生物分解代谢有机污染物的能力,生物活性较差的活性污泥去除有机污染物的速度必然较慢。只有沉降性能良好的活性污泥才能在二沉池得以有效地泥水分离。反之,如果污泥沉降性能恶化,分离效果必然降低,导致二沉池出水浑浊,SS超标,严重时还可能导致活性污泥的大量流失,使系统内生物量不足,继而又影响对有机污染物的分解代谢效果。只有活性污 泥具有良好的浓缩性能,才能在二沉池得到较高的排泥浓度。反之,如果浓缩性能较差,排泥浓度降低,就要保证足够的回流污泥量,提高回流比。但是,提高回流比会缩短污水在曝气池的实际停留时间,导致曝气时间不足,影响处理效果。

(3)进水SS/BOD5

生物系统活性污泥中MLVSS比例与进水SS/BOD5有很大的关系,当进水SS/BOD5高时,生物系统活性污泥中MLVSS比例则低,反之则高。根据运行经验来看,当SS/BOD在1以下时,MLVSS比例可以维持在50%以上,当SS/BOD5在5以上时,VSS比例将会下降到20~30%。当活性污泥中MLVSS比例较低时,为了保证硝化效果系统就必须维持较高的泥龄,污泥老化情况较明显,导致出水SS超标。

(4)有毒物质

入流污水中含有强酸、强碱或重金属等有毒物质将会使活性污泥中毒,失去处理功效,严重的甚至发生污泥解体,造成污泥无法沉淀,出水悬浮物超标。解决活性污泥中毒问题的根本办法就是加强对上游污染源的管理。

(5)温度

温度对活性污泥工艺的影响是很广泛的。首先,温度会影响活性污泥中微生物的活性,冬季温度较低时,如不采取调控措施,处理效果会下降。其次,温度会影响二沉池的的分离功能。如温度的变化会使二沉池产生异重流,导致短流现象发生;温度降低时,会使活性污泥由于黏度增大而降低沉降性能等。

三、泥饼含水率

目前,对城市污水处理厂污泥考核的主要指标主要是泥饼含水率。

在我国,已经投入使用或在建的城市污水处理厂,普遍采用活性污泥法进行污水处理,活性污泥的污泥龄设计较短,且设计中基本不设污泥浓缩和污泥消化设施,使得剩余污泥量大,污泥中有机成分多,不易于脱水。因此,若要将泥饼含水率控制在80%以下,就需要加大PAM的投加量,从而使污水处理成本提高。

为保证污泥浓缩与脱水效果,在污泥脱水絮凝剂的配制方面,絮凝药剂的配制浓度应控制在0.1%~0.5%范围内。浓度太低则投加溶液量大,配药频率增多;浓度过高容易造成药剂粘度过高,可能导致搅拌不够均匀,螺杆泵输送药液时阻力增大,容易加快设备损耗和管路堵塞。另外,不同批次和不同型号的絮凝剂比重差别较大,需根据实际情况定期或不定期地标定药剂的配制浓度,适时调整药剂的用量,保证污泥脱水效果和减少药剂浪费。同时,干粉药剂在储存和使用过程中注意防潮防失效。

四、机电设备

若要使污水与污泥处理系统的正常稳定运行,保证与工艺配套机电设备的运行状况也是非常重要的。同时,机电设备的稳定高效运行,对污水处理厂节能降耗影 响很大。

(一)格栅机

格栅除污机是污水处理工艺的第一道工序,也是污水处理厂内最容易出现故障的设备之一。一旦出现故障,污水处理厂将不能够正常进水。

常见问题:

(1)格栅机卡阻:不管连续运行还是间歇运行,因为格栅机长时间与污水接触,容易造成轴承磨损,运行出现卡阻现象,造成链条或耙齿拉偏或其他机械故障。为此,需要加强格栅机相关机械部件的润滑保养,以及日常巡检要及时到位。

(2)格栅机堵塞:污水中常夹带一些长条状的纤维、塑料袋等易缠绕的杂物,容易造成栅条和耙齿等堵塞。这一方面会使过栅断面减少,造成过栅流速过大,拦污效率下降。另一方面也会造成栅渠过水速率缓慢、沙砾沉积、栅渠溢流等问题。一般只能进行技术改造完善或勤维护,采用人工清理的方式解决。

实际运行中即使格栅运行正常,但因细格栅的栅条间隙也有3mm,不能全部拦截如瓜子皮、辣椒核等薄形杂物,造成生化池等后续构筑物还会有一部分漂浮物。

(二)提升水泵

国内目前的城市污水处理厂,大多采用潜水泵提升污水。从实际运行中发现,潜水泵在使用过程中,由于污水中各种杂质与浮渣较多,这些杂质容易缠绕在水泵的叶轮和密封环的间隙里,引起机械密封效果和水泵效率降低,使污水进入到密封腔而产生故障,严重时将导致水泵电机过流损坏。针对该问题主要是加强格栅机的格渣效果,定期检查潜水泵的绝缘和密封、核算提升泵效率,定期轮换使用等。

因城市污水处理厂进水量一天24小时均有变化,以及配套污水收集系统完善程度的不同,使得不同时期污水处理厂进水量可能有较大变化,特别是合流制的排水系统,进水季节性变化的特征非常明显。因此,在潜水泵的选用和配置上,应留有较大的调节空间。通常可采样多台水泵抽排水量呈梯度配置,结合定速泵配合调速泵控制方式,其中定速泵按平均流量选择,满足基本流量需求。调速泵变速运转以适应流量的变化,流量波动较大时以增减运转台数作补充。

(三)鼓风机

鼓风机是城市污水处理工艺的关键设备,耗能最大。风量、风压、电耗、噪音等是选用鼓风机的基本技术参数,使用中需结合工艺运行的特点,注意其适用的范围和调节能力。

城市污水处理厂的生物反应池微孔曝气系统一般采用离心式鼓风机。离心风机具有效率高、使用年限长、壳体内不需要润滑、气体不会被油污染等优点,特别是在供风量、风压的适用范围、噪音控制以及运行的稳定等方面均较罗茨风机优越。罗茨风机一般适用于池深较浅,需要的风量和风压较小的情况。

在能耗控制上,可采用变频调节控制,设备配置方面,也可多台鼓风机风量呈 梯度配置,针对不同的工况,以增强工艺运行调节的灵活性,同时减少电耗。

油冷却器、油过滤器要定期清理,保证油质,需定期更换和送检,防止出现乳化现象。油冷却器有风冷和水冷两种方式:采用风冷注意定期清洁风冷却器的散热片,防止堵塞和积集尘垢;采用水冷需定期清理和维护冷却塔以及相应管路,注意保证循环冷却水的水质,可定期加入缓蚀阻垢药剂,防止细菌滋生、冷却器、管路结垢以及铜构件发生原电池反应腐蚀,影响冷却效果甚至污染油质。

过滤器要定期清洁或更换,保证进口负压在规定范围以内,减少因负压过高导致的鼓风机喘震故障的发生。

(四)曝气头

目前大部分的曝气方式采用的是微孔膜曝气,有盘式、球冠式、板式、管式等橡胶膜微孔曝气器类型。曝气器使用一段时间后,因微孔堵塞,阻力增大和橡胶老化、弹性变差等,导致充氧效率均会下降。为避免曝气器的堵塞或阻力增加过大,应定期进行曝气器的清洗。可采用甲酸清洗或大气量高压空气清洗。采用甲酸清洗要小心控制甲酸的浓度、清洗的频次、注意操作安全;采用大气量空气清洗要小心控制气量大小、强度和清洗的频次。另外,注意要定期打开曝气系统的排水阀门,排出冷凝水。对严重堵塞或破损的曝气头要及时更换,保证生物池曝气的均匀性,防止出现死角,堆积污泥。

(五)排泥设备

因为工艺的差别,有部分污水处理工艺不带二沉池,如SBR、UNITANK等,而且其池底是平的,容易在排泥时形成泥层漏斗。后期排出的混合液浓度降低,未能排出足量的污泥,导致剩余污泥浓度的下降,带来污泥处理能耗、药耗的上升。

对于这些工艺的运行,宜采用间歇排泥方式或改造成多点排泥的系统。此外,在有二沉池的生物处理系统,需要对二沉池刮吸泥机进行定期维护,保证排泥顺畅,防止积泥而影响出水SS等指标。

(六)脱水机

目前国内采用的机械脱水方式主要有离心脱水机和带式压滤脱水机。

1、离心脱水机

运行中应研究进离心脱水机的浓缩污泥含固率的要求范围,进料量(装机容量),最大产量,离心机差速、转速,不同类型聚丙烯酰胺(PAM)加注率、投加浓度对离心机脱水后的污泥含固率、分离水SS值和回收率的影响。

若要离心脱水机的污泥脱水处理达到理想的分离效果,可以从两方面来考虑:(1)转速差越大,污泥在离心机内停留时间越短,泥饼含水率就越高,分离水含固率就可能越大。反之,转速差越小,污泥在离心机内停留时间越长,固液分离越彻底,但必须防止污泥堵塞。利用转速差可以自动地进行调节,以补偿进料中变化的固体含量。(2)当污泥性质已经确定时,可以改变进料投配速率,减少投配量改善固液分离;增加絮凝剂加注率,可以加速固液分离速度,提高分离效果。

常见问题:

(1)开机报警或振动报警

离心脱水机开启时低差速报警引起主电机停机或者振动较大、声音异常,造成报警停机。上述情况为上次停机前冲洗不彻底所致,即冲洗不彻底会导致两种情况发生:一是离心机出泥端积泥多导致再次开启时转鼓和螺旋输送器之间的速差过低而报警;二是转鼓的内壁上存在不规则的残留固体导致转鼓转动不平衡而产生振动报警。

(2)轴温过高报警

这主要是由于润滑脂油管堵塞致润滑不充分、轴温过高。由于离心脱水机的润滑脂投加装置为半自动装置,相对人工投加系统油管细长,间隔周期长,投加1次润滑脂容易发生油管堵塞的现象。一旦发生,需要人工及时清理,其主要原理是较频繁地加油以保证细长油管的有效畅通。当然,润滑脂亦不能加注过多,否则亦会引起轴承温度升高。

(3)主机报警而停机

开启离心脱水机或运行过程中调节脱水机转速,主电机变频器调节过大或过快,容易造成加(减)速过电压现象,导致主电机报警。运行中发现,一般变频调节在2Hz左右比较安全。离心脱水机在冲洗状态下,尤其在高速冲洗时,也易造成加(减)速过电压现象,所以在高速冲洗时离心脱水机旁应有运行人员监护。

(4)离心脱水机不出泥

在离心脱水机正常运转的情况下,相关设备正常运转,但出现不出泥现象,滤液比较混浊,差速和扭矩也较高,无异响,无振动,高速和低速冲洗时扭距左右变化不大,亦出现过扭距忽高忽低的现象,再启动时困难,无差速。

这种情况多发生在雨季,由于来水量大,对生物池的污泥负荷冲击大,导致剩余污泥松散、污泥颗粒小。而污泥颗粒越小,比表面积越大(呈指数规律增大),则其拥有更高的水合强度和对脱水过滤更大的阻力,污泥的絮凝效果差且不易脱水。此时,如不及时进行工艺调整,则离心脱水机可能会出现扭矩力不从心的现象(过高),恒扭矩控制模式下差速会进行跟踪。一旦差速过大,很容易导致污泥在脱水机内停留时间短、固环层薄;另一方面,转速差越大,由于转鼓与螺旋之间的相对运动增大,对液环层的扰动程度必然增大,固环层内部分被分离出来的污泥会重新返至液环层,并有可能随分离液流失。这种情况下会产生脱水机不出泥的现象。

在进泥浓度较低且污泥松散的情况下,采用高转速、低差速和低进泥量运行能够有效解决不出泥的问题,并且运行效果也不错。高转速是为了增加分离因数,一般来说污泥颗粒越小密度越低,需要的分离因数较高,反之需要较低的分离因数; 采用低差速可以延长污泥在脱水机内停留时间,污泥絮凝效果增强的同时在转鼓内接受离心分离的时间将延长,同时由于转鼓和螺旋之间的相对运行减少,对液环层的扰动也减轻,因此固体回收率和泥饼含固率均将提高;低进泥量亦增加固体回收率和泥饼含固率。

2、带式压滤脱水机

带式压滤脱水机是由上下两条紧张的滤带夹带着淤泥层,从一连串规律排列的辊压筒中呈S形弯曲经过,靠滤带本身的张力形成对污泥层的压榨和剪切力,把污泥层的毛细水挤压出来,获得含固率较大的泥饼。

为保持带式压滤脱水机的正常运行,需注意以下操作与维护事项:(1)对有预脱水区(浓缩区)的,保证布泥均匀;

(2)滤带刮刀采用软性材质,减少对滤带和滤带接口处的磨损;

(3)保证滤带冲洗水压力,滤带冲洗系统尽量采用不锈钢自净喷嘴,能够自行冲掉堵塞在喷嘴的脏物,保证滤带的孔隙率和污泥脱水效果;

(4)经常维护自动防偏带装置与增减压装置,减少滤带边沿磨损;(5)保证自控系统设有连锁保护装置,防止误动作给整机造成的损伤。常见问题:(1)滤带打滑

这主要是进泥超负荷,应降低进泥量;滤带张力太小,应增加张力;辊压筒损坏,应及时修复或更换。

(2)滤带跑偏

这主要是进泥不均匀,在滤带上摊布不均匀,应调整进泥口或更换平泥装置;辊压筒局部损坏或过度磨损,应予以检查更换;辊压筒之间相对位置不平衡,应检查调整;纠偏装置不灵敏。应检查修复。

(3)滤带堵塞严重

这主要是每次冲洗不彻底,应增加冲洗时间或冲洗水压力;滤带张力太大,应适当减小张力;加药过量,即PAM加药过量,粘度增加,常堵塞滤布,另外未充分溶解的PAM也易堵塞滤带;进泥中含砂量太大,也易堵塞滤布,应加强污水预处理系统的运行控制。

(4)泥饼含固量下降

这主要是加药量不足、配药浓度不合适或加药点位置不合理,达不到最好的絮凝效果;带速太大,泥饼变薄,导致含固量下降,应及时地降低带速,一般应保证泥饼厚度为5~10mm;滤带张力太小,不能保证足够的压榨力和剪切力,使含固量降低。应适当增大张力;滤带堵塞,不能将水分滤出,使含固量降低,应停止运行,冲洗滤带。

(七)紫外消毒系统 目前国内城市污水处理厂普遍采用紫外线消毒方式对污水处理厂的出水进行消毒。但从实际运营上发现紫外线消毒存在以下问题:

(1)紫外线消毒系统无后续杀毒能力。当处理水离开反应器之后,一些被紫外线杀伤的微生物在光复活机制下会修复损伤的DNA分子,使细菌再生。

(2)紫外灯石英套管污染。当污水流经UV消毒器时,其中有许多无机杂质会沉淀、粘附在套管外壁上。尤其当污水中有机物含量较高时更容易形成污垢膜,而且微生物容易生长形成生物膜,这些都会抑制紫外线的透射,影响消毒效果。

为此,选择污水处理紫外消毒设备时应注意的问题主要有:(1)灯管的选择

灯管的选择应注意两个方面:一是单支灯管的UVC输出强度,该值越高则所需要的灯管数量越少,投资和运行维护费用也就越低。一般说来,高强度汞灯的输出强度高,优于低强度汞灯。二是UVC电光转换效率,它包括灯管消耗的电能转换为光能的效率和光能中253.7nm波长(UVC)部分所占的比例。低压汞灯的紫外输出主要集中在253.7nm,而中压汞灯的紫外输出主要集中在366nm,且中压汞灯的发热量很大,因此低压高强度汞灯的电光转换效率高于中压高强度汞灯。

(2)传感器及实时调节系统的选择

污水处理厂的水量、水质波动较大,因此进行UVC输出强度的实时调节对节约电耗和延长灯管寿命意义重大,这主要通过灯管的可变输出和传感器的真实反馈来实现。就传感器进行真实反馈而言,其位置和波长的选择性极为重要,能真实反映微生物实际接受的UVC照射强度的传感器应是放置在水中的(与微生物处于同一位置),并且只监测253.7nm波长强度。

(3)自动清洗系统的选择

污水处理厂紫外消毒系统的清洗有人工清洗、自动机械清洗和自动化学清洗三种,由于人工清洗要中断消毒且工作量大,操作时易损伤灯管,间隔时间长(自动清洗一般1~2次/h),故无法保证石英套管所必需的最低综合透光率,因此除极个别特殊情况外极少使用。自动清洗系统的选择与所使用的灯管有关,中压高强度灯管的温度在600~900℃,结垢严重,必须采用化学清洗;低压高强度灯管的温度低于110℃,结垢量和速度都远远低于中压高强度灯管,因而可采用机械清洗,且在1~2次/h的清洗频率内就不会结垢。

(4)二次污染及事故污染

正常运行时的二次污染来自化学清洗系统中的清洗剂,事故情况下的二次污染发生在灯管破损时汞进入水中,以及液压驱动的自动清洗系统发生泄漏。汞灯使用固态汞合金(固定粘附在灯管两端的突起点),当灯管破损时不会像液态汞那样流到水中,只需将粘附着汞合金的石英碎片打捞出来即可。研究表明,该汞合金在污水中长期浸泡后水中汞的本底浓度未见升高。此外,该系统采用压缩空气为动力的 自动机械清洗系统,不存在运行期间和事故泄漏造成二次污染的问题。

五、检测仪表

城市污水处理厂的在线监控仪表是运营管理人员掌握污水处理工艺实时动态的重要途径,也是实现污水处理厂自动化控制的重要保障。然而,因为仪表监测的污水中杂质多,环境差,经常容易导致在线仪表测量产生误差较大,或者损坏率高,极大地影响了污水处理厂在线监控的力度和自动化控制水平。

由于污水处理厂进水中污染物浓度较高、悬浮物较多,容易在采样管道和分析仪器的进样管形成污垢,因此需要针对性配置水样预处理单元和选择水质浓度相匹配的分析仪器量程。在选用设备时,一些自带控制系统的大型设备配置的自控系统与厂内主要控制系统选型要一致,否则设备不易与厂内整个自控系统建立通讯,或建立通讯时需要投入较大的成本。另外,在运行过程中应建立一套详细的维护与操作规程,如维护工作一定要提前计划和准备相应的备品配件;定期对分析仪器进行标定和校正,清洗管道和预处理单元,以及更换消耗件和易损件;加强在线监测系统的日常管理等。

由于城市污水处理厂特殊的构筑物设计及大量地处理污水,污水处理厂发生雷击现象普遍比较严重,对室外设备安全运行构成较大的威胁。目前污水处理厂的设计多只做了高压端的一级防雷,而忽视了对现场设备和仪表的二、三级防雷,这就导致许多污水处理厂经常出现被雷击而使现场设备和仪表的损坏。如果为了控制工程造价而缺少这些设施,那么在今后的运行管理工作中将付出更大的代价。

六、几种具体工艺

以上主要是针对不同处理工艺共性存在的出水水质与污泥考核指标超标问题,以及节能降耗措施等进行分析。下面就几种具体工艺常存在的问题归纳:

(一)沉砂池

常见的沉砂池有平流沉砂池、曝气沉砂池和涡流沉砂池,排砂方式有重力排砂、气提式和泵吸式。

沉砂池普遍存在的问题是沉砂效果差、淤积、堵塞。对此针对不同型式沉砂池,可分别采用不同的应对措施。

(1)平流沉砂池

刮泥机需及时开启和排砂,有移动桥的需保证限位装置灵敏有效,避免发生“走过”现象而损坏设备,同时加强巡检避免出现走轮磨损严重造成停运而拉断电缆现象。

(2)曝气沉砂池

定期调整曝气量冲刷,避免堵塞穿孔管或曝气头,微孔膜曝气头可采用甲酸清洗的方式维护。

(3)涡流沉砂池

因是圆形而需保证切线方向进水、切线方向出水,水流一般在池内旋转两圈。另外,可根据实际运行工况制定排砂泵的运行周期,及时排除集砂区的沉砂,避免淤积和管路堵塞。与沉砂池的维护相对应,砂水分离器、吸砂泵、空压机等也需定期清理维护,避免管路堵塞,降低分离效果。

(二)氧化沟

氧化沟既有推流式反应器的特征,又有完全混合反应器的特征。正是由于氧化沟流态上的特殊性,所以氧化沟的曝气设备除具有良好的充氧、混合功能外,还要推动沟中混合液循环流动。曝气设备的这种特点容易造成氧化沟底部出现积泥问题,而积泥会缩小氧化沟的有效容积,也就相当于缩短了实际停留时间。

氧化沟中的水流速度一般应控制在0.3m/s左右,而氧化沟中积泥的原因通常主要是池底的流速<0.3m/s造成的。例如某厂由于进水BOD5偏低,若要保证池底流速达到0.3m/s,则需要较多的转刷投入运行。但这样会使氧化沟内溶解氧相对偏高,而曝气过量不利于活性污泥的生长,进而影响出水达标。由于工艺控制主要根据溶解氧的高低,不断调整转刷的运转台数和时间来控制适量的溶解氧,这样就存在大部分转刷停运时间段内水流速度降低,导致氧化沟池底的流速<0.3m/s,积泥现象严重。另外,实际进水SS高于设计值也会使得氧化沟的产泥量增加,从而导致氧化沟内积泥。

对于这种情况,通常是在氧化沟内增加潜水推流器来改善沟内水力条件,保证氧化沟池底流速>0.3m/s。这样既可解决氧化沟的积泥问题,又能使氧化沟内活性污泥的均匀混合,有利于活性污泥的生长,方便工艺的灵活调整。

(三)UNITANK池

UNITANK工艺运行较为灵活,处理效果比较稳定,工程投资和运行费用低于A2/O工艺,与除磷A/O工艺相当,而其最大优点是节省占地。但在运行中UNITANK池也存在一些问题需要优化:

(1)边池作为沉淀池增加斜板问题

在运行过程中,反应池内的污泥沉积在斜板上容易形成堵塞,会影响沉淀效果和氧利用效率,同时斜板的存在影响了池内气、水、活性污泥的混合效果。而且现有斜板密度较大,污泥易于沉积,从而增加了支架的承重要求。为此,需要选用轻巧、表面粗糙度适当的斜板产品,并研究调整安装角度、间距、长度等参数,在保证沉淀效果的情况下,减少堵塞,减轻池体的承载力。

(2)曝气头堵塞问题

由于边池交替作为沉淀池使用,污泥沉降于池底,容易造成曝气头堵塞,影响曝气效果。为此,可选用可自动闭合的曝气头,在不曝气的情况下闭合气孔,减少堵塞。

(3)搅拌器受到曝气头的不利影响

由于整个池布满曝气头,曝气时会降低搅拌器的混合效果并对搅拌器产生不利影响。通过在保证曝气需要的情况下,对曝气头的布置进行调整,例如在搅拌器附近不安装曝气头以减少对搅拌器的不利影响。

(四)二沉池

城市污水处理厂二沉池对出水水质非常重要,一般要注意防止二沉池配水不均匀、短流、污泥上浮等问题,其中污泥上浮的原因主要有:

(1)污泥膨胀

正常的活性污泥沉降性能良好,含水率一般在99%左右。当活性污泥变质时,污泥含水率上升,体积膨胀,不易沉淀,二沉池澄清液减少,此即污泥膨胀。污泥膨胀主要是由于大量丝状细菌(特别是球衣细菌)在污泥内繁殖,使泥块松散,密度降低所致;也有由真菌的大量繁殖引起的污泥膨胀。

(2)污泥脱氮上浮

当曝气时间较长或曝气量较大时,在曝气池中将会发生高度硝化作用而使混合液中含有较多的硝酸盐(尤其当进水中含有较多的氮化物时),此时,二沉池可能发生反硝化而使污泥上浮。

(3)污泥腐化

若曝气量过小,污水在二沉池的停留时间较长或二沉池排泥不畅,二沉池可能由于缺氧而腐化,即污泥发生厌氧分解,产生大量气体,最终使污泥上升。此外,除上述操作管理方面的原因外,构筑物设计不合理也会引起污泥上浮。如对曝气和沉淀合建的构筑物,往往会有以下两点原因会导致污泥上浮:一是污泥回流缝太大,沉淀区液体受曝气区搅拌的影响,产生波动,同时大量微气泡从回流缝窜出,携带污泥上升。二是导流室断面太小,气水分离效果较差,影响污泥沉淀。

(五)污泥消化

污泥厌氧消化是利用兼性菌和厌氧菌进行厌氧生物反应,分解污泥中有机物质的一种污泥处理工艺。厌氧消化是使污泥实现“四化”的主要环节,其中随着污泥被稳定化,将产生大量高热值的沼气,作为能源利用,使污泥实现资源化。

某城市污水处理厂处理能力为30万m3/d,其污泥处理系统设置污泥消化池和沼气发电机。消化池稳定后的产气量为4800~6000m3/d,相当于投入消化池每m3污泥的产气量约4.5~6m3。稳定后污泥中有机物含量约40%,沼气中甲烷约65%,二氧化碳约26%。产生沼气供沼气发电机运转,月均发电25万kWh,相当于污水处理厂平均用电量的27%。沼气发电机产生的废热用于加热消化池中的污泥,并还有剩余。此外,消化对脱水前及脱水后的污泥都有明显的减量,从而减少了脱水消耗的絮凝剂及耗电量。

对于污泥消化系统的运行,除了消化池、沼气贮柜、沼气利用等区域注意防爆安全外,还存在以下几点值得注意的问题:

(1)脱硫 由于沼气中H2S浓度太高(最高约为6000mg/L),采用的干式脱硫塔容易出现超温(>60℃)。因此,在运行管理中应加强脱硫塔填料的翻新及补充。另外,在消化池进料中投加铁盐也可降低沼气中H2S的含量,但会增加运行成本。

(2)管道堵塞

运行中发现,从消化池出泥管到后浓缩池、从后浓缩池到脱水机前的贮泥池,以及离心脱水机上清液输送管道都容易被堵塞。其原因是由于磷酸铵镁(MAP)的形成。在厌氧消化中,有机物得到分解,并释放出PO3-4NH+4。由于该厂位于属于沿海地区,地下水位较高,管网易受海水潮位等因素的影响,不可避免地有一定量的海水渗入下水道,从而增加了污水中Mg2+的浓度。消化池排放污泥在接触大气后,会释放一定的CO2,使污泥中的pH值呈弱碱性,更有利于MAP的形成。经验表明,此物质易在垂直下降的管道上、管道的弯头处及不光滑的管壁上形成,因而这部分管道宜采用PE、PEHD及不锈钢管材。发生堵塞的管道可采用机械法疏通(如管道疏通车)。

(3)沼气发电机组的操作和维护

沼气发电机组特别是并网控制系统是进口的先进设备,在国内应用较少,污水处理厂维护人员需积累经验才能进行独立的有效维护。

机组采用的是并入厂内低压电网运行的工作方式。但由于厂内电网容量小,机组的工作较易受到厂内电网参数波动的影响而报警停机,需专人值班操作。

第五篇:污水处理厂运行成本

对于污水厂而言,无论采用何种工艺运行方式,其主要成本为能源消耗、药剂消耗、维修费用、大修改造费用、人员费用等。如何根据具体情况建立成本的有效控制方式,使各种消耗实现最小化,并有利于企业的可持续发展,是城市污水处理这个新兴产业面临的迫切要求。

成本组成及分析(不含折旧)

城市污水厂根据地理位置、源水水质、投资规模等实际情况,采用不同的处理工艺。有传统活性污泥法、氧化沟法、A/O法、A/A/O法、SBR法等工艺。不同的处理工艺决定不同的成本,对于城市大型污水厂而言,多数采用传统活性污泥法。本文仅以工艺采用活性污泥法,出水到达二级排放标准,水、泥、气均正常运行的污水厂为例进行成本分析。

1.污水厂成本组成

①生产成本组成:能源费用:电费、水费;材料费用:煤、油、药剂;人工费用。②制造成本组成:修理费:土建、设备、自控仪表维护检修费;大修及改造费:设施、设备、仪表大修费、固定资产购置费;污泥处置费;物料消耗等其它费用。③管理费用:办公费、培训费、保险等。2.简单分析及控制重点①简单分析:生产成本中油耗、电耗、药剂消耗是生产过程中必须发生的费用,必须在有效控制的前提下,其所占比例越高,企业生产越正常,产生的效益就越大;制造成本在企业可持续发展的基础上,应尽量减少维修、大修和固定资产投入等费用,能使企业的利润最大化;煤费、水费、管理费等是企业运行成本的组成部分,应加以控制、尽量减少,增加企业的利润。

②控制重点:首先,控制重点应放在生产成本中的能源消耗、药剂消费的控制上,如何建立班组、部门有效控制方式,使其在满足工艺运行要求条件下的合理化、最小化,真正达到经济运行是企业的关键;其次,控制重点应放在制造成本中维修、固定资产的购置费用的控制上,如何建立班组、部门有效控制方式,使其必须满足污水厂自身正常运行和长期正常运行要求条件下的减量化、合理化,使污水厂可持续发展也是企业的关键;再次,应加强煤费、水费、管理费等费用支出,使其尽量减少也比较重要。班组成本控制

污水厂消耗的主要成本都集中在一线班组。污水厂班组管理水平的高低可以体现企业的管理水平,班组成本控制的好坏直接影响污水厂吨成本的高低。

1.班组运行参数控制

对于污水处理厂工艺运行参数很多,包括进水量、出泥量、BOD、COD、SS、排泥量、气水比、回流比、污泥浓度、水压、泥温、含水率、投药量、PH值、发电量等一系列指标。在工艺运行参数控制方面,班组人员应达到以下要求:

①了解全厂工艺流程及运行现状;②熟悉掌握管辖范围内的各种构筑物及设施的工艺性能、工艺流程的技术参数及指标,以及工艺的安全性能(通过技能培训);③具备调整管辖范围内的工艺参数的能力(培训);④定期巡视、检查各种构筑物、工艺设施的工艺处理效果并作好记录;⑤掌握通过现场仪表及中控室数据调整实际工艺参数的方法和技巧,并及时进行调整;⑥对于不能解决的工艺问题,应及时向上级部门汇报并作好记录;⑦班组长应定期组织人员分析班组工艺运行情况,解决经常出现的问题,提高工艺参数控制水平。

2.班组能源、药剂费用控制 ①根据污水厂下达的各项工艺参数控制指标及任务量确定本组各种设备的能耗指标、药剂指标,将指标下达到每个人、每台机组,逐渐达到单机运行成本核算;②班组长应定期组织人员分析各种设备的能耗指标及存在的问题,并商讨如何解决和改进;③班组必须建立所管范围内设备、设施详细的技术参数资料和能耗资料,并妥善保管;④班组长应根据厂里要求对职工加强成本意识教育和责任意识教育,并根据实际情况向部门汇报每人的执行情况和应采取的奖惩意见;⑤班组应积极维护、保养计量装置,对计量仪表做到定时巡视、记录,定期保养、维护,定量进行分析,并能向主管部门提出使其更加完善的建议

⑥班组应建立自身培训、交流制度,对一些经常出现的问题进行内部交流,也可请厂内技术人员进行针对性的培训,提高解决问题的能力;⑦班组人员应积极参与所管范围内节能降耗的工作,利用自身一线班组优势,探讨———摸索———实践,总结其运行过程中的低能耗控制点,并向主管部门汇报和建议。

3.班组维护、检修成本控制

①班组必须将所管范围内的设备、设施分解到人、责任到人,建立设备、设施责任制,并建立完善的基础资料管理工作;②班组必须严格执行设备、设施养护制度和养护标准,并接受班组自查和部门检查;③班组人员必须提高自身动手能力、小修、检修能力,对一些经常出现的小修问题应能正确解决,减少维修费用;④班组人员必须建立所管设备、设施的维修保养档案,对厂里安排的大、中修项目实行汇签制,分别由主管部门、班组长、具体负责人对其质量和工作量进行签字确认,分清责任,控制大、中修效果;⑤班组长应定期组织人员分析所管范围内设备、设施的运行情况,使其达到经济运行效果,提高设备设施的维护、保养及检修水平;⑥班组内部应建立自身考核机制,完善设备、设施责任制,对一些责任事故进行分析,并向主管部门提出奖惩意见;⑦班组内部应加强培训和交流,对一些经常出现而无法自行解决的问题提出解决方案,并向主管部门汇报;部门成本控制

部门是执行全厂综合管理的组成部门,也是完成各项任务的执行机构。只有加强基础性工作,完善各项企业制度,加强相互监督的促进机制,才能逐步实现全面、有效的成本核算。

1.生产成本控制

①能源消耗控制:结合污水厂工艺运行参数,计算出合理的运行参数指标;根据污水厂运行实际情况,摸索出实际参数控制指标;可采用组织技术人员研究能耗最低化课题→建立一整套完善的基础性资料→指导班组运行生产,下达生产任务指标和能耗控制指标→发现问题,循环往复,提高能耗控制水平;根据实际情况加大人员培训、指导及检查、监督力度;完善计量工作:包括煤、水、电、油各种消耗量及空气量、污水量、回流量、投泥量、沼气量等工艺参数;确定污水厂能耗大户,进行有针对性的研究,如鼓风机、压缩机、回流泵等。建立主要机组能耗控制方案,确定其运行参数和方式等;创新与科研:寻找其不同运行方式、控制方式的可行性,如有些机组能否间断运行、循环运行,设备控制方式能否通过技改技革达到节能目的等。

②药剂费用控制:污水厂药剂费主要用于污泥脱水,其它班组用量很小。完善计量工作:包括污泥浓度、溶药浓度、泥泵流量、药泵流量、投药比、水量等计量工作;在满足脱水泥饼含水率要求的前提下,尽量减少投药量。在计量准确的基础上,根据污泥浓度下投药量指标,培训、指导班组如何控制好投药的比例,采用下限投药,减少药剂费;随时减少脱水机本机的运行效果,控制好其性能参数如液压力、上下涨力等,使其达到较好的运行状态,也可减少投药量;创新与科研:试验新型药剂,在满足脱水要求下,单价低或用量小,只要总体成本能够降低即可;控制药的质量、价格。

③人员费用控制2.制造成本控制:①建立设备、设施管理工作平台:按设备、设施的类别、类型及特点,建立设备、设施台账、卡片;建立维护、修理、更新改造直至报废的全过程综合管理基础资料;建立综合设备、设施资产档案等,能使污水厂更方便地进行资产统计、价值评估、维修预测、设备设施更新改造等工作;制定设备、设施的点检、完好检查、性能检查、状态监测、维修、保养等工作的标准制定,为生产计划的制定提供依据;建立设备、设施定期检测技术参数指标库,通过对检测记录的处理分析,掌握主要设备、设施的技术参数状态,实现从故障维修向预防性维修的过渡;建立维修项目技术标准(经验)数据库,使维修任务与人员费用、材料费用任务进度;自修或委补综合平衡,实现维修费用可控的、合理的、有技术保证的、费用最低的管理;建立故障维修、定期维修、预防维修、可靠性维修、状态维修相结合的综合维修体系,使企业由被动维修向状态维修过渡;制定设备、设施维修的任务管理体制,实行维修申请单、实施后的工程量清单、维修质量验收单等制度,进行汇签并作为资料存档备案;建立全面的设备、设施管理经济技术分析体系,实现从宏观到局部的数据分析、统计,生成不同部门、不同类别的设备、设施的费用维修成本核算表,为维修成本控制提供经济管理支持。

②维修、检修、小修费用控制:建立维修申请制度:填写各种原因的维修申请工作单,包括故障维修申请单、定期计划维修申请单、技改申请单、待修申请单等;确定维修任务计划:根据运行时间、故障原因、检验检测记录、状态记录等确定是否应该进行维修、维修方式(自修或委外)、维修标准及估算维修工作量;维修实施过程:下达维修任务单,记录维修项目的材料、人力、时间、资金等消耗,并监督维修过程中的质量、进度情况;维修质量验收:根据修前状态、修后状态、维修标准等进行维修的综合评定,并实行整体验收单汇签制度;维修费用审定:根据维修过程中的材料消耗、配件消耗、人力消耗、技术含量等进行预、决算的审定,并实行工作量清单及预、决算的签定制,以利于降低维修费用;维修统计分析:对维修计划与实施的情况进行综合分析,并对维修效果与费用进行综合比较,确定以后维修工作应注意的事项,从而减少维修费用。

③大修及改造费用控制:大修及改造项目的确定:根据设备、设施基础管理工作平台确定大修及改造项目、维修级别及初步的预算等;大修及改造项目方案确定:应对大修及改造费用的可行性、技术含量的完整性、维修质量的可靠性、经济价值的可比性等方面进行综合评价,确定施工方案(性价比);施工单位的确定:根据施工单位的资质类别、信誉度、方案、质量、技术安全要求、工程造价及实际维修能力等综合确定施工单位、生产厂家、总价超过规定值时采用投标确定;施工标准及质量控制:根据实际需要确定施工(维修)质量标准;施工质量验收:在施工过程中,管理人员应对工程的分布、分项进行验收;在施工收尾阶段应对工程进行整体验收并进行试运转试验,对大修及改造工程作到综合验收;施工总造价的控制:根据施工过程中的材料消耗、配件消耗、人力消耗、技术含量等签订施工合同,进行预、决算的审定,并实行工作量清单及预、决算的签定制,以利于降低大修改造费用;施工汇总分析:在工程验收过程中,施工单位应提供与施工相关的技术燃料和改造的设计方案和竣工资料;管理人员根据这些资料作出包括大修改造效果的汇总分析,并分析出资金使用的合理性。

④油料、消耗等其它费用控制:(在成本组成中只占极小比例,略)3.管理及其它费用:(在成本组成中只占极小比例,略

我国东部某污水处理厂运营成本分析(5篇范文)
TOP