第一篇:关于核裂变(核电站)与环境污染的报告
《关于核裂变(核电站)与环境污染的报告》
一个假期已经结束了,在中恒学校领导与指导老师的大力支持与本组成员积极努力的探索下,本组课题已取得了成果,下面对本组成员研究成果进行总结。
一 ·选题背景
现代社会,核能作为一种新能源越来越受到人们的关注,对它充满了好奇,为什么它能有如此大的能量。但与此同时,核污染也逐渐受到人们的重视。鉴于此,我组决定对核裂变(核电站)及环境污染进行学习探究。
二 ·总体介绍
我组研究的课题是核裂变(核电站)与环境污染,在这一个假期中,我组成员各司其职,互相配合,对该课题进行了深入探究。分别从核裂变及其原理,核电站的结构,核电站的隐患,核辐射,核污染对环境影响,生活中的辐射等方面入手,进行探究。在了解其基本原理以及核污染对环境的影响后,纷纷提出自己的意见建议。
在放假期间我组成员进行了多方探究,有的请教老师,有的查资料,有的去采访。然后在组内进行交流讨论,发掘其中有价值的资料并加以利用。为了本次研究,我组建立了一个QQ群,便于组内交流。
在多方努力下,课题研究终于顺利完成了。
三 ·研究成果 1 核裂变及其原理
核裂变又称核分裂,是一个原子核分裂成几个原子核的变化。当然,并不是所有的原子核都可以分裂,只有一些质量大的原子核,像铀,钍等才能发生裂变。在具备这一个条件后,还不能保证原子核可以分裂,需要吸收一个中子,吸收一个中子后会分裂成两个或更多个质量较小的原子核,同时放出两个到三个中子,并放出很大的能量,而放出的中子和能量又能使别的原子核发生核裂变······,使这个过程持续进行下去,这种过程叫链式反应。我们经常说原子能,但也许并不知其含义,其实原子能就是上面所说原子核裂变是释放的巨大能量。那么原子能能量到底有多大呢?举个例子吧,一吨铀----235的核的裂变将产生20000兆瓦小时的能量,足以让20兆瓦的发电站运转1000小时,与燃烧300万吨煤释放的能量一样多。
铀裂变在核电厂最常见,核裂变的分裂方式可分为自发裂变和感生裂变。自发裂变是没有外部作用时的裂变,类似于放射性衰变,是重核不稳定性的一种表现;感生裂变是在外来粒子(最常见的是中子)轰击下产生的裂变。
核裂变是在1938年发现的,由于当时第二次世界大战的需要,核裂变被首先用于制造威力巨大的原子
武器——原子弹。原子弹的巨大威力就是来自核裂变产生的巨大能量。目前,人们除了将核裂变用于制造原子弹外,更努力研究利用核裂变产生的巨大能量为人类造福,让核裂变始终在人们的控制下进行,核电站就是这样的装置。
裂变释放能量是因为原子核中质量-能量的储存方式以铁及相关元素(见核合成)的核的形态最为有效。从最重的元素一直到铁,能量储存效率基本上是连续变化的,所以,重核能够分裂为较轻核(到铁为止)的任何过程在能量关系上都是有利的。如果较重元素的核能够分裂并形成较轻的核,就会有能量释放出来。然而,很多这类重元素的核一旦在恒星内部形成,即使在形成时要求输入能量(取自超新星爆发),它们却是很稳定的。不稳定的重核,比如铀-235的核,可以自发裂变。快速运动的中子撞击不稳定核时,也能触发裂变。由于裂变本身释放分裂的核内中子,所以如果将足够数量的放射性物质(如铀-235)堆在一起,那么一个核的自发裂变将触发近旁两个或更多核的裂变,其中每一个至少又触发另外两个核的裂变,依此类推而发生所谓的链式反应。这就是称之为原子弹(实际上是核弹)和用于发电的核反应堆(通过受控的缓慢方式)的能量释放过程。
核反应堆有多种类型,按引起裂变的中子能量可分为:热中子堆和快中子堆。热中子的能量在0.1eV(电子伏特)左右,快中子能量平均在2eV左右。目前大量运行的是热中子堆,其中需要有慢化剂,通过它的原子与中子碰撞,将快中子慢化为热中子。慢化剂目前用的是水、重水或石墨。根据慢化剂和冷却剂和燃料不同,热中子堆可分为轻水堆(用轻水作慢化剂和冷却剂稍加浓铀作燃料)、重水堆(用重水作慢化剂和冷却剂稍加浓铀作燃料)和石墨水冷堆(石墨慢化,轻水冷却,稍加浓铀),轻水堆又分压水堆和沸水堆。核燃料循环
核燃料循环(nuclear fuel cycle),为核动力反应堆供应燃料和其后的所有处理和处置过程的各个阶段。它包括铀的采矿,加工提纯,化学转化,同位素浓缩,燃料元件制造,元件在反应堆中使用,核燃料后处理,废物处理和处置等。核燃料循环有3种主要型式:①一次通过。使用过的燃料元件不进行后处理,而直接作为废物加以处置。②热中子堆中再循环。使用过的燃料元件经后处理回收其中未用完的铀和新产生的钚,返回重新制造元件,循环使用。③快中子增殖堆中再循环。快中子增殖堆燃料由钚和贫化铀构成。使用过后,经后处理回收其中铀和钚,返回循环使用。在这种反应堆中由铀238吸收中子生成的钚比由于裂变而消耗掉的钚还要多,因此可以实现核燃料(钚)的增殖。
核燃料循环以反应堆为中心,划分为堆前部分(前段)和堆后部分(后段)。前段指核燃料在入堆前的制备,包括铀矿的开采、铀矿石的加工精制(即前处理)、铀的转化、铀的浓缩和燃料元件制造等过程。后段指从反应堆卸出的乏燃料的处理,包括乏燃料的中间储存,乏燃料中铀、钚和裂变产物的分离(即核燃料后处理),以及放射性废物处理和放射性废物最终处置等过程。核电站
(1)核电站的结构
核电站是怎样发电的呢?简而言之,它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。蒸汽通过管路进入汽轮机,推动汽轮发电机发电。一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。
核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。它们在核电站中有各自的特殊功能。
主泵 如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。
稳压器 又称压力平衡器,是用来控制反应堆系统压力变化的设备。在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。
蒸汽发生器 它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。
安全壳 用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。安全壳一般是内衬钢板的预应力混凝土厚壁容器。
汽轮发电机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力低,汽轮发电机体积比常规火电站的大。
危急冷却系统 为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。它是由注射系统和安全壳喷淋系统组成。一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。便可缓解事故后果,限制事故蔓延。(2)世界核电站发展趋势 提高安全性、改善经济性成为核电技术发展的主要趋向。延长在役核电站的寿期已是世界各国都实际采取的行动。单机容量继续向大型化方向发展。采用非能动安全系统、简化系统、减少设备来提高安全性。为便于堆内安全系统的设置和安排一般采用两个或四个的偶数环路。仪表控制系统(I&C)的数字化和施工建设的模块化。
发展快中子堆技术,建立闭式核燃料循环,使核电能可持续发展。模块化高温气冷堆受到关注。核辐射与核污染
(1)核辐射
核辐射,或通常称之为放射性,存在于所有的物质之中,这是亿万年来存在的客观事实,是正常现象。核辐射是原子核从一种结构或一种能量状态转变为另一种结构或另一种能量状态过程中所释放出来的微观粒子流。核辐射可以使物质引起电离或激发,故称为电离辐射。电离辐射又分直接致电离辐射和间接致电离辐射。直接致电离辐射包括质子等带电粒子。间接致电离辐射包括光子、中子等不带电粒子。放射性物质以波或微粒形式发射出的一种能量就叫核辐射,核
爆炸和核事故都有核辐射核辐射主要是α、β、γ三种射线。α射线是氦核,只要用一张纸就能挡住,但吸入体内危害大。β射线是电子流,照射皮肤后烧伤明显。这两种射线由于穿透力小,影响距离比较近只要辐射源不进入体内,影响不会太大。γ射线的穿透力很强,是一种波长很短的电磁波。(2)核辐射对生物体作用机制
辐射对生物系统的原初作用,主要指对各种生物大分子(核酸、蛋白质、酶和酯)的直接作用和间接作用。生物分子直接吸收辐射能而被电离和激发,进而发生结构的变化,叫做直接作用。辐射能被生物分子周围的水分子吸收并引起水的分解,产生羟自由基、水合电子和氢原子(H)等反应性很高的自由基。它们通过扩散与生物分子发生化学反应并引起后者结构的改变;这种作用叫做间接作用。直接作用和间接作用的相对比例,取决于辐射能量损失的空间分布和生物系统的化学成分,也和生物系统的空间结构有关。(3)核污染对环境的影响
主要指核物质泄露后的遗留物对环境的破坏,包括核辐射、原子尘埃等本身引起的污染,还有这些物质对环境的污染后带来的次生污染,比如被核物质污染的水源对人畜的伤害。
起因:有核武器实验、使用,核电站泄露,工业或医疗上使用的核物质丢失等。
危害: 有核武器实验、使用,核电站泄露,工业或医疗上使用的核物质丢失等。
放射性物质不仅沉降在爆炸点附近,还能飘落到非常遥远的地方,而且它对环境的辐射污染时间相当长,几千年甚至上万年都不会消失。核子武器爆炸后 通常是以三种杀伤为主:光辐射、冲击波、核辐射。核子武器爆炸瞬间发出的强光会使眼睛出现暴盲、失明。
防治: 1。严格控制能引起核污染的原料生产加工使用。2。通过立法限制核的使用和核原料的买卖,交易。3。使用核能源要确定他的安全性,以安全最大化为原则。4。加快核能的科技研究,更深入的了解其原理,以更好的掌握和利用核能。5,避免 核战争。约束有核国家关于核武器的研制和开发。6。进行核试验和开发核能,尽量使之在比较偏僻的地方进行,如果有事故,使他造成损失最小。
1986年4月26日凌晨1时30分,在苏联白俄罗斯-乌克兰大森林地带东部的切尔诺贝利核电站发生的一次反应堆堆心毁坏、部分厂房倒塌的灾难性事故。当场造成31人死亡,大量强辐射物质泄漏。俄罗斯大约4300个城镇和村庄坐落在切尔诺贝利核电站事故后遭受放射污染的区域。
在布良斯克和卡卢加地区,来自私人农场的蔬菜和家畜的放射性水平大约有13%不正常。外漏放射性污染不仅影响苏联大片地区,还波及瑞典、芬兰、波兰等国,成为引起世界震动的一次核电站事故。截止2006年,还有 超过150万俄罗斯人住在受切尔诺贝利核电站事故污染的土地上,其中有人还在吃受放射性污染的食物。联合国卫生机构评论说,大约9300人可能死于由放射性污染引起的癌症。谈辐无需色变——生活中的辐射
(1)生活中的辐射源
辐射离我们有多远?在我们的生活环境中,辐射无处不在!家用电器:电视、电冰箱、空调、微波炉、吸尘器等;办公设备:手机、电脑、复印机、电子仪器、医疗设备等;家庭装饰:大理石、复合地板、墙壁纸、涂料等;自然环境:太阳黑子等。(2)日常防护小知识
1.不要把家用电器摆放得过于集中或经常一起使用,以免使自己暴露在超剂量辐射的危险中。特别是电视、电脑、电冰箱更不宜集中摆放在卧室裏。
2.各种家用电器、办公设备、移动电话等都应尽量避免长时间操作。如电视、电脑等电器需要较长时间使用时,应注意每一小时离开一次,采用眺望远方或闭上眼睛的方式,以减少眼睛的疲劳程度和所受辐射影响。
当电器暂停使用时,最好不让它们处於待机状态,因为此时可产生较微弱的电磁场,长时间也会产生辐射积累。4
对各种电器的使用,应保持一定的安全距离。
5电视、电脑等有显示屏的电器设备可安装电磁辐射保护屏,使用者还可配戴防辐射眼镜。显示屏产生的辐射可能导致皮肤干燥,加速皮肤老化甚至导致皮癌,因此在使用后应及时洗脸。
多吃胡萝卜、番茄、海带、瘦肉、动物肝脏等富含维生素A、C和蛋白质的食物,加强肌体抵抗电磁辐射的能力。意义
对裂变现象的研究,几十年来始终是核物理的一个活跃的分支。这是由于:
①裂变有着重大的实用价值;
②裂变是一个极复杂的核过程,研究这一过程有助于原子核物理学的发展。四· 感受
通过这次研究学习,我们组收获颇多。这次学习让我们在收获知识的同时,明白了团队精神的重要性,没有一个团队内的各个成员间的相互配合,默契合作,这项任务就不可能完成。我们还学习到了科学探究的方法,这对我们以后的学习生活有重大的帮助。所以,在此感谢校领导及老师对此次活动的重视以及给予我们的帮助与支持。
中恒学校小组 研究性学习报告
组长:王同江
组员:赵通
张鹏金鑫
李国栋张江源史振岳
第二篇:核电站实习报告
2012年中美暑期实习班
(HEU-TAMU)
专题报告
实习地点:哈尔滨工程大学 红沿河、三门及大亚湾核电站 班 级 : 091517 学 号 : 2009151728 姓 名 : 宋天昊 指导老师:高璞珍 实习时间:2012.7.29-8.9 题目:AP1000与ACPR1000+技术特点的比较分析
Title:The comparative analysis of the technical characteristics of AP1000 and ACPR1000+ 摘要: 本文通过分析AP1000和ACPR1000+各自的技术特点和发展过程,展现了其设计思路并分析比较了其安全性、经济型、建造成本等方面的优劣。Summary:
This article shows design ideas of AP1000 and ACPR100+ by analyzing their technical characteristics and development process.It analyzes and compares the pros and cons of their security, economic, and construction costs.关键词:三代技术 非能动 自主 AP1000 ACPR1000+ Key Words: The 3rd generation Passive Independent technology AP1000 ACPR1000+ 引言: 此次实习过程中参观了三门核电站全球首个AP1000机组的建设现场和以M310机组发展来的CPR1000为主要堆型的红沿河核电站和大亚湾、岭澳核电站。并听取了有关以CPR1000技术为基础的自主化第三代核电技术ACPR1000+的介绍。
AP1000和ACPR1000+作为我国核电技术未来发展的两个主导方向,有着其各自不同的技术特点和各自的优势。分析比较其各自的特点和优势,对于理解现代反应堆的设计思路、加深对第三代核电的认识具有重要意义。
Introduction: During this study tour, we visited the construction site of the world's first AP1000 unit of the Sanmen Nuclear Power Plant and CPR1000 which develops from the M310 unit in Hongyanhe, Daya Bay and Lingao Nuclear Power Plants.We had listened to the introduction of ACPR1000+ technology, our own third-generation nuclear power technology which is based on CPR1000.As the two dominant directions of the future development of nuclear power technology in China, the AP1000 and ACPR1000+ have different technical characteristics and their respective advantages.Analysis comparing their respective features and advantages has an important significance for understanding modern reactor design ideas, and a better understanding of third-generation nuclear power technology.主体内容
一、AP1000的技术特点
1、设计思路
AP1000 是美国西屋公司在AP600先进压水堆技术的基础上设计的第三代核电堆型。
AP1000技术的最大特点是运用了非能动安全设计。AP1000压水堆的基本设计思路是:在设计基准事故情况下,电站无需人工操作、电源或泵,同样能实现安全停堆并维持安全停堆状态。AP1000并非借助能动设备如柴油应急发电机和水泵,而是依靠自然力如重力、自然循环和压缩空气来防止堆芯和安全壳过热。
2、非能动安全
非能动安全技术是AP1000堆型最大的特点。非能动安全是指不依赖外来的触发和动力源,而靠自然循环、重力、蓄势等简单有效但又从不失效的物理规律来实现安全功能的系统。
AP1000的非能动安全设计可以使系统处于长时间停堆状态,根据概率安全分析AP1000满足美国核管会确定的安全准则和概率风险准则,并有很大裕量。概率风险评估的结果表明起事故概率为目前运行电站的1/100。
AP1000的非能动安全系统主要包括非能动余热排出系统、非能动安注系统和非能动安全壳冷却系统。其中非能安全壳的设计最为独特。安全壳采用双层设计,钢制安全壳本身就是非能动安全系统的一部分。非能动安全壳系统(PCS, Passive Containment System)可以将热量从壳体传到环境中,非能动水箱中的水可以将堆芯冷却持续72小时以上,留有足够的时间来处理应急事故。非能动安全壳利用自然对流使空气流经双层安全壳之间的通道来提供额外冷却。
3、简化设计
AP1000设计过程中,采用了简化设计的思路。简化的非能动设计大幅度减少了安全系统的设备和部件。减少了50%安全相关闸阀,减少了80%安全相关管道,减少了85%控制电缆,减少了35%的泵类,减少了45%的抗震建筑。这些使简化设计使反应堆节约了反应堆建造成本,缩短了反应堆的建造周期,也使反应堆的运行更具经济型。西屋公司以AP600的经济分析为基础,对AP1000作的经济分析表明,AP1000的发电成本小于3.6美分/kWh。
与现役核电站相比,在相同的发电能力下,AP1000占地面积更小。它的电站布置将安全相关系统和非安全相关系统分离开。电站由核岛、汽轮机厂房、附属厂房、柴油发电机厂房放射性废物厂房等几个关键建筑结构组成,每个建筑各自独立。
4、成熟技术
AP1000保留了很多在现有电站和改进型电站中的能动安全相关系统,主回路系统和设备设计采用成熟电站设计。[6]AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel 4号机组、Tihange3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。
5、数字化控制
AP1000仪控系统采用成熟的数字化技术设计,通过多样化的安全级、非安全级仪控系统和信息提供、操作避免发生共模失效。主控室采用布置紧凑的计算机工作站控制技术,人机接口设计充分考虑了运行电站的经验反馈。AP1000测量系统有42个固定测量仪表并可以形成3D图像。AP1000的数字化仪控系统是核电站控制系统的一大进步。
6、模块化建造
模块化建造(Modulized Construction)是AP1000建设的另一特点。模块是一个名词,在这里用来指一个由材料和部件组装而成的组合件。车间预制后模块作为一个整体单元,方便和加速了现场的建造。在模块就位前对其预制和组装,避免了在其最终位置的狭窄空间进行过多的工作,这样就允许安装和土建并行作业。
AP1000机组的模块包括结构模块(structure module)、安全壳模块(containment vessel module)和机械模块(mechanical module)。其中,结构模块一般由钢板和型钢及内部混凝土构成,形成完整厂房结构。钢板和型钢组成的结构在车间预制,混凝土在结构件现场就位后浇注。钢制安全壳(CV)是先进电站采用模块化建造的关键设备之一,分为底封头、4个中间环段和顶封头,共5个模块。采用分段预制,再进行现场组装的方式建造。机械模块由设备、管道、管道支架、泵等组成。其作为一个单元在车间预制和装配,最后运输到现场,并被安装进各个区域。机械模块设计成带有自我支撑钢结构形式。
AP1000机组共包含300余个模块为铁路—海运(rail-shippable equipment modules),50余个大型结构模块(large structural modules)为现场建造。
模块化建造的优点在于:(1)提高了设备的质量和安全性
(2)展开工作面。提高了整体施工的进度。(3)钢筋混凝土板的抗震性相对较高 模块化建造的缺点在于:
(1)模块体积大、需要大型施工机械和专用道路,抬高了建造成本。模块化建造需要重载道路(Heavy Haul Road),CV装配区(CV assembly area),兰普森起重机(Lampson Crane)和施工现场自备码头(Site Wharf)。这些基础设施的建设都增加了核电站的建造成本。
(2)模块精度要求高、测量难度大,容易变形,施工质量控制难度加大。(3)模块化建造给产品保护提出了更高的要求。模块化建造要求很多设备在土建施工阶段就安装就位。但是AP1000机组采用开顶法施工,土建和安装作业深度交叉,给提前安装的设备模块的成品保护带来很多困难。尤其是设备模块上安装的一些电机、泵、热交换器等设备。
(4)模块化材料成本较高。为了确保模块不超重,减少位置冲突,减少变更工作量,目前模块严格限制材料代换,模块大部分材料仍为美标材料,不管是国外采购还是国内定制生产,其采购时间和成本均较高。而且模块化施工采用的自密实混凝土、水泥用量较多,成本相对普通混凝土非常高。
(5)设备模块布置给今后检修带来困难。AP1000采用大量设备模块,这些设备模块上的管道、阀门、热交换器等设备布置紧凑,且固定在钢结构框架上,没有太多检修空间,这给今后模块上部件的检修和更换带来了困难。
7、AP1000的燃料国产化问题
AP1000由于是美国纯进口技术,所以其燃料目前需要进口,但AP1000的燃料国产化工作进展缓慢,所以如果其燃料长期依赖进口,必然影响其运行的经济性,降低其运营效益。
8、AP1000的大型设备换装问题
AP1000由于采用开顶施工法,并没有留出大型设备换装的通道。大型设备,如蒸汽发生器等如果出现问题将无法更换。AP1000使用的蒸汽发生器为增大型蒸汽发生器(D215),其设计寿命为50年。而现役蒸汽发生器实际设计寿命为15年左右,所以该新型蒸汽发生器能否正常使用50年仍是一个未知数,如果由于传热管破裂等因素使其使用寿命达不到50年,就必然涉及到大型设备的换装问题。但AP1000机组由于没有设备换装通道,所以这是挑战AP1000机组的一大问题。
二、ACPR1000+技术特点以及发展过程
1、CPR机型的发展
CPR1000是China Pressurized Reactor的简称,它是中国广东核电集团有限公司出的中国改进型百万千瓦级压水堆核电技术方案。它是在引进、消化、吸收国外先进技术的基础上,结合20多年来的渐进式改进和自主创新形成的“二代加”百万千瓦级压水堆核电技术。
CPR1000由大亚湾核电机组所使用的M310机组发展而来。岭澳一期核电以大亚湾核电站为基础,保持其功率不变,进行了多项技术改进,进一步提升了其安全水平和经济性,使其达到了“二代加”核电站的先进水平。CPR1000方案是以大亚湾和岭澳一期核电站为参考基础,为进一步满足新版核安全法规的要求,相应的采纳了一些新技术。在后续项目中,CPR1000方案仍将结合经验反馈,陆续采用新技术,使其安全性和经济性进一步提高。
CPR1000基于M310的主要技术改进有:(1)18个月换料方案,减少换料大修次数,降低大修成本、燃料循环成本、放射性废物的产生量、反应堆压力容器的中子流量和工作人员的受辐照剂量,提高电站的可利用率和年发生电量。(2)设计寿命60年的压力容器改进(3)可视化进度控制
(4)堆腔注水,有利于防止或延迟压力容器熔穿,防止堆芯熔融物与混凝土反应,防止安全壳底板熔穿,抑制安全壳内氢的产生量,提高安全壳保持完整性的概率。
CPR1000的主要特点是:
(1)技术成熟,有丰富的运行经验,国际上基于M310机组的反应堆有1000堆年的安全运行经验。
(2)技术先进。作为基于M310机组的二代技术的改进,其运营水平达到了国际同类核电站的先进水平
(3)经济性好。由于基本实现了自主化和设备的国产化,其工程造价大大降低。而且基于大亚湾核电站的良好的运行经验,CPR1000的运行成本也大大降低,提高了其经济性。
2、CPR1000在国内的推广应用
CPR1000作为中广核集团的主推堆型,在中广核集团所属的在建的核电站中大量建设应用。采用CPR1000机组的堆型的核电基地有:
(1)岭澳核电站二期
岭澳核电站二期是中广核集团在广东地区建设的第三座大型商用核电站。项目建设两台百万千瓦级压水堆核电机组,采用CPR1000建设方案。2004年7 月 21 日,国家批准建设岭澳核电站二期项目建议书,2005 年 3 月 14 日 国家核准了可行性研究报告,2005 年 3 月 16 日,岭澳核电站二期工程主要合同在北京人民大会堂签定。2005 年 9 月 5 日,国家发改委核准岭澳核电站二期工程。2005年12月15日,岭澳二期核电站主题工程开工,2010年7月15日,岭澳二期首次开机成功并并网发电。
(2)红沿河核电站
辽宁红沿河核电站位于大连瓦房店市,规划建设六台CPR1000机组,其中一期工程4台机组已经全面开工建设。红沿河核电是东北地区投资最大的能源项目和东北地区第一座核电站。辽宁红沿河核电站1号机组将于2012年底正式建成发电,到2014年底,四台机组将全面发电,届时年发电量将达到300亿度,相当于大连地区售电量的1.25倍。
(3)福建宁德核电站
福建宁德核电站规划建设六台百万千瓦级压水堆核电机组,一期工程采用CPR1000技术,建设四台百万千瓦级压水堆核电机组。2006年9月1日,国家发展改革委同意宁德核电站一期工程开展前期工作。其主体工程于2008年2月18日正式开工,首台机组计划于2012年投产,2010年12月28日,福建宁德核电站工程技术人员在使用我国首台自主研发的核电站全范围模拟机。
(4)阳江核电站
阳江核电站是中广核集团在广东地区的第二核电基地。项目采用CPR1000技术,一期工程拟建设四台百万千瓦级压水堆核电机组,由中广核集团阳江核电有限公司负责建设和运营。国家核电自主化工作领导小组于 2004 年9月2日同意项目建议书。项目规划建设 6 台百万千瓦级或更大容量的核电机组,分两到三期建设,首期建设两台。其主体工程已于2007 年开工,首期两台机组 2013年左右建成投入商业运行。
3、ACPR1000+技术特点
ACPR1000+是Advanced China Pressurized(water)Reactor的简称,是中广核集团主推的在CPR1000的基础上发展的三代核电的堆型。
ACPR1000是中广核集团设计开发的自主核电品牌。拥有自主知识产权,主要指标达到三代标准。ACPR1000+的设计采用了经过验证的成熟技术,充分借鉴了压水堆核电厂建设和运行的经验反馈。具有良好的安全性,同时也兼顾了经济性,可以满足国内外不同用户的多种要求。其主要特点有:
(1)ACPR1000+的设计目标:
1、寿命60年,建造周期50个月;
2、机组可利用率≥90%,热效率约37%;
3、机组为三环路压水堆;
4、堆芯事故率≤1X10-7堆·年;
5、电厂电功率1150MW;
6、换料周期18个月;
7、电场布置单堆。
(2)ACPR1000+的安全性:
1、采用预防、监测、保护、包容、应急五级防御机制。ACPR1000是我国自主开发的第三代核电品牌,各项技术均达到国际先进水平,按照最先进的标准进行设计,能够应对各类突发性事件,安全性能得到显著改善,2、采用双层安全壳结构,实现非能动停堆。提高了核电站的抗震能力,在高达7级地震的情况下能够保证正常停堆。
3、ACPR1000+提高了安全壳的抗撞击能力,可以抵抗飞机直接撞击安全壳。
4、吸取了日本福岛311事故的教训,备用柴油机采用远距离布置,保证其在海啸的情况下实现正常停堆。
(3)ACPR1000+的数字化仪控系统:在CPR1000的DCS-level2系统的基础上,采用核电厂实时信息监控系统 KNS,使其达到DCS-level3。KNS系统是中广核工程有限公司设计院仪控所自主设计开发的针对核电站的厂级实时信息监控系统。KNS系统主要性能:
1、其可用率>99%;
2、大量数据库20万点,且可扩充;
3、至少保存五年历史数据;
4、主要设备均为冗余配置热备用,确保可用性;
5、重要设备两路供电,确保数据采集存储可靠性;
6、骨干网光纤连接且冗余结构,确保抗干扰能力以及可用性。
三、AP1000和ACPR1000+的比较
1、在大型事故工况下安全性的比较
在大型事故工况下,AP1000采用了非能动安全设计。利用钢制双层安全壳来实现自主停堆。安全系统利用物质的自然特性:重力、自然循环、压缩气体的能量等简单的物理原理,不需要泵、交流电源、1E级应急柴油机,以及相应的通风、冷却水等支持系统,大大简化了安全系统(它们只在发生事故时才动作),大大降低了人因错误。“非能动”安全系统的设计理念是压水堆核电技术中的一次重大革新。AP1000在发生事故后的堆芯损坏频率为5.0894×10-7/堆·年,大量放射性释放概率为5.94×10-8/堆·年,而且AP1000采用的设备可靠性数据均比较保守可信。
ACPR1000+也采用了双层安全壳结构,但由于其留出了供蒸汽发生器等大型设备换装的换装通道,这对于双层安全壳结构有极其不利的影响,一般认为其设计并不成熟,在实现非能动停堆的能力上不及AP1000。在应对地震、海啸等方面,ACPR1000+采用了备用柴油机远距离布置的方式,但由此带来的设备管线的保护问题也随之而来。如果由于柴油机对主控设备的供电管线在极端情况下出现断裂,那么ACPR1000+所采用的柴油机远距离布置的方式将没有任何意义。
2、建造成本的比较
AP1000的建造采用大量的模块化建造,旨在降低降建造成本并缩短建造时间。但是从我国三门核电站的建造实际来看,由于需要建设自备码头、重载道路、专用路轨、大型施工机械等,实际建造成本并未降低,且比在役核电站和其他在建核电站建造成本高。由于主要大型设备生产厂家并无建造AP1000所用诸多设备的经验,且由于首次建造细节设计多次更改,AP1000的建造时间也并为缩短,目前,我国三门核电站的实际建造速度已经比原始进度表延后了一年左右。
ACPR1000+由于并未实际建造也没有完成详细设计,所以不可比较具体建造成本。但由于ACPR1000+借鉴了大量CPR堆型的建造的成熟技术,且并未采用模块化建造,因此CPR的建造对于ACPR1000+具有很好的参照价值。CPR1000作为中国在建型号最多的核电机组,其建造成本并不高。以红沿河核电站为例,红沿河核电站计划6台机组,投资约500亿人民币。而三门核电站一期工程两台机组就计划投资250亿,且在实际建设过程中,其建造成本已经远超250亿。由此看来,ACPR1000+的建造成本在目前阶段应该低于AP1000
3、运行效益的比较
改善核电站性能意味着少花钱多发电。AP1000通过以下几项设计改善核电站性能和提高人员安全:18个月燃料周期提高了燃料利用率同时降低燃料总成本 ;显著减少维修、测试和检修要求以及人员量;减低辐射泄漏和电站废物、93%可利用率以及60年的使用寿命。
同时,因其更小更简单的电站设计,AP1000需要更少的设备及基础设施用于电站的测试及维护。操作和维护需求的降低同时也因需要较少的维护人员而节省成本。选择可靠设备保证了高度可靠性,减少了维护。设备标准化减少了零部件库存、培训需要,从而降低了维护周期。另外,重要设备配备了内置测试功能。
虽然AP1000的设计理念超前,但是由于其并没有实际运行建造经验,所以其实际运行成本还有待考证。
与AP1000相比,CPR机型在中国有着良好的运营经验。大亚湾核电站和岭澳核电站作为目前中国盈利最多、收益最好的核电站,无疑证明了CPR机型在中国的成功。基于CPR技术的ACPR1000+的运营效益也会得到业内的认可。
四、总结
AP1000第三代核电技术运用了以非能动安全、模块化建造为主的超前的设计理念,其设计和建造都实现了划时代的跨越,有着重要的意义。基于美国核电多年的技术积累,其设计先进且成熟。但由于AP1000的建造、运营等方面缺乏经验,所以其在初期遇到的问题比较多,建造周期、建造成本等很多方面都没有达到预期的目的。其日后的改进尚需时日。
ACPR1000+作为中广核集团自主研发的第三代核电技术,其设计目标是要达到第三代核电的要求,其技术基于目前在中国广泛建造的CPR1000机型,ACPR1000+多基于成熟的技术。但基于广核工程公司设计院的自身的经验积累以及设计水平的限制,ACPR1000+更多的带有“二代加”的色彩,其在非能动安全等方面的设计并不十分成熟。
AP1000和ACPR1000+都是我国三代核电优先发展的堆型。我们并不能单一地判断孰优孰劣,其优劣将由其日后的实际运营情况决定。
参考文献:
【1】三门核电站讲座以及展板
【2】ACPR1000+宣传视频以及中广核集团讲座 【3】《AP1000技术手册》,西屋公司,2009 【4】《船舶和动力装置》,彭敏俊,哈尔滨工程大学
第三篇:核电站
第三代核电站
第三代核电站的安全性和经济性都将明显优于第二代核电站。由于安全是核电发展的前提,世界各国除了对正在运行的第二代机组进行延寿与补充性建一些二代加的机组外,接下来新一批的核电建设重点是采用更安全、更经济的先进第三代核电机组。我国国家引进的美国非能动AP1000核电站以及广东核电集团公司引进的法国EPR核电站都属于第三代核电站。
对于第三代核电站类型有各种不同看法。美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了下一代核电站的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计,它们将成为下一代(第三代)核电站的主力堆型。第三代核电站的安全性和经济性都将明显优于第二代核电站。由于安全是核电发展的前提,世界各国除了对正在运行的第二代机组进行延寿与补充性建一些二代加的机组外,接下来新一批的核电建设重点是采用更安全、更经济的先进第三代核电机组。我国国家引进的美国非能动AP1000核电站以及广东核电集团公司引进的法国EPR核电站都属于第三代核电站。
中国2013年将拥有全球首座第三代核电站
2010年3月国家核电技术公司党组书记、董事长王炳华表示,世界上第一座第三代AP1000核电站将在2013年并网运行,届时“中美两国技术人员将向社会公众贡献一个完美、先进,具有绝对安全可靠保障的反应堆”。
据悉,王炳华指的是其中在浙江三门新建的AP1000核电站机组,第一台在2013年将并网运行。三年前,国家核电技术公司与美国西屋公司开始合作。截至2008年12月,国家核电已经完成了AP1000内陆核电站的总体设计、关键系统设计、关键设备的总体设计。目前,工程进展总体顺利,今年两个项目共计18个里程碑节点目标完全可以实现。
“这将是世界上第一座第三代AP1000核电站,比美国提前了两年半。”国家环保部核安全和环境专家委员会委员林诚格接受媒体采访时表示。
针对人们质疑中国在此次工程合作中的作用有多大时,王炳华提出了反驳。首先,在未来合同执行中,中国政府将派1000人到美国西屋公司,与美国西屋公司共同参与研发和设计;其次,到目前为止中国有近80名工程技术人员正在西屋公司从事相关领域的工程设计;已与美国西屋公司签署了LPP——进一步发展核能的框架合作协议。
世界核电站可划分为四代
第一代核电站:
自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe左右的核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。第一代核电厂属于原型堆核电厂,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。
第二代核电站:
第二代核电厂主要是实现商业化、标准化、系列化、批量化,以提高经济性。自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准化和系列化核电站,以美国西屋公司为代表的Model 212(600MWe,两环路压水堆,堆芯有121合组件,采用12英尺燃料组件)、Model 312(1000MWe,3环路压水堆,堆芯有157盒组件,采用12英尺燃料组件,),Model 314(1040MWe,3环路压水堆,堆芯有157盒组件,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,堆芯有193盒组件,采用12英尺燃料组件,)、Model 414(1300MWe,4环路压水堆,堆芯有193盒组件,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第二代核电站范畴。法国的CPY,P4,P4′?也属于Model 312,Model 414一类标准核电站。日本、韩国也建造了一批Model
412、BWR、System80等标准核电站。
第二代核电站是目前世界正在运行的439座核电站(2007年9月统计数)主力机组,总装机容量为3.72亿千瓦。还共有34台在建核电机组,总装机容量为0.278亿千瓦。在三里岛核电站和切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。
第三代核电站:
对于第三代核电站类型有各种不同看法。
美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了下一代核电站的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计,它们将成为下一代(第三代)核电站的主力堆型。
第四代核能系统:
第四代核能系统概念(有别于核电技术或先进反应堆),最先由美国能源部的核能、科学与技术办公室提出,始见于1999年6月美国核学会夏季年会,同年11月的该学会冬季年会上,发展第四代核能系统的设想得到进一步明确; 2000年1月,美国能源部发起并约请阿根廷、巴西、加拿大、法国、日本、韩国、南非和英国等9个国家的政府代表开会,讨论开发新一代核能技术的国际合作问题,取得了广泛共识,并发表了“九国联合声明”。随后,由美国、法国、日本、英国等核电发达国家组建了“第四代核能系统国际论坛(GIF)”,拟于2-3年内定出相关目标和计划;这项计划总的目标是在2030年左右,向市场推出能够解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核能系统(Gen-IV)。
第四代核能系统将满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低、防止核扩散等基本要求。
目前,世界各国都在不同程度上开展第四代核电能系统的基础技术和学课的研发工作。
第四代核电能系统包括三种快中子反应堆系统和三种热中子反应堆系统:
第四代核能系统 代号 中子能谱 燃料循环
钠冷快堆系统(Sodium Cooled Fast Reactor System)SFR 快 闭式
铅合金冷却快堆系统(Lead Alloy-Cooled Fast Reactor System)LFR 快 闭式 气冷快堆系统(Gas-Cooled Fast Reactor System)GFR 快 闭式 超高温堆系统(Very High Temperature Reactor System)VHTR 热 一次
超临界水冷堆系统(Supercritical Water Cooled Reactor System)SCWR 热和快 一次/闭式
熔盐堆系统(Molten Salt Reactor System)MSR 热 闭式 特点
世界各国在回顾三十余年第二代核电站的建造和运行经验,尤其总结了美国三哩岛核电站和切尔诺贝利核电站事故的经验教训之后,为使今后建造的核电站在安全性、经济性、安全审评稳定性以及保护核电业主投资等方面有大的改进,首先是美国电力公司发起建立先进轻水堆(ALWR)设计的技术基础,为设计美国下一代先进轻水堆(ALWR),推行一项先进轻水堆ALWR计划,编制了一份美国核电用户要求文件(URD),继而欧洲10家核电公司也编写了欧洲核电用户要求(EUR)文件。
URD和EUR规范了第三代核电站的设计技术基础,其要点如下:
1)ALWR计划的目标:为未来的ALWR提供一整套设计的综合要求、稳定的审批基准、支持ALWR电厂的发展。
2)ALWR 的14条政策:简单化、设计裕量、人因、安全、设计基准与安全裕量、管理稳定性、标准化、成熟技术、可维护性、可建造性、质量保证、经济性、预防人为破坏、睦邻友好。
3)ALWR高层安全设计要求,其要点如下:
抗事故能力:所有工况下都具有负的功率反应性系数、采用最好的材料及水质、改进的人机界面系统、采用成熟的诊断监测技术、须留给操纵员足够的时间(30分钟或更长时间)来防止设备的损坏及防止导致较长停堆的电厂工况等。
防止堆芯损坏:防止堆芯损坏的专设安全系统应满足执照设计基准要求及安全裕量基准、堆芯损坏频率小于1×10-5/堆年等。
缓解事故能力:坚固而大容积的安全壳和相应的专设安全系统;采用现实源项分析;控制可燃氢气的浓度;在累积发生频率大于10-6/堆年的严重事故条件下,在厂址边界处(离开反应堆大约0.5英里),公众个人的全身剂量小于25雷姆等要求。
4)第三代压水堆核电站有两种类型:改进型电厂(如EPR)和非能动型电厂(如 AP1000)。URD对两种类型的核电厂又分别提出了专用要求,其要点如下:
改进型核电厂:更简化的专设安全系统;至少有两条隔离的和独立的交流电源与电网相连;至少三十分钟时间内,不考虑操纵员的干预;在丧失全部给水,至少在2小时内不应有燃料损坏;在丧失厂内外交流电源的8小时内,燃料没有损坏等。
非能动型核电厂:不要求安全相关的交流电源;至少72小时内,不需要操作员干预;严重事故条件下,安全壳有足够的设计裕量;不需要厂外应急计划等。
以上概括了第三代核电站的特点,我国国家引进的美国非能动AP1000核电站属于第三代核电站的非能动型核电厂,广东核电集团公司引进的法国EPR核电站属于第三代核电站的改进性核电厂。AP1000和EPR基本上都满足了上述URD和EUR的相关要求。
分类 AP1000
AP1000 是由美国西屋公司开发的先进的非能动的压水堆(Advanced Passive PWR)。
2002年3月,美国核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。2004年12月获得了美国核管会授予的最终设计批准。
AP1000 为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。[2] EP1000
1994年,欧洲用户集团会同西屋公司及其工业合作伙伴GENESI(一个意大利企业集团,包括ANSALDO和FIAT),启动了一项名为 EPP(欧洲非能动型核电站)的计划,以评估西屋公司非能动核电站技术在欧洲的应用前景。已完成以下主要工作:(1)评估了欧洲用户要求(EUR)对西屋核岛设计的影响;(2)确定了满足EUR的1000MWe级非能动核电站的基准设计(EP1000),并期望在欧洲获得设计许可。对于安全系统和安全壳,基准电站设计基本上采用了西屋公司简化压水堆(SPWR)的设计,而在EP1000基准设计中的辅助系统设计部分,则是根据AP600进行设计的。但是,EP1000同样具有满足EUR和欧洲取证许可要求的特点
技术差异
美国、法国、俄罗斯等国都是在吸取20年前的切尔诺贝利严重事故的惨痛教训后,认识到预防和缓解严重事故的极端重要性,花大力气进行研究开发预防和缓解严重事故的对策和措施,经过了十多年的努力,才达到了工程应用的程度。为此,国际原子能机构颁发了新的安全法规(第二版)对预防和缓解严重事故提出了严格要求,我国国家核安全局也颁布了新的安全法规,对预防和缓解严重事故提出了新的要求。
第二代核电技术在安全上不满足国际原子能机构安全法规(第二版)对预防和缓解严重事故的要求,也不符合我国新颁布的安全法规对预防和缓解严重事故的要求,当然也不满足URD和EUR的要求,但第三代核电技术能满足这些要求的。这是第二代核电核电站与第三代核电站在技术上的主要差异。
例如AP1000和EPR的堆芯损坏频率(CDF)分别为5.0894×10-7和1.18×10-6/堆年,大量放射性释放概率分别为5.94×10-8和9.6×10-8/堆年,远比第二代核电站低一至二数量级。
第二代核电核电站与第三代核电站技术上存在差异还体现在:先进的燃料管理技术、先进的反应堆设计技术、先进的人因工程、先进的数字化仪表控制系统和控制室、宽裕的操作员可不干预时间以及、模块化设计和建造技术等方面。
性能比较
1、AP1000和EPR的安全系统采用了两种完全不同的设计理念
AP1000安全系统采用 “非能动”的设计理念,更好地达到“简化”的设计方针。安全系统利用物质的自然特性:重力、自然循环、压缩气体的能量等简单的物理原理,不需要泵、交流电源、1E级应急柴油机,以及相应的通风、冷却水等支持系统,大大简化了安全系统(它们只在发生事故时才动作),大大降低了人因错误。“非能动”安全系统的设计理念是压水堆核电技术中的一次重大革新。
EPR安全系统在传统第二代压水堆核电技术的基础上,采用“加”的设计理念,即用增加冗余度来提高安全性。安全系统全部由两个系列增加到四个系列,EPR在增加安全水平的同时,增加了安全系统的复杂性。核电站安全系统的设计基本上属于第二代压水堆核电技术,是一种改良性的变化。
2、AP1000和EPR的安全性的比较
由于AP1000和EPR的安全系统采用了两种完全不同的设计理念AP1000 和EPR的安全性有较大的差别。
AP1000在发生事故后的堆芯损坏频率为5.0894×10-7/堆年比EPR的1.18×10-6 /堆年小2.3倍,大量放射性释放概率为5.94×10-8/堆年也比EPR的9.6×10-8/堆年小1.6倍(而且AP1000采用的设备可靠性数据均比较保守);
核电站发生事故后,AP1000操作员可不干预时间高达 72小时,而EPR为半小时;
AP1000 在发生堆芯熔化事故时,能有效地防止反应堆压力容器(第二道屏障)熔穿,将堆芯放射性熔融物保持在反应堆压力容器内,使放射性向环境释放的概率降到最低;而EPR不防止反应堆压力容器熔穿,堆芯放射性熔融物暂时滞留在堆腔内,然后采取措施延缓熔融物和安全壳(第三道屏障)底板的混凝土相互作用,防止安全壳底板熔穿。
AP1000的人因失误占堆熔频率的7.74%,共因失效占堆熔频率的57%,而EPR分别为29%和94%,AP1000 明显优于EPR。
3、成熟性
AP1000的最大特点是安全系统采用了非能动技术,西屋公司为此做过大量试验、计算和验证工作,这些试验结果已全部被美国核管会接受,非能动安全系统已达到成熟性的要求。反应堆和反应堆冷却剂系统设计采用与第二代核电站相似的成熟技术。AP1000的冷却剂屏蔽电机泵的功率比过去屏蔽电机泵产品都大,属于首次设计的大型泵,但它们的功率已相当接近。EMD屏蔽电机泵制造厂EMD公司有丰富的制造经验,生产过大量(约1500台)不同功率、不同尺寸的屏蔽泵用于军工、早期的核电站和其他工业部门,取得了很好的使用业绩,设计和制造技术是成熟、可信的。可以说,目前AP1000屏蔽电机泵主要问题是加快首台泵制造进度和进行工程性验证。
EPR 最大特点是加大反应堆的热功率以及增加安全系统的冗余度和多样性。设计理念是成熟的;EPR加大了反应堆的热功率和尺寸,主要设备(反应堆压力容器、堆内构件、蒸汽发生器和主冷却剂泵等)都加大了容量和尺寸。但目前一些主要核设备(反应堆压力容器和堆内构件、蒸汽发生器、主冷却剂泵等)的试验还未完成,都有待在试验台架上和现场进行工程性试验和验证。
两者的成熟性比较是不相上下的。
4、经济性
AP1000 安全系统采用非能动的理念,安全系统配置简化、安全支持系统减少、安全级设备和抗震厂房减少、IE级应急柴油机系统和很多能动设备被取消,以及大宗材料需求明显降低。AP1000的安全系统及其设备数量得到大量的减少,例如AP1000的安全级泵和阀门分别为6台(包括4台主泵)和599台,EPR则为 88台和7000台。再加上模块化设计和建造新技术的采用,由此派生出了设计简化、系统设置简化、工艺布置简化、施工量减少、工期缩短以及运行方便、维修简单等一系列效应。从长远观点来看,AP1000不仅使安全性能得到显著提高,而且费用和长期的运行费用也得到明显降低,在经济上也具有较强的竞争力。这种优势在批量建造若干台(譬如8至 10台)后AP1000核电机组将会越来越明显。
EPR是通过增加安全系统冗余度和系统配置来提高安全性;但由于单机容量大,厂址利用率高,提高了它的经济性。
5、安全审评
AP1000安全审评情况:西屋公司于2002年3月28日向美国核管会提交AP1000 标准设计的“标准设计证书”申请,该申请包括AP1000设计控制文件、PSA报告等。美国核管会 于 2002年7月25受理该申请,并据联邦法规10 CFR Part 52 及相关法规、严重事故政策等进行了审评,于2004年9月正式发布了“最终安全评价报告(FSER)”。9月23日,西屋公司获得了NRC 关于AP1000 的最终设计批准书(FDA)。根据美国有关法律举行听证会后,NRC 于2005年12月30日向西屋公司颁发了AP-1000 标准设计的“标准设计证书”。
EPR的安全审评情况:芬兰已从法国引进EPR, 在芬兰建造OL3 核电厂。芬兰核安全当局已完成EPR 初步安全分析报告的审评,并于2005年2月17日颁发“OL3 核电厂建造许可证”。据称芬兰核安全当局已把审评中未关闭的问题列入建造许可证条件。
根据目前掌握的资料,结合初步工程判断,AP1000或EPR在核安全许可证申请和审评中,不会出现重大问题。
在中国 背景
迄今为止,中国所有的核电站都是建在沿海。中国能不能将核电站建在内陆?郁祖盛给记者举出了一个数据:“全世界430个核电站中,70%以上在内陆。前苏联的压水堆型核电站是100%,美国是75.7%。而AP1000本来就是为建在内陆而设计的。”
去年初,由于罕见的低温雨雪冰冻灾害,导致电缆被压跨、铁路运输被迫中断、火电厂缺乏燃料被迫停工,令人“触目惊心”。加之,随着我国中西部地区的经济发展和社会进步,能源供应能力和日益增长的需求之间的矛盾不断加剧,以及我国节能减排和保护环境面临的巨大压力,也促使国家下定决心在内陆地区建核电站。目前,江西、湖南、湖北等都在计划之列。[6] 发展进程
中国政府从2003年起,就开始启动了第三代核电技术的招标工作。在诸多国际竞标者中,美国西屋联合体以最先进的第三代先进压水堆核电技术(AP1000)胜出。据称,与美国西屋联合体的一系列谈判都是由国家核电(筹)来进行的。
2006年12月16日,中美签署两国政府《关于在中国合作建设先进压水堆核电项目及相关技术转让的谅解备忘录》,标志着我国正式决定引进 AP1000作为我国第三代核电站的主力堆型。2007年7月24日,三代核电自主化依托项目核岛合同在北京签署,全球首台AP1000核电机组落户浙江三门核电站。
中国购买美国4台先进的AP1000核电机组,美方同时转让AP1000设计技术、设备制造和成套技术、建造技术等先进的核电技术,中方将完全拥有在引进AP1000核电技术基础上改进和开发的、输出功率大于135万千瓦的、大型非能动核电站的知识产权。
最终,国家核电于2007 年7月24日,与美国西屋联合体正式签订了4台AP1000机组合同。目前,合同执行情况良好,技术转让工作正有序开展。林诚格相信,“经过4台机组的消化吸收,中国就能实现AP1000技术的自主化、国产化。”
世界首座亮相中国
山东海阳核电站鸟瞰图
2010年3月国家核电技术公司党组书记、董事长王炳华表示,世界上第一座第三代AP1000核电站将在2013年并网运行,届时“中美两国技术人员将向社会公众贡献一个完美、先进,具有绝对安全可靠保障的反应堆”。这将是世界上第一座第三代AP1000核电站,比美国提前了两年半。
王炳华指的是其中在浙江三门新建的AP1000核电站机组,第一台在2013年将并网运行。三年前,国家核电技术公司与美国西屋公司开始合作。截至2008 年12月,国家核电已经完成了AP1000内陆核电站的总体设计、关键系统设计、关键设备的总体设计。目前,工程进展总体顺利,今年两个项目共计18个里程碑节点目标完全可以实现。
针对人们质疑中国在此次工程合作中的作用有多大时,王炳华提出了反驳。首先,在未来合同执行中,中国政府将派1000人到美国西屋公司,与美国西屋公司共同参与研发和设计;其次,到目前为止中国有近80名工程技术人员正在西屋公司从事相关领域的工程设计;已与美国西屋公司签署了LPP——进一步发展核能的框架合作协议。
第四篇:环境污染报告
关于环境污染的事故报告
我公司位于瓯北五星工业区,公司为鲍斯高服饰有限公司,在厂区右侧的地方有一个羊绒加工厂,由于该厂在生产过程中,产生了很多生产垃圾(废弃羊绒),这些生产垃圾没有经过专业的处理就直接向外排放,排放位置处于我公司生产车间,导致羊绒在生产区内满天飞舞,造成我公司新建冷风机外部保护网严重堵塞,无法正常散热。羊绒加工厂在生产过程中长期有生产垃圾向窗外排出,导致我公司无法正常生产。
根据《中华人民共和国环境保护法》第二十四条、三十一条规定,在产生环境污染和其他公害的单位,必须把环境保护工作纳入计划,建立环境保护责任制度;采取有效措施,防治在生产建设或者其他活动中产生的废气、废水、废渣、粉尘、恶臭气体、放射性物质以及噪声、振动、电磁波辐射等对环境的污染和危害。
经多次调解,该羊绒加工厂都置之不理,导致我司生产工作无法正常开展,请环保部门对此事进行调查并及时处理。
2013-5-22浙江鲍斯高服饰有限公司
第五篇:农村环境污染与可持续发展报告
农村环境污染与可持续发展报告
根据我的调查走访,询问当地的居民,大家几乎一致反映对当地的环境并不是十分的满意。我又仔细的询问了一下原因,实地的进行了考察。
环境污染主要有四点:1.来自镇内造纸厂的巨大污染2.家禽家畜的粪便3.废水垃圾的不合理处置。4.不合理的使用农药化肥。这四个主要的污染严重影响了当地居民的生活质量。首先,大家应该都很清楚造纸厂的污染是很严重的,排出的废水等污染了当地的水源。水是生活之本,影响着居民的健康。其次,家禽家畜的粪便的味道污染了空气,使空气质量下降了,也同样影响着居民的生活,同时也对人体健康造成一定威胁。然后,垃圾废水随意乱扔乱倒,没有固定的地方,使整个村子看上去非常不整齐。最后,不合理的使用农药化肥也对环境造成巨大的污染。随着农村经济的发展农民越来越重化肥轻有机肥,化肥的大量使用改变了土壤原来的结构和特征,造成土壤板结,有机质减少,化肥重的重金属污染危害人体健康。化肥等流入河流,琥珀等会破坏水域生态系统,导致水藻等营养过剩,水体缺氧,水中鱼虾死亡。在农村,没有固定的垃圾存放点,垃圾不能及时回收和有效处理,每家每户几乎都是把废水,垃圾等倒在房屋后面的壕沟里,任其在自然条件下分化和分解,不仅污染了大气,也对地表水和地下水造成了污染。特别是在刮风的时候,固体垃圾就会四处飞散,特别不卫生,而且还影响了村子的形象。
我询问了当地的几个老住户,据他们说从来没有任何的相关部门来处理垃圾,都是任其发展下去。并且退一步讲,也没有有关的部门来关心询问过此事,大家都觉得把垃圾废水倒在那里是很正常的事情,并没有什么不对的。这么多年已经形成习惯了,想要纠正过来是一件非常麻烦的事情。针对目前农村环境污染问题,主要提出以下几条建议:1.要进一步加大宣传力度,逐步提高农民的环保意识。同时各相关部门也要高度重视农村的环境问题,积极采取对策,并确定相应的惩罚及奖励措施,以此来激起大家对环境的关注。2.调整产业结构,发展绿色农业,以此来减少化肥及农药的使用,大力发展无公害农作物。3.统筹规划,改善农村环境。我觉得首先最应该做的就是建立若干个垃圾存放及回收点。,这样会大大地减少垃圾四处飞散的情况。4.建立农村环境保护责任制和长效机制。村里的领导应该为此付出努力,积极投身于环境保护的工作中来,经常在村里进行巡视和指导大家。我相信经过这一系列的措施之后,农村的环境污染问题会得到改善,实现可持续发展。