首页 > 精品范文库 > 12号文库
冶金导论论文
编辑:空山幽谷 识别码:21-403630 12号文库 发布时间: 2023-04-13 10:54:35 来源:网络

第一篇:冶金导论论文

中国钢铁工业发展状况及发展趋势

中国钢铁工业现状及发展趋势

姓名:郭增伟 学号:2013442984 班级:冶金工程13—03班

摘要:钢铁冶金行业是我国国民经济的重要基础产业。本文基于对我国钢铁冶金行业的基本现状及其存在的主要问题进行了研究,分析了我国钢铁冶金工业未来的发展趋势。

关键词:冶金行业 基本现状 主要问题 发展趋势 1.冶金工业的发展现状

1.1.钢铁生产工艺流程逐步优化。20世纪90年代以来,世界钢铁工业在激烈的国际市场竞争中,由20世纪80年代以前的以扩大规模、增加产量为主转向降低消耗、降低成本、提高质量、增加品种和保护环境。博士论文,高速钢轧辊。钢铁工业技术进步的主流是缩短生产流程,减少工序,提高质量,降低消耗,提高效率。技术进步中有两大主要趋向:一是寻找可以替代传统工艺的新工艺流程的研究开发;二是现有工艺和技术装备的完善化。两大技术进步趋向互相竞争、相互渗透,促使钢铁工业不断提高钢材质量、减少消耗、降低成本、减轻对环境的污染,进一步走向集约化。

传统的钢铁生产工艺流程是一种“冷态”下间歇式生产的工艺流程。日本在20世纪60年代建设的10多个大型钢铁厂都是采用这种工艺流程。20世纪80年代以后,世界钢铁业已逐步将上述传统的钢铁生产工艺流程改造成为现代化“热态”连续生产工艺流程。这种工艺流程具有高效、连续、紧凑、智能等特点。20世纪80年代末期,德国、法国、日本、意大利、美国等钢铁工业发达国家开发成功接近最终钢材产品形状的连铸、连轧技术,如带钢、型钢的连铸连轧等。由于该技术具有工艺流程紧凑、生产周期短、物料消耗少、生产效率高等一系列优点,在近十多年来得到了快速发展。自从1989年世界第一条薄板坯连铸连轧生产线在美国纽柯公司克劳福兹维尔厂投产以来, 经过10多年发展,到2002年底,世界上已有38个薄板坯

中国钢铁工业发展状况及发展趋势

连铸连轧生产厂共56条生产线,总生产能力已超过5 500万吨。我国现已有5个钢铁企业建成8条薄板坯连铸连轧生产线,到目前为止又有5个钢铁企业正在建设厚板坯连铸连轧生产线,不久的将来总生产能力将达2000万吨,预计届时将占全世界同类生产线能力的1/4以上。博士论文,高速钢轧辊。2001年我国连铸比达到89.71%,已经超过了2000年的世界平均水平。2003年达到了96.96%,目前,全国重点大中型企业中,连铸比达到99%以上的企业已达41家。

带钢连铸连轧技术是世界主要钢铁生产国家正在积极开发应用的一项重大钢铁生产前沿技术,它将是21世纪钢铁生产技术的一个主要发展方向。

1.2.钢铁产量不断增长冶金行业的发展受到国内与国际宏观经济环境的共同影响。国内方面,国家采取的宏观调控措施初见成效,钢铁行业投资规模过大,低水平重复建设得到遏制,有效打击了“地条钢”等劣质产品冲击钢材市场的行为,进一步净化了市场,钢铁生产企业对市场更加理性化。消费结构的升级和城镇化速度加快为钢铁行业发展提供了基本的保障;西部大开发和振兴东北老工业基地的战略也为钢铁行业提供了新的发展机会。国际方面,世界经济仍保持总体向好的发展态势,全球钢铁需求持续增长。2.我国钢铁行业存在的问题

2.1企业行业集中度低,生产专业化程度低,尚不能达到规模经济。我国现有产钢企业290家,其中只有34家企业年产钢超过100万吨,其中7家年产超过300万吨的钢铁企业,总产量占国内钢铁总产量不到50%。而韩国浦项1家钢铁厂的钢产量就占全国钢产量的65%,日本五家钢铁企业的钢产量占全国钢产量的75%,欧盟15国6家钢铁企业钢产量占欧盟整个钢产量的74%。我国最大的钢铁企业上海宝钢钢铁公司,2000年年产量为1770万吨,仅占国内钢铁总量的13.9%,而在法国,尤西诺钢铁公司几乎囊括了法国的钢铁生产。可见,我国钢铁生产企业集中度与发达国家相比仍存在差距。钢铁企业的集中度偏低,一定程度上限

中国钢铁工业发展状况及发展趋势

制了我国钢铁企业的竞争力。

我国钢铁企业存在的另一个问题就是钢铁产品生产专业化程度低。目前,国内钢铁联合企业大都是“万能型”工厂,板、管、棒、线、型材等都生产,专业分工不明确,产品生产专业化程度低。而发达国家的大型钢铁企业集团,虽然多数也是由多个生产厂组成,但已经基本实现产品生产的专业化分工,钢铁大集团之间也基本上形成大类产品的分工。由于我国钢铁企业的集中度和专业化分工程度低,以及技术装备水平落后等原因,导致我国钢铁产品生产率低、成本高。

我国钢铁工业的素质与不仅与世界发达国家存在较大差距,同发展中国家相比,如俄罗斯,也存在成本劣势。目前,我国100万人生产世界钢铁产量的15%,而世界钢铁其余的85%是由发达国家的130万人生产。我国人均产钢量目前只相当于世界平均水平的32%,吨钢消耗的工时比发达国家高出六倍多,在生产成本上基本没有竞争优势。

2.2市场竞争日益激烈。20世纪90年代初,由于房地产热的带动,国内钢材价格飞涨,受利益驱使,国内钢铁行业低水平重复建设非常严重,导致国内钢铁生产出现结构性过剩,钢铁企业普遍面临巨大的生存压力,竞争十分激烈。目前,国内中小型材、低档次产品的生产能力处于相对过剩状态,而高附加值产品的自给率较低,大部分依赖进口,随着国内市场的不断开放,国产钢材面临进口钢材的冲击增大。

随着我国的进一步对外开放,我国钢铁市场正在与国际钢铁市场接轨,参与国际竞争。根据冶金行业近几年的统计分析,在普通产品方面,如线材、螺纹钢、型钢和钢坯等方面,我国的竞争对手主要是独联体、韩国及巴西,它们在这些产品上具有成本优势;而对于高附加值、高性能产品方面如汽车板、涂镀层板、合金钢棒型材等产品,竞争对手主要是日本、韩国、德国等国家。

中国钢铁工业发展状况及发展趋势

2.3中国钢铁企业平均技术装备水平低,结构不合理,技术改造和产业升级任务十分艰巨。据冶金工业部门的统计,我国落后工艺和装备还占相当比例,如炼铁高炉中约有4500万吨的生产能力是属于落后的,约占总能力的35%,其中属于限期淘汰的100立方米以下的小高炉生产能力约有3000万吨。炼钢设备中,转炉约有1200万吨是属于落后生产能力,占目前转炉的12%;电炉约有1000万吨属于落后生产能力,占电炉能力的34%。轧钢设备中,具有国际先进技术水平的设备不到50%。另外,我国用于新产品开发与投产的费用与发达国家相比偏少。国际钢铁企业用于企业新产品开发费用一般在年销售收入的4%以上,而我国钢铁企业用于企业新产品开发年投入不足销售收入的1%。

2.4钢材产品结构性失衡矛盾突出。就我国的钢铁产品结构而言,一方面,国内钢铁企业的主导产品螺纹钢、小型材、线材等普通钢材(长线产品)生产能力严重过剩,另一方面,高附加值和高技术难度的品种(“双高”产品),如不锈钢板和冷轧、热轧薄板、硅钢片、镀锌板等,有的国内不能生产,有的虽能生产但生产能力严重不足。产品供不应求,国家每年需要大量进口。产品结构失衡反映在技术指标上主要是:第一,我国钢铁行业的钢铁比(生铁总产量与钢材总产量之比)高:世界主要产钢国家一般水平在0.5 0.7之间,中国还在1.0以上,明显高于其他国家。第二,我国钢铁行业的板管比(板材、管材总产量与钢材总产量比)低:中国目前只有39%左右,低于世界平均水平。在钢铁产品中,板管类产品代表高附加值、高技术的产品,板管比低意味着我国钢铁产品结构还处于低档次状况。此外,产品结构还不能完全适应国内经济发展的需要,部分高档钢材产品国内市场占有率比较低,有待进一步提高。如我国的国产热轧薄板、冷轧薄板、镀锌板、硅钢板的产量还远不能满足国内市场需求,国内市场占有率较低;而与此同时,国产一般建筑类钢材产能又大于市场需求,供需结构矛盾比较突出。

中国钢铁工业发展状况及发展趋势

2.5钢铁产品质量有待进一步提高。中国钢铁产品的实物质量水平与国外相比还存在一定的差距。据冶金行业调查统计,目前,国内只有少部分企业的产品在质量上可以和国外大公司相抗衡,而多数企业产品在档次上比较低。据冶金行业调查统计,我国目前不能生产、产量低和质量达不到用户要求等原因,每年需从国外进口大量钢材,而能生产的大宗钢材品种,产品质量与国外相比也存在一定差距,如钢制纯净度低、有害气体和杂质含量较高、性能的均匀性差。

2.6钢材产品销售服务水平相对较低。钢材产品销售服务是提高产品竞争力的一个重要方面。由于我国钢铁企业对市场销售服务的重要性还没有充分认识,营销网络刚刚开始建立,同国外成熟的营销体系和服务理念相比,存在很大差距。目前,国内钢铁销售存在的主要问题是:国内市场缺乏统一协调管理,企业产品相互压价;市场信息反馈功能弱,销售与产品开发功能不能结合,企业产品开发缺乏市场的引导;加工服务中心是完善分销网络不可或缺的一部分,而我国的加工服务中心基本上处于空白;另外在对外营销方面,一是对外营销缺乏相应的联合,各自为政,各设网点,成本高,收益差,二是对开拓国际市场重视不够,尚未建立完整的国际市场营销网络。3.钢铁工业的发展趋势

钢铁是国民经济的基础产业,受整体经济发展的拉动,钢铁行业也在快速发展,因此钢铁行业成为目前的热点、焦点行业。可以肯定,我国未来对钢铁的需求是非常旺盛的,我国的钢铁行业前景应该是非常好的。

当然,随着我国产业结构调整步伐的加快,我国钢材需求将发生变化,消费结构将继续保持多层次、多样性,并逐步向高层次演化。板带材的消费量及比例将保持较强的增长势头,长材的消费比例将逐步下降,但消费量仍保持一定的增长。

中国钢铁工业发展状况及发展趋势

从技术方面分析,我国钢铁行业的主要技术经济指标,如连铸比、吨钢综合能耗、成材率、板管比虽有明显改善,但与发达国家相比仍有较大差距,还有广阔的技术改造与创新空间。总体看来,钢铁行业在我国不但不是夕阳工业,而且还将在相当长的一段时间内保持快速发展势头。

我国钢铁工业将以市场需求为导向,以结构调整为重点,以经济效益为中心,以科技进步为动力,转变增长方式,建立科技创新体系,加速提高自主技术创新能力和国际竞争力,全面提高钢铁工业的质量和效益;在产量满足需要的前提下,优化流程,降低成本,在继续提高连铸比的同时,努力提高铁水预处理比与精炼比,使钢质纯净度有较大的提高;调整钢材品种结构,开发新的超细晶粒、高纯洁度、高均匀性的新一代钢铁材料,提高国产钢材市场占有率;扩大先进装备的比重,使大型钢铁企业的技术装备达到国际水平,在国内建成几个精品生产基地;加强环保,治理污染,保持与环境协调发展。4.结束语

冶金专业是一门研究从矿石提取钢铁或有色金属材料并进行加工的应用性学科,是国民经济建设的基础,是国家实力和工业发展水平的标志,它为机械、能源、化工、交通、建筑、航空航天工业、国防军工等各行各业提供所需的材料产品。现代工业、农业、国防及科技的发展对冶金工业不断提出新的要求并推动着冶金工程学科和工程技术的发展,反过来,冶金,冶金工程的发展又不断为人类文明进步提供新的物质基础。5.参考文献

【1】薛正良,钢铁冶金概论,冶金工业出版社 2008 【2】黄希钴, 钢铁冶金原理(第三版), 冶金工业出版社, 2002 【3】沈时英,冶金概论,冶金工业出版社,1988

第二篇:冶金导论论文

二次能源(废弃物)的综合利用

如今,能源问题日益严峻,钢铁冶炼耗能逐渐加大,面对钢铁企业的可持续发展,国内外钢铁企业不断开发应用新技术新工艺,推行钢铁冶金行业的清洁生产,在能源结构调整、冶金工艺优化以及废弃物综合利用方面收到了良好的效果,实现了经济效益、社会效益和环境效益协调统一。高炉余压利用一高炉煤气余压透平发电技术(TRT技术)现代钢铁厂炼铁高炉大都采用高压炉顶操作来提高冶金强度和产量,从炉顶排放出的高炉煤气具有较高的压力和温度,为促进这些可燃废气的综合利用,通常采用目前国内外公认的先进的高炉煤气余压透平发电冶金节能装置.TRT技术是利用一台透平膨胀机在减压阀前作功,将煤气的压力能和热能转化为机械能并驱动发电机发电的一种能量回收装置.TRT在运行中不需要燃烧,不改变原高炉煤气的品质和正常使用,却回收了相当可观的能量(约占高炉煤气鼓风机所需能量的30%)[3],同时又具有净化煤气,减少噪音,改善煤气炉顶压力控制品质的作用.更为可贵的是它本身不产生新的污染,发电成本极低.因此,TRT是典型的高效:谛能环保装置.目前,随着高炉向大型化和高压炉顶方向发展以及干式除尘装置的应用,TRT也正朝着干式和干湿两用型轴流反动式的方向发展.在国内,宝钢应用TRT技术较为成熟,平均吨铁回收电力34kw〃h,处于世界先进水平. 2 焦碳余热利用一干熄焦技术

钢铁生产中余热利用主要放在余热资源率较高、余热回收技术成熟的干熄焦余热、烧结矿显热、热风炉烟气余热回收等几方面,在这里介绍一下成熟而先进的干熄焦技术.

干熄焦(CDQ)是通过循环风机将冷的惰性气体(通常为氮气)鼓人干熄炉内与炽热红焦换热后将焦碳冷却,而吸收了红焦热量的惰性气体将热量传给锅炉产生蒸汽,最终冷却后的惰性气体经风机鼓人干熄炉循环使用.其主要流程包括焦碳流程、惰性气体流程、锅炉汽水流程、除尘流程等.与水熄焦相比,干熄焦具有明显的节能、环保和改善焦碳质量的作用.干熄每吨红焦所回收的显热可产生0.4~0.5 t中压蒸汽[4],且减少了湿熄焦所需的熄焦水量,又可以改善周围环境,清除水汽及有害气体对设备和建筑物的腐蚀,清除和控制有毒、有害物的排放,提高焦碳质量.使其机械强度提高、真密度增大、耐磨性改善,反应性降低. 3 炉渣的处理

钢铁冶金生产离不开炉渣,包括高炉渣、转炉渣、电炉渣和铁合金渣等.传统思想认为,冶金渣是废弃物,但随着钢铁技术的发展和环境保护意识的提高,人们转变了对渣的认识,渣实质上是冶金生产过程中的一个中问产品.因此,人们不断地研究开发出各种新技术工艺综合利用备种冶金渣.

下面着重介绍一种处理高炉渣的新技术——干式成粒法[5].干式成粒法是建立在熔渣经变速旋转杯或盘雾化成粒的基础上,熔渣从流渣道送至旋转杯的中心,借助离心力将其抛至边缘,同时被冷却.为防止颗粒与室壁粘连,渣颗粒在飞向水冷墙壁之前必须完全固化,水玲炉壁的作用是增强冷却和固化效果,提高成粒质量和数量.

固化颗粒落入渣粒运动床并确保不结块.空气冷却分配器可使床层保持运动并使渣粒作圆周运动.然后一部分已冷却渣粒落入料槽,一部分渣粒等待飞落的新渣粒以助其冷却.在出料口渣料进一步被空气冷却,减少固化渣粒在旋转杯飞出过程中粘附墙壁的可能性.最后冷却空气被加热,并经烟道排出,这些携带着余热的热空气再经热风炉加热后送入高炉,充分利用其显热;出的高炉渣可以用于生产水泥和耐火材料.这种思路也值得推广到其他冶金渣的处理上.经济的高速发展和人类社会的不断进步,使人们的生活水平不断提高,各种基础设施不断完善,但面对日趋恶化的环境、日趋短缺的资源,我们不得不对过去的经济发展过程进行反思,彻底改变长期沿用的大量消耗资源和能源的粗放式发展模式,推行行业的清洁生产,才能实现可持续发展.钢铁冶金企业是高能耗、高污染的企业,推行清洁生产是实现环境保护和可持续发展的必由之路.在众多清洁生产的措施中,新技术和新工艺的开发应用是实现这种目的关键因素和有效途径.近年来,许多国家围绕着清洁生产不断地开发出了许多新技术和新工艺,带来的结果是能源结构的调整、工艺的优化革新和废弃物的综合利用,收到了可观的经济效益、社会效益和环境效益. 参考文献:[ 3] 叶长青.高炉煤气余压透平发电装置(TRT)的发展与创新[J].节能.2000,8:13-15 [4] 赵沛,蒋汶华.钢铁节能技术分析[J].北京:冶金出版社,1997,71-76 [5] 谢锴.处理高炉渣的先进方法—干式成粒法[J].冶金能源.2002.21(1):49-51

第三篇:冶金工程设计导论

冶金专业是一门什么样的学科呢?它是一门研究从矿石提取钢铁或有色金属材料并进行加工的应用性学科,培养的是冶金工程领域科学研究与开发应用、工程设计与实施、技术攻关与技术改造、新技术推广与应用、工程规划与冶金企业管理等方面的高层次专门人才。高新技术和学科发展相结合是本专业的一大特点。

主要体现在以下两个方面:

一是通过冶金过程的优化和新技术开发最大限度地满足相关产业对高品质冶金材料的要求。二是最大限度地减少冶金生产的资源和能源消耗,减少对环境的污染。这也是本专业的前沿主攻方向。考虑到我国冶金行业清洁化生产水平低和特有的复合矿资源多样化的特点等因素,该专业不仅要致力于研究流程中废弃物的“四化”(即减量化、再资源化、再能源化和害化)处理综合技术,而且还要对复合矿冶炼技术进行环保和经济意义上的评价和指导,并在此原则下开发复合矿的综合利用技术,最终实现我国高品质冶金材料的生态化生产。根据以上特点,冶金专业主要有三大研究方向。一是冶金物理化学方向:学习内容包 括冶金新理论与新方法、冶金与材料物理化学、材料制备物理化学、冶金和能源电化学等。二是冶金工程方向:学习内容包括钢铁和有色金属冶金新工艺、新技术和新装备的研究、现 代冶金基础理论和冶金工程软科学、冶金资源的综合利用、优质高附加值冶金产品的制造和 特殊材料的制备技术等。三是能源与环境工程方向:学习内容包括冶金工程环境控制、燃烧的清洁燃烧与能源极限利用、工艺节能与余能回收、工业固体废弃物、城市垃圾处理、大气污染控制、技术及新产品的开发与试验工作等。这些广泛的分支领域构成了冶金工程的重要 组成部分,极大地推进了冶金材料行业的发展与国家的工业建设。

随着现代科技的迅猛发展,该专业对从业人员的综合素质也提出了较高的要求,如计算 机技术在冶金工程领域的广泛应用,也就使得学生在大学里就要逐步接触并掌握到丰富而实 用的计算机知识。另外,该领域在国内的发展与国外先进技术的交流也日益频繁,对学生外 语的使用也提出了相当高的要求。

冶金专业与许多学科密切相关,相互促进发展。冶金工程包括钢铁冶金、有色金属冶两大类。冶金物理化学是冶金工程的应用理论基础。该工程领域与材料工程、环境工程、矿物工程、控制工程、计算机技术等工程领域及物理、化学、工程热物理等基础学科密切联 系,相互促进,共同发展。

第四篇:冶金论文

重庆科技学院 冶金工程概论课程论文

计算机技术在冶金企业中的应用于发展趋势

摘要:主要介绍了仿真技术,三维空间计算机辅助技术,计算机辅助工程(CAE)等概况及应用。

关键词:计算机仿真 三维空间 计算机辅助工程

1仿真技术

1.1仿真技术的概述

仿真技术亦称为模拟技术。仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一门综合性技术。仿真技术集成了当代科学技术中多种现代化顶尖手段,极大地扩展了人类的视野和时限能力,在科学技术领域产生着日益重要的作用。

随着计算机软硬件的高速发展,使得计算机模拟仿真技术也得到了长足的发展,目前计算机模拟仿真技术已经在国内外广泛应用。计算机模拟与仿真技术在冶炼、精炼、连铸、轧制过程的流场、温度场、应力场以及金属组织性能的预测与控制,钢铁制造过程的成分与板形精确控制、工艺技术优化、新产品开发的预先模拟试验,都需要模拟与仿真。它不但可以节约新产品、工艺开发时间和费用,提高试验成功率,而且,容易形成企业自主知识产权的工艺与产品,从国内外钢铁企业的发展来看,企业的核心技术部分来自于计算机模拟与仿真技术以及数据积累而形成的精确控制模型。

1.2仿真技术的应用

我国在这一领域起步较晚,但是随着科学技术的发展,以及市场竞争的日益激烈,很多企业都在工艺方面加强力度,目前很多研究机构及高校利用有限元分析对于冶炼过程和轧制过程进行了相关研究。国内各大钢铁公司利用模拟仿真技术,针对型钢的轧制过程进行了相关理论研究工作,在新规格、新产品的开发方面取得突破,同时对汽车用钢进行了模拟分析,直接对其客户进行仿真分析及模具设计的理论支持。有限元软件中的Multiphysics模块主要用于结构和温度场分析,属于多物理耦合场分析模块:LS-DYNA模块主要用于大变形分析,例如轧制、冲压等;CFX模块主要用于流场分析,例如在冶金界的高炉、转炉、电炉、大包、中间包、结晶器等方面的流场分析:DYNAFORM模块主要用于冲压成形,例如汽车板的冲压。

2三维空间计算机辅助技术

2.1三维空间计算机辅助设计技术的概述

三维空间计算机辅助设计技术的最大特点是:所见即所得。就是说设计人员通过各种三维空间软件在计算机上进行建立模型操作,通过软件的渲染,功能就能真实表现出实际需要的各种实体模型。而且三维空间软件都有巡视功能,操作者可以通过移动鼠标调整视线的不同位置来观察,甚至把自己置身一个炼钢厂房中查看整个冶金工艺流线的各种设备和管道的布置。

2.2三维空间计算机辅助技术的应用

根据工艺专业所提设计资料通过CAD软件(CAD、3D CAD、PKP Mcad等平面及三维设计软件)作图绘制。而后进行确认,同时进行实体模型的建立和渲染。大型冶金工业设计牵扯工艺、设备、建筑、结构、通风、给排水等多个专业,各专业之间需要协调工作才能完成设计任务。随着计算机网络技术的日臻成熟,现已可以实现不同专业、多工作站共同工作的网络平台三维空间计算机辅助设计技术的应用。各专业设计工作通过网络平台的三维空间计算机辅助设计技术互相对设计方案进行调整,直至符合要求。

三维空间技术的载体是计算机系统。系统组成分硬件和软件。硬件主要有性能优良的计算机,大屏幕显示器,彩色喷墨打印机;软件主要有Windows操作系统,CAD、3DCAD、PKPMcad等平面及三维设计软件。大型冶金企业设计牵扯工艺、设备、建筑、结构、通风、给排水等多个专业,各专业之间需要协调工作才能完成设计任务。随着计算机网络技术的快速发展,现已实现不同专业、多工作站共同工作的网络平台三维空间计算机辅助设计技术的应用。

3计算机辅助工程

3.1计算机辅助工程的概述

计算机辅助工程(CAE),包括工程和制造业信息化的所有方面,但是传统的CAE主要指用计算机对工程和产品的功能、性能与安全可靠性进行计算和优化设计,对未来的工作状态和运行行为进行模拟仿真,及早发现设计缺损,改进和优化设计方案, 证实未来工程或产品的可用性和可靠性。

CAE技术主要体现在有限元分析、虚拟仿真技术和优化设计三个方面。有限元分析的主要对象是零件级,包括结构刚度、强度分析、非线性和热场计算等内容;虚拟仿真技术的主要对象是分系统或系统,包括虚拟样机、流场计算和电磁场计算等内容;优化设计的主要对象是结构设计参数。

从运用有限元法对已设计工程或产品的性能进行简单校核,逐步发展到对工程或产品性能的准确预测,再到对工程或产品工作过程的精确模拟仿真,有限元法和仿真技术发挥了重要作用,提高了工程或产品的性能、质量。而最优化技术的采用又降低了工程或产品的成本,缩短了开发周期,减轻了人的劳动,并大大增

强了产品的竞争力。

在工程中应用CAE技术,需要一个载体,而 CAE技术的载体就是CAE软件。CAE软件是结合计算力学、计算数学、相关的工程科学、工程管理学和现代计算技术,而形成的综合性、知识密集型信息产品,是实现工程或产品的计算分析、模拟仿真与优化设计的工程软件,是支持工程科学家进行创新研究和工程师进行创新设计最重要的工具和手段。

常规的通用CAE软件一般均由前处理、有限元分析、后处理三部分组成,每部分的组成及功能如表 1所示。

表1 通用CAE软件的组成及功能

名称 组成及功能

前处理 三维实体建模与参数化建模,构建的布尔运算,有限元剖分与节点编号,节点参

数生成,载荷与材料数据输入,节点载荷生成,有限元模型信息的生成等

有限元

分析 有限单元库,材料库及相关算法库,约束处理算法,静力、动力、振动、线性与非线性解法库及相应的有限元系统组装模块库等

后处理 有限元分析结果的数据平滑,各种物理量的加工与显示,根据设计要求对产品按

工程规范进行设计数据检验,优化设计,绘制设计图等

3.2 计算机辅助工程的应用

钢铁工业是世界工业化过程中最具成长性的产业之一,长期成为各个工业化国家的重要产业。在我国,虽然整个现代化建设以传统原材料为基础的状况已在发生改变,但钢铁仍是基本的结构材料和产量最大的功能材料。钢铁工业具有很强的产业关联性,上游影响交通运输、采矿、耐火材料等产业,下游影响建筑、汽车、造船、金属制品、机械电子等行业。钢铁工业依然是工业化国家最重要的产业部门之一,其发展状况也是衡量其工业水平和综合国力的重要指标。世界范围内钢铁工业正面临着新技术蓬勃发展、结构变革的局面。用高新技术改造传统钢铁工业,加速结构优化,提高市场竞争力,是发展钢铁工业的主流趋势。计算机辅助工程(CAE)技术以其高效率、低成本的优势在钢铁工业中得到了广泛的应用。通过CAE技术,可以对钢铁工业中从冶炼到加工的各个工艺过程进行计算机过程模拟、系统优化、自动控制,采用计算机对生产过程、工艺参数及生产结果进行模拟和对整个系统进行优化,以实现生产的超前规划和设计。

冶金设备作为冶金技术的载体,本身具有大型、重载、高速、连续、自动化、精密化等特点,而且往往工作在高温、重载、高粉尘、大冲击等恶劣条件下,许多性能无法采用实物试验的方法获得。近年来,国内外冶金生产中,不断出现重大设备事故,也都涉及到设备的力学行为。同时,冶金工业的发展对机械设备的性能和

使用条件提出了许多新的要求。如近年出现的短流程技术及连铸连轧技术,这些关键技术集中表现为要解决的关键结构设计及力学问题,包括强度问题、运动学及动力学问题和传热及热应力问题,也对冶金机械设计研究和开发提出了更高的要求。因此CAE技术在冶金设备的设计研究上也得到了广泛的应用。

目前CAE技术在炼铁生产中取得的主要成果有:采用有限元法建立高炉复杂料面及中心装焦条件下的煤气流场和压力场解析模型、高炉固态炉料流场和势函数解析模型,分析高炉中心装焦条件下的高炉状况。利用CAE技术计算分析高炉冷却水的稳定性、流速、冷却水管与冷却壁本体的间隙及冷却的高度对长寿高效高炉冷却壁寿命的影响。采用有限元法对高炉炉体结构进行应力分析等。在炼铁机械设计优化方面,CAE主要发挥作用在于针对上料系统、烧结机、球团造球机、回转窑等一系列相关设备的力学分析和优化设计,提高了机械设备的效率和寿命,降低了机械的制造成本,在改善噪音和震动方面也发挥了重要作用。

结束语:随着计算机技术的快速发展,冶金企业中许多以前无法解决的复杂计算和过程控制,如今借助计算机技术都可实现或者有望解决。现代冶金企业领域将越来越多地使用和依靠计算机技术来处理难以用常规手段解决的问题。仿真技术在冶金企业中冶炼、精炼、连铸、轧制过程的流场、温度场、应力场以及金属组织性能的预测与控制,钢铁制造过程的成分与板形精确控制、工艺技术优化、新产品开发的预先模拟试验,都得到了快速发展,且不可缺少的技术手段。三维空间计算机辅助设计技术的在冶金设计中的应用极大的提高了设计效率和设计质量。在冶金工业设计和施工中再也不会出现设备、管道、主体结构打架的情况了。三维空间计算机辅助设计技术的发展将会在国家实现技术现代化的复兴中起到关键性的作用。CAE技术已成为钢铁工业中新工艺和新产品的开发研制、生产工艺优化、设备能力考察和优化设计过程中不可缺少的重要手段,其应用前景也越来越广。

参考文献

孙会朝 刘超,莱钢模拟仿真新技术应用,莱钢科技,第5期

朱苗勇 樊俊飞,计算机模拟仿真在过程冶金中的地位和应用,宝钢技术,1997,4

李瑜 张雪驰,三维空间计算机辅助设计技术在冶金设计中的应用,河南冶金,2009,8于宏林 方庆館,计算机辅助工程在钢铁工业中的应用,现代冶金,2009,2

第五篇:冶金论文

钢铁冶金企业防火对策

摘要:针对于钢铁冶金企业规模扩大的同时,我们有必要考虑到在钢铁冶金生产中的消防安全问题,以保证安全生产和在生产过程中生产人员以及生产设备的安全。从而以保证钢铁生产对国民经济的促进和保证,使钢铁冶金生产达到稳定,不会因消防安全问题带来巨大的损失。

关键词:钢铁冶金 ;消防安全 ;防火措施

引言:随着科技进步和经济发展, 钢铁冶金企业规模越来越大, 钢铁产量逐年提高, 对国民经济起到了重要的影响作用。但钢铁冶金企业的消防安全形势却不容乐观,近十年来发生了多起重特大火灾, 损失巨大。

1.钢铁联合企业的生产

1.1铁矿石的开采要求

铁矿石开采技术要求:一般来说,必须有工业价值的矿床,然后才能考虑开采问题。

因为我国富铁矿石不多,品味越高,质量越好,我国的工业品味定在大于45%,含磷越低,铁矿石的冶炼和分选的成本越低,是冶炼厂青睐的,价格越较高。

1.2开采设备

开采设备分两种:

1.露天开采:成本低,利润高,主要是利用挖掘机,装载机,汽车,风钻机,炸药等。

露天开采的采矿工艺,长期采用全境推进,宽台阶缓帮作业的采剥工艺,现在已开始转向陡帮开采,横向推进新工艺。在爆破器材和技术方面也有所发展,陆续采用了岩石炸药,铵油炸药,硝铵炸药乳化油炸药等等,在生产中应用了大区多排孔微差爆破技术。

2.地下开采:成本较高,还需要坑道支架和通风设备,铺设矿山轨道,利用专门设备小火车运到地表。

目前,地下采矿的开采方法主要是无底柱采矿法,大约占72%,其次是浅孔流矿法,占9%,房柱式和壁式采矿法占8%,空场法占7%,有底柱分段崩落采矿法占3%,充填法占1%,地下开采的矿山巷道支护由50年代的木支护发展到了现在木支护,混凝土支护和喷锚支护三种方法并存的局面,凿岩装运也逐步向机械化方向发展,现在已普遍采用凿岩台车凿岩,装运机铲装,电机车运输。由于采矿方法,技术装备,支护方法等方面的不断改进,地下矿山的全员劳动生产率有了很大提高。

如果是向冶炼厂提供矿石,联系到火车车皮就行,如果是提供半成品,还需要一套设备,把矿石磨细,进行初步分选然后提供给冶炼厂。

1.3选矿

在矿山要对铁矿石和煤炭进行采选,将精选炼焦煤和品位达到要求的铁矿石,通过陆路运送到钢铁企业的原料厂进行配煤和配矿、混匀,在分别在焦化厂和烧结厂炼

焦和烧结,获得符合高炉炼铁质量要求的焦炭和烧结矿。

1.4冶炼

高炉是炼铁的主要设备,使用的原料有铁矿石、焦炭和少量溶剂,产品为铁水、高炉煤气和高炉渣。铁水送炼钢厂炼钢;高炉煤气主要用来烧热风炉,同时供炼钢厂和轧钢厂使用;高炉渣经水淬后送水泥厂生产水泥。炼钢主要有转炉炼钢和电炉炼钢流程。通常将“高炉—铁水预处理—转炉—精炼—连铸”称为长流程,而将“废钢—电炉—精炼—连铸”称为短流程。目前,大多数短流程钢铁生产企业也开始建高炉和相应的铁前系统,电炉采用废钢+铁水热装技术吹氧熔炼钢水,降低了电耗,缩短了冶炼周期,提高了钢水质量,扩大了品种,降低了生产成本。

2.冶金与消防的联系

2.1火灾案例的统计与分析

钢铁冶金企业规模庞大、工艺复杂、流程性强, 在冶炼和热加工过程中需要耗用大量的煤、焦炭、燃油和电能, 钢铁冶炼的生产过程属于高温、高压的生产过程。虽然生产钢铁的原料和其成品本身都是不燃烧物,但是在生产和加工过程中需要大量使用燃料和易燃、易爆气体, 如纯氧、氢气、乙炔等, 而且, 钢铁冶炼过程中要产生大量易燃易爆气体, 如高炉煤气、转炉煤气等。正是由于钢铁冶金企业的这些行业特点决定了钢铁冶金企业火灾事故具有多发性和高损失的特点。

表1 是对近十年来钢铁冶金企业在生产过程中发生的74起火灾实例及其起火部位和火灾类型的统计和分析。虽然有限的火灾次数统计不能完全代表钢铁冶金企业的实际情况, 但还是可以看出火灾易发部位和重点防火区域。

2.2火灾危险性分析

2.2.1火灾重点防火区域

钢铁冶金企业的重点防火区域可分为以下8 类:

(1)电缆夹层、电气地下室、电缆隧道、电缆竖井等电缆火灾危险场所;(2)液压站、润滑油站(库)、储油间、油管廊等以中、高闪点油类为主的可燃液体火灾危险场所;(3)变压器、电气控制室等电气火灾危险场所;(4)生产、储存、使用可燃气体或其它粉料的爆炸性火灾危险场所;(5)苯、涂料等低闪点可燃液体火灾危险场所;(6)煤、炭等物料运输皮带系统火灾危险场所;(7)不锈钢冷轧机、修磨机及热轧机等生产设施;(8)办公楼、化验楼等中、轻危险等级场所。

仅针对钢铁冶金企业中火灾发生次数最多的电缆火灾危险场所及电气火灾危险场所进行分析。

2.2.2火灾危险性分析

2.2.2.1电缆火灾危险场所

钢铁冶金企业存在着大量的电缆隧道、电缆夹层、电气地下室及电缆沟等, 在这些区域内, 电缆布置密集, 数量巨大, 环境恶劣, 相互贯通, 遇到电缆本身故障和外界火源, 很容易引起电缆着火, 造成巨大损失。电缆火灾事故不论是由外界火源引起的, 还是由于电缆本身故障引起, 在着火后, 都具有下列特点: 一是火势凶猛, 蔓延迅速。电缆本身是可燃的物质, 尤其是聚氯乙炔等塑料电缆和充油电缆, 更易着火蔓延, 而且电缆隧道内的电缆为大量密集交叉或架空敷设, 一旦着火, 会沿着电缆群束迅速延燃扩大。试验研究表明, 电缆着火后最快传播速度可达20 m öm in。而多起重大火灾案例分析也表明, 约10~ 20 m in 后, 大火便顺着电缆延燃到主控制室、继电室等场所烧毁控制盘、继电盘、仪表盘等, 损失十分严重。二是扑救困难, 易引发二次危害。电缆隧道一般都纵深距离长, 宽度窄, 火灾时极易堵塞;同时由于电缆隧道中散热困难, 热烟无法顺利排出。试验表明, 起火隧道的温度可由400 ℃很快上升到800~ 900 ℃, 易较快发生轰燃。同时, 由于隧道处于地下, 扑救时无法观察火灾状况和具体位置,选择火灾扑救路线困难, 只能通过隧道出入口进入, 且地下照明条件差, 不易迅速接近起火位置。地下建筑物结构对于通信设备的干扰等等因素都造成了火灾扑救的困难。三是火灾损伤严重, 修复时间长。电缆火灾事故造成损伤严重, 不仅直接烧毁大量的电缆和其他设备, 同时还有其他特殊危害, 如控制回路失灵等而造成事故扩大。据统计, 1960~ 1984 年电力行业的62 次电缆火灾, 修复超过1 个月的占有35 次, 占总数的56% , 达半年以上的有16 次, 占总数的16% , 间接损失巨大。

电缆火灾事故发生原因归纳起来有两个, 一是由于电缆过热、短路、绝缘老化或绝缘性变坏等内因引起的火灾事故;二是由于外界火源等可燃物着火波及下的外因引起的火灾事故。据本次调查的统计, 在26 例各种原因、不同区域电缆火灾中, 因电缆本身故障引发的火灾占16 起, 占到了总数的62% , 外因导致的火灾事故共10起, 约占38%。

2.2.2.2电气火灾危险场所

钢铁企业存在着大量的、繁简不一的电气室、控制室、操作室、仪表室、计算机室等, 其内部存有大量的电缆和用电设备, 在设备故障或线路短路时极易发生火灾, 而且一旦发生火灾, 将会影响全局, 造成大面积的停产, 损失巨大。

2.3防火对策

钢铁冶金企业防火设计应充分考虑钢铁冶金企业各系统的特点和火灾危险性, 并从防火目标的提出、工艺生产系统的特点、明确钢铁冶金企业的重点防火区域以及如何采取确实有效的防火措施等方面, 制定一套完整有效的消防安全管理体系化标准, 以确保真正的生产安全。

2.3.1防火设计目标

对于钢铁冶金企业中的重要防火区域, 应从“防止发生火灾;快速探测并扑灭已发生的火灾;防止尚未扑灭的火灾蔓延而减轻火灾”的角度来形成设计目标。“防止发生火灾”, 是要求将钢铁冶金企业运行中发生火灾的概率降至最低, 需要将防火设计结合工艺和生产管理统一考虑。“快速探测并扑灭已发生的火灾”, 是要求采用自动、半自动等主动的消防技术, 实现火灾的早期探测和早期扑灭, 从而减少火灾的损害。“防止尚未扑灭的火灾蔓延而减轻火灾”, 是要求采用被动防火分隔, 延缓或阻止火灾的发展, 赢得救援时间。

2.3.2防火设计要素

一是建筑防火部分。要紧密结合钢铁冶金企业的实际情况, 对各建(构)筑物及工艺设施的火灾危险性进行全面、详尽而科学的分类, 从安全疏散、建筑构造等方面

加以考虑。二是工艺系统的防火设计, 这是工业消防中应重点关注的问题。首先, 确定工艺系统中的重点防火区域和区域内的主要建(构)筑物及设施, 根据火灾危险性分类, 采取相应的防火保护措施, 避免引发火灾, 降低燃烧几率, 控制火灾的蔓延燃烧。其次, 确定在发生火灾的情况下, 人员施救的必备措施和设施, 确保消防人员可以进入场所进行扑救。最后, 便是确定在发生火灾的情况下, 是否启动自动灭火系统的工艺要求。自动灭火系统应结合工艺安全因素, 确定合适的启动、退出时机。三是火灾报警、防排烟、消防电气等系统部分。从主动防火、消防系统工作保障等方面予以考虑。

2.3.3统一规划

钢铁冶金企业由于企业内部发展的需要, 每年都有大量的新建、改建及扩建项目, 这些项目由于建造时间不一, 所遵循的建造标准也不统一, 导致各工艺系统的防火安全保证能力不一致。而钢铁冶金企业由于其流程性生产性质的要求, 生产工艺中每一环节的不安全都可能导致其它系统不能正常生产, 因此, 不论从技术层面、资源共享、维护管理、可持续发展等方面都应统一进行消防规划。

2.3.4消防安全评估

钢铁冶金企业的消防安全是一个比较宽泛的概念,涉及的方面较多, 最重要的便是生产工艺与火灾的发生息息相关。一方面火灾会造成工业企业重要物项或工艺过程的损害和直、间接损失;另一方面工艺安全的因素也会造成火灾, 而进一步致损。因此, 消防安全和生产安全是不可分割的, 需要结合工艺生产安全因素进行综合的消防安全评估。

参考文献:

[1] 郭军英.浅析火灾自动报警系统设备运行状况及对策[J].价值工程,(05):109-110

[2] 吴学华.特殊的军礼[J].新安全 东方消防, 2009,(02):42-43

[3] 开封指导漯河[J].工友, 2009,(04):36

[4] 吴学华.马元江“寻亲”[J].新安全 东方消防, 2009,(01):40-41 2009,

冶金导论论文
TOP