第一篇:论文 相控阵雷达天线的工作原理及应用
相控阵雷达天线的工作原理及其应用
Xx(鲁东大学 物理学院 09级物理一班 2xxxxxxxxxxxx)
摘要:本文应用惠更斯菲涅耳原理以及平面衍射光栅原理简要的分析了相控阵雷达天线的工作原理,并简要说明了实际相控阵雷达的工作原理及其优点。最后举例说明了相控阵雷达天线的应用。
关键词:相控阵;相位差;天线;
PHased array radar antenna working principle and its applicatio
LuHan
(Lu dong university Physics institute 09 level physics class20092312579)Abstract: this paper applied the huygensI型SAR天线为集中馈电的相控阵(下图)。它工作于C频段,峰值功率为5000W的波导窄片缝隙相控阵天线孔径面积为15m×1.5m, 质量300kg。方位方向上32个数字式铁氧体移相器可灵活地改变天线的波束指向和形状,使RadarsatП的天线阵面采用了T/R组件是一部接受和发射双通道,幅度和相位皆能数字控制的多极化、超分辨成像的固态游园【2】 相控阵微带天线。
Radarsat-I 的天线阵面
五、结束语
相控阵雷达是当今最先进的军事技术之一,在某种程度上来说它影响了当今新军事技术革命的发展方向。虽然存在一些不足之处,但我们有理由坚信:随着科学技术的进步,建立在物理基石上的相控阵雷达将会得到不断的完善。在未来,不论是军事斗争上还是民用事业上,相控阵雷达必定会发挥它不可替代的巨大作用。参考文献:
【1】相控阵雷达技术 张光义、赵玉洁 编著
【2】相控阵雷达天线 束咸荣、何炳发、高铁 著
【3】光学教程 第四版 姚启钧 原著 华东师大光学教材编写组改编
第二篇:相控阵雷达系统
揭秘预警机的相控阵雷达系统
现代预警机除了装备有先进的机载远程监视雷达,通常还装有电子侦察、敌我识别,以及通信、导航、指挥控制和电子/通信对抗等多种电子设备。它不但能及早发现和监视从各个空域入侵的空中和海面目标,还能对己方战斗机和其它武器设备进行引导和控制;不但是空中雷达站,更是空中指挥所,在多次现代战争中发挥着无以替代的作用,证明了自身重大价值,成为各国重点开发研制的尖端武器装备。目前,美国、以色列、俄罗斯、瑞典和英国等国装备了自行研制的预警机,日本、法国、印度、沙特、希腊、澳大利亚和巴基斯坦则不惜重金从他国购买预警机,现役预警机总数已逾300架,型号逾20种……从而也成为广大军事爱好者关注的焦点之一。
在我们生活的大自然中,有很多生物,它们的眼睛并不相同。例如,昆虫的眼睛和人类的眼睛就不一样。昆虫的每只眼睛内部几乎都是由成千上万只六边形的小眼睛紧密排列组合而成,每只小眼睛又都自成体系,各自具有屈光系统和感觉细胞,而且都有视力。这种奇特的小眼睛,动物学上叫做“复眼”。蜻蜓的复眼,在昆虫界要算最大最多的,占整个头部的2/3,最多可达2.8万只左右,是一般昆虫的10倍。这样它在空中捕捉小虫时,便能得心应手,百发百中,从不落空。而人们常把雷达比作战争的眼睛。实际上,就像生物的眼睛有很多类型一样,雷达作为战争的眼睛,也有很多种。今天我们要介绍的有源相位控制阵列,简称有源相控阵,就像蜻蜓的眼睛,在所有种类的雷达里面,具有最好的“视力”。那么,什么是相控阵?什么是有源?有源相控阵和蜻蜓的眼睛到底有什么相似之处?这就是我们今天的话题。
相位控制天线阵列——不靠天线旋转实现扫描
在回答什么是相控阵之前,我们需要知道雷达的天线为什么要旋转。我们看到一部雷达时首先看到的就是天线——个头又大又高的部分。雷达作为战争的眼睛,用来看目标的实际上就是天线。大部分雷达,特别是早期的雷达,天线都是需要旋转的,天线要旋转的根本原因是天线的视野不是“广角”的,为了使所有方向上的飞机都能“天网恢恢、疏而不漏”,就要让天线转起来,就像人的眼睛只能看到前方,如果想看到自己两侧和身后的东西,就必须转身一样。它的视野有多宽,主瓣宽度就有多大。也许有人会问,为什么不能把天线做成广角的?这是因为输入到天线的能量如果平均分配到全部方向上辐射,能量就会比较分散,自然就不能传得很远了,所以,雷达主瓣做得比较窄。举例来说,美国E-3预警机的雷达天线的主瓣宽度近似为1°。如果要把全部方向上的空域都扫描一遍,主瓣得先后处于360各不同的位置上。
雷达采用天线旋转的方式,虽然实现了全方向的监视,但缺点也是秃头上的虱子——明摆着的。雷达波下一次再照射到同一架飞机,必须等到天线转完一圈,这个时间叫做“扫描周期”,通常天线一分钟转6圈,也就是每10秒转1圈。在这种转速下,对同一架飞机的连续两次照射,得过10秒之后,这时敌方的飞机可能已跑到3千米以外了飞、其次,让天线旋转的机械装置要比天线不动时的复杂,而且驱动它转起来要耗费更大的能量,安全性和可靠性也不容易保证。
相控阵体制的出现使得天线不用旋转就能实现扫描。它是如何实现扫描的呢?还得从天线说起。天线有很多小的单元——从样子看,像是很多缝隙―每个小的单元都能利用电磁感应原理将雷达蕴含的能量转化成电磁波辐射到空中。雷达发射机向每一个天线单元输入变化着的电流,产生变化的电场和磁场,电场和磁场交替振荡、互相激发,组成能在空间传播的电磁波,雷达发射机所产生的能量就这样被天线带到空中了。在空中一些很小的区域蕴含大部分雷达能量的是主瓣,类似于人眼的正前方,视角最为集中;在空间大部分区域蕴含了其余很少一部分能量的就是副瓣,类似于人眼的余光区域。
主瓣和副瓣到底占多大区域.取决于每一个天线单元辐射出的电磁波在空间叠加后的结果。每一个天线单元辐射出来的能量既有幅度,又有辐角,这个辐角就是“相位控制阵列”中的“相位”。多个天线单元按一定的规律排列,就组成了天线阵列,用计算机分别控制天线单元各自的相位,这就是“相控阵”。控制在空中不同区域或方向上各个天线单元的辐射能量,形成雷达的“镜头”,使其先后照射到不同角度的空间,就像摄像机缓缓移动一样,这实际就是扫描。在实现扫描的过程中,组成天线阵列的天线单元,就像蜻蜓的一个个复眼,最后看到的图像,正是这些复眼所看到的图像合成。而一个个的天线单元组成的天线阵列,就是我们最后所看到的蜻蜓的一只大眼睛。
由于雷达的“镜头”不需要通过机械旋转来定位,因此克服了旋转天线的机械惯性,也克服了旋转天线扫描周期固定的弱点。如果天线先在某个空域上照射到一架飞机,之后又想“再顾茅庐”,只需要通过计算机输入合适的相位,天线就可以立即杀个“回马枪”,实现“指哪打哪”,其间仅需要克服微秒量级的电子惯性。这样,对某一架飞机连续两次照射的时间间隔就不再是扫描周期,而是人们所希望的其它值,比传统的机械扫描天线更容易盯住高机动目标。当然,相控阵天线“回马枪”的绝招不能老用,否则影响其它空域的扫描。就像一个人前行时如果老回头会影响前进的速度一样。举例而言,采用相控阵雷达的预警机在打仗时,如果在某个方向上发现可疑目标后,一般是在2秒钟后调转枪头,马上再往这个方向照射一遍,而不是10秒钟后再照射一遍。也就是说,机械扫描天线不能摸清敌机10秒内的动向,相控阵天线仅仅不知道敌机2秒内的动向。因此,如果让相控阵天线和机械扫描天线比武的话,结果应该是10:2,相控阵以绝对优势获胜!相控阵的这个优点,对于监视高机动性的战斗机是非常管用的。正如蜻蜓的眼睛,对移动的物体特别敏感,一个物体突然出现时,人眼需要0.05秒才能作出反应,而蜻蜓用不了0.01秒就能看清楚了,再加上它的复眼可以随颈部上下左右灵活转动,蜻蜓捕捉起猎物就不费劲了。
大家知道,蜻蜓的众多复眼还有一个奥秘,就是它们有分工或用途上的区别:头部上半部分的复眼负责看远处,下半部分负责看近处。由于相控阵天线可用计算机灵活地控制主瓣形成和扫描,因此人们就可以让众多的辐射单元各司其职―不同的单元组负贵产生不同的主瓣,利用一个天线阵同时产生多个波束,也就是形成多个雷达镜头,起到了蜻蜓复眼的效果,让每一个波束有各自指向和职责。
但是,相控阵天线有一个很大的缺点:随着雷达的“镜头”转到越来越偏的方向上时,视角会不断变宽,主瓣会不断变胖,能量逐渐分散到不可接受的程度。当天线主瓣指向就是天线平面的法线方向时(此时天线主瓣的位置指向垂直于天线阵面),主瓣最窄,能量最集中;当天线主瓣指向越来越偏离天线法线方向时,此时天线主瓣的位置与天线阵列的夹角减小,主瓣变宽。当天线主瓣扫描到偏离天线平面法向60°时,主瓣变宽一倍,能量已分散得很厉害,严重影响到远距离传播。所以,对于采用相控阵体制的天线,通常每一个天线最多只负责扫描偏离法线方向两侧60°范围(共120°)内的目标,以保证性能。如果需要扫描360°则需要三个或更多的天线。
区分有源和无源相控
阵相控阵有无源和有源之分。什么是无源和有源?简单地说,对于每一个天线单元来说,没有独立的功率辐射就是“无源”,有独立的功率辐射就是“有源”。由于“有源”和“主动”在英文中对应的是同一个单词(Active,积极的),因此,有的书上把“有源”译为“主动”,“无源”译为“被动”。
无源相控阵之所以是无源的,在于它的每一个天线单元所辐射出的能量是由发射机集中产生后送过来的,天线相位的改变依赖于计算机控制天线单元后面的移相器。有源相控阵之所以是有源的,在于它的每一个天线单元拥有独立的功率辐射,而不是先接受发射机送过来的功率,再辐射出去。实际上,这些辐射单元也是接收单元,称为发射/接收单元,简称收发单元或T/R,T代表发射,R代表接收;多个收发单元组合在一起称作收发组件。有源相控阵的相位改变靠的是计算机控制收发组件,而不是移相器由于每一个单元
既是一个小的发射机,也是一个小的接收机,实际上就是一部小雷达。可见,有源相控阵的这个特点,仍然极其类似于蜻蜓的复眼。
无源相控阵的原理图中,双向箭头左边是所有雷达都有的部分。雷达在发射电磁波时,激励源首先产生低功率发射机电流,经发射机放大后送至天线单元辐射出去,在空间形成发射波束。在接收时,天线单元则要施展“吸星***”,把分布在雷达周围的、由目标反射回雷达的那些电磁波“吸”到雷达的天线中。由于吸回来的电磁波能量比较微弱,因此先要送到低噪声放大器中放大,然后送入接收机。为接收到微弱的回波,接收机的灵敏度非常高。为使发射机的能量不至于进入并烧坏接收机,正如防止过强的声波震聋人耳一样,安装了双工器,发射时用于保证雷达能量仅仅送入天线而不送往接收机,接收时则保证把雷达能量送入接收机而不是送往发射机,使接收到的能量不至于进入发射机而被发射的能量所淹没。由于发射机和天线在电路上不可能完全匹配,从发射机出来的能量送往天线后会造成一部分发射机能量损耗―就像光线在穿透一块透明的玻璃时,总有一部分光线会从玻璃上反射回来―为避免这部分能量进入并烧坏接收机,还要加装保护器。
无源相控阵和有源相控阵在扫描的灵活性上具有同样优点。有源相控阵胜过无源相控阵之处一是有源相控阵易于产生更大的功率,因为天线辐射出去的总功率是每一个收发单元的合成,所以,要增加总的辐射功率,只须增加收发单元的数量,或者提高每个收发单元的功率。在采用有源相控阵的预警机中,通常有成百上千个收发组件,每个收发组件的功率一般不超过50瓦。
其次,有源相控阵的可靠性更高,一是因为有源相控阵不需要集中产生大功率能量的发射机,避免高压高功率的要求,也就避免了高压打火等容易造成发射机故障的问题;二是由于有源相控阵收发组件的高集成度。据统计,有源相控阵的可靠性是采用无源相控阵雷达的10倍以上,而且,由于有源相控阵雷达能量是由大量的收发组件产生的能量合成的,这么多个收发组件如果出现一小撮“非战斗减员”,根本无大碍。而无源相控阵中,由于发射机只有一个,如果坏了,立即“GAME OVER”了。当然,有源相控阵价格比较贵,但随着集成电路技术的进一步发展,它会越来越便宜。
美国的E-3A预警机是世界上第一种采用相控阵体制雷达的预警机,它在水平面上的覆盖仍然靠天线旋转实现,但在高度方向上的覆盖不是靠天线的“低头”和“抬头”,而是用无源相控阵。其天线在垂直方向上有24个辐射单元构成的一排排直线阵,对应于24个移相器。由于天线在高度方向上能够扫描,从而也就能测量目标的高度。因此,它采用的是方位上机械扫描、高度方向上相控阵扫描的一维相控阵、三坐标的雷达。
以色列“费尔康”预警机是世界上第一种采用有源相控阵体制雷达的预警机,也是世界上第一种采用天线阵列的安装与机身外形相符(即共形阵)的预警机,不再采用蘑菇形。天线阵列分布在机头(大鼻子)、机身两侧和机尾,分别负责覆盖不同的方位。全机设计有1472个T/R组件,但是在卖给智利时做了简化:机尾没有配置天线阵,从而存在100°的方位盲区,T/R组件的数量也减少很多,且天线在高度方向上不能扫描,从而不能测量目标的高度,因此,其雷达是一维相控阵、二坐标的。
瑞典的“爱立眼”(ERIEYE)也是目前世界上独具特色的采用有源相控阵体制的预警机:机身背部的天线罩体是平衡木式,内装两块天线阵面,共有192个T/R组件,每个天线阵只负责120°扫描,因此,全方位上有机头和机尾各60°盲区,在高度方向上也不扫描,也是一维相控阵、二坐标雷达。
第三篇:相控阵雷达天线近场多任务测试系统设计方法论文
【摘要】针对相控阵雷达天线近场多任务测试系统设计问题,从系统设计的功能需求进行分析,设计系统层次架构与功能模块等,进而构建多任务测试系统,以提高天线近场测试效率。
【关键词】相控阵雷达;天线;多任务;测试系统;设计方法
近场天线测试系统作为相控阵雷达天线性能测试的主要手段,该系统随着相控阵天线技术的完善,其测试效率也不断提升。基于应用需求,近场天线测试系统实现多任务测试是发展的主要趋势,目前该系统也已经被广泛的推广应用。
一、相控阵雷达天线概述
相控阵雷达包括有源电子扫描阵列雷达、无源电子扫描阵列雷达,其主要是通过改变天线表面的阵列波束合成形式,进而改变波束扫描方向的雷达。此类型的雷达天线的侦测范围较为广泛,利用电子扫描,能够快速的改变波束方向,精准的测量目标信号。
二、近场天线测试系统建设功能需求分析
近场天线测试系统设计,需要做好软件需求分析,此系统功能需求如下:1)要能够满足全测试周期可配置,以及软件通用化需求。此功能需求的实现,责任需要构建众多数据源输入接口,配置通信协议以及软件界面等,面向各类相控阵天线测试,进而达到通用化需求目标。2)实现多任务测试。相控阵雷达天线的不断发展,使得传统的单任务测试方法,已经难以满足天线测试需求,基于此进行多任务测试方法设计,在测试探头单独扫描条件下,采取高密度测试方法,即多个频率与波束等,实现高效测试。
三、相控阵雷达天线近场多任务测试系统设计方法
多任务测试系统主要是利用软件,进行测试参数预设,包括测试频率、波束角度、扫描架运用范围等。利用数据处理软件,进行分解转换测试,计算各采样点数据,获取天线方向图性能参数,最后显示图像。3.1架构设计方法相控阵雷达天线近场多任务测试系统架构设计,其是基于构件化设计思想,利用软件构成元素,由标准接口负责提供特定服务,以支持系统开发。系统架构中的构件库,主要分为数据采集类、三维扫描控制补偿类、方向图与数据处理类,构件存在形式为COM、dll等,使用构件管理工具,则能够进行动态加载与管理,进而在系统开发过程中,进行构件注册与复制,实现版本控制。利用GetTypes静态方法,来获取Assembly内的构件类型,判断构件类型,看其是否为构件接口所派生的,若是则运用Activator动态方法,即CreateInstan函数,来获取构件,实现动态加载[1]。3.2多任务设计方法相控阵雷达天线近场多任务测试系统设计时,需要进行多任务设计。相控阵天线的各波束状态,主要是天线波控分系统控制,天线接收波控指令包,由波控分系统进行分解处理,对天线上的波束扫描进行控制。近场天线多任务测试设计,其核心思想是实现天线实时扫面测试,同时控制天线频率与波束等的切换,进而实现实时同步切换。多任务测试系统运行的过程中会产生大量的数据,因此为了避免数据访问冲突,则采取创建多线程的方法,进行数据处理,将其分为数据处理与显示型、接收机测试型、伺服控制型线程。线程创建后,将会独立运行,各线程将会在其自身的时间段内,使用CPU,实现轮流执行与并发执行。3.3系统接口设计方法相控阵雷达天线近场多任务测试系统功能实现,数据源要与数据服务层实现交互,同时还需要确保数据服务层和客户端实现交互。天线近场测试系统主要是利用数据源插件,来封装底层API驱动或者通讯协议,基于标准函数,形成动态链接库,以实现测试的实时性。系统数据服务层的功能为插件容器,当系统运行时能够实现快速配置查找,动态的将插件放入系统构架中,或者从构架中取出,实现系统功能配置。利用TCP网络通信,实现数据服务层和客户端的信息交互,用户可以登录账号,通过身份验证后,完成界面文件下载,由客户端负责发送TCP连接请求,基于通讯协议,进而实现交互。3.4控制器设计相控阵雷达天线近场多任务测试系统控制器设计,主要包括雷控信号仿真电路、GPIB接口电路、信号转换电路与电源等。系统运行前,控制器通过GPIB接口电路,来接收系统中心的指令,记录测试所需要的频率码与波位码等,将其传送给雷控信号仿真电路,基于定时协议,实现解码与缓存。开始测试后,信号电路接收外触发信号,基于各测试点,将雷控与定时信号传送给天线,实现波位切换,同时而仿真电路能够和雷控信号、定时信号协调发出信号。最后协调控制天线测试所需要的各种信号,实现多任务测试[2]。3.3结束语相控阵雷达天线近场多任务测试系统设计,需要合理设计系统架构,以及多任务测试功能、接口设计等,以确保系统能够实现多任务测试与可拓展性,提高天线测试的效率。
参考文献
[1]樊会涛,闫俊.相控阵制导技术发展现状及展望[J].航空学报,2015(09):2807-2814.[2]金林,刘小飞,李斌,刘明罡,高晖.微波新技术在现代相控阵雷达中的应用与发展[J].微波学报,2013(Z1):8-16.
第四篇:雷达原理论文
雷达原理论文
姓名: 班级: 学号:
指导老师:
2014年3月
雷达的隐身与反隐身技术
在现代战争中,隐身和反隐身技术具有重要作用和战略意义, 上个世纪的局部战争已充分证实了这一点,如美国的F-117飞机在1989年入侵巴拿马和1991年轰炸伊拉克的战争中大显神威, 这就是隐身技术应用的成功实例。隐身技术的迅速发展对战略和战术防御系统提出了严峻挑战,迫使人们考虑如何摧毁隐身兵器并研究反隐身技术。
隐身与反隐身技术越来越受到人们的重视。目前应用于武器系统中的探测手段有雷达、红外、激光和声波等,而雷达在各种探测器中占有相当重要的地位,因此研究雷达的隐身和反隐身技术势在必行。
雷达基本原理
雷达发射机输出的功率馈送到天线,由天线将能量以电磁波的形式辐射到空间,电磁波脉冲在空间传输过程中遇到目标会产生反射,雷达就是利用目标对电磁波的反射、应答等来发现目标的。但雷达的探测距离有一定范围,雷达探测的基本原理和系统特征可以用雷达方程来描述:
Rmax42PGGttr43Smin
式中:Pt为雷达发射功率,Smin 为雷达最小可检测信号,Gt为发射天线的增益,Gr为接收天线的增益,为雷达工作波长,为目标的雷达散射截面积(RCS)。
雷达截面积是目标对入射雷达波呈现的有效散射面积。从公式中可以看出雷
1达最大作用距离Rmax与目标的雷达截面积的 次方成正比。因此,要减小雷达
4的最大作用距离可以通过减小目标的RCS 来实现。目前用来减小目标RCS的主要途径有两种:一是改变飞机的外形和结构,称之为外形隐身;二是采用吸收雷达波的涂敷材料和结构材料,称之为材料隐身。
雷达隐身技术
雷达隐形技术是一种不让雷达观测到的技术和方法,用于对付雷达侦察。这是一种最早出现、最常用的隐形技术,广泛应用于各种隐形武器上²
1)雷达隐形技术原理
雷达隐形技术原理是通过降低己方目标的雷达散射截面RCS,达到隐形目的.所谓目标的雷达散射截面RCS,就是定量表征目标散射强弱的物理量.目标的雷达散射截面RCS,越小,雷达接收能量越小,因而使敌方侦察雷达难于对己方目标作出正确的判断,从而达到隐形目的。(2)减少雷达散射截面的途径
一是采用材料隐形技术,即采用吸波材料或透波材料,使目标不反射或少反射雷达波,以降低目标的雷达散射截面RCS。雷达吸波材料是抑制目标镜面反射最有效的方法,早在二战后期,德国潜艇的潜望镜上就涂敷了吸波材料。这就是雷达隐形的初次尝试。现在吸波材料技术种类很多,一般采用铅铁金属粉、不锈钢纤维、石墨粉、铁氧体等具有特殊电磁性能的物质来制成,它们具有吸波雷达波的特性。吸波材料按其使用方法可分为涂料型和结构型。目前广泛使用的涂料型铁氧体吸波材料可大幅度降低反射回波。
二是采用外形隐形技术,即对己方的武器装备采用特殊的形状,以降低目标的雷达散射截面RCS。外形隐形技术历史不长,发展很快,应用十分广泛。目前已成为隐形技术中最重要和最有效的技术途径。所谓外形隐形技术,就是合理地设计武器装备的外形,以降低目标的雷达散射截面RCS;同时使目标的回波偏离侦察雷达的视向。
对飞行器而言,最重要的威胁方向通常是在鼻锥方向某一角度范围内,因此多以减小飞行器头部方向RCS为重点。由于外形技术与飞行器的气动性能直接相关,有时会影响其飞行速度和机动性等,因此二者必须进行折中处理。例如:隐形飞机F117A就是采用以外形技术为主、吸波材料为辅的隐形方案。其形状是一个前后缘不平行的复杂多面体,飞机大部分表面都后倾,与垂直方向呈大于30°角,并采用大后掠角机翼和V形双垂尾。这种奇特外形使F117A在飞行过程中,雷达上下散射,产生时隐时现的微弱回波,雷达很难探测到这些信号,这就大大降低了F117A的雷达散射截面RCS,提高了其隐形效果。
雷达反隐身技术
反隐身技术是研究如何使隐身措施的效果降低甚至失效的技术。雷达隐身是主要发展和使用的隐身技术,因此反雷达隐身也是当前重点发展的反隐身技术。
电磁隐形的核心问题在于降低RCS。因为RCS越小,雷达就越难对目标做出正确判断。削减 RCS的方法多种多样,但大体上不外乎隐身材料和外形设计这两大方向。因此 ,雷达反隐身技术的研究也不外乎围绕这两大方向来开展。
1.采用长波或毫米波雷达
长波雷达可以对付隐身飞机的外形调整设计及现用的RAM(雷达吸波材料),使得隐身飞机外形设计与RAM涂层厚度有难以实现的过高要求。目前发展很快的长波雷达是OTH(超视距)雷达,其工作波长达10m~60m(频率为 5MHz~28MHz),完全在正常雷达工作波段范围之外。这种雷达靠谐振效应探测大多数目标,几乎不受现有RAM的影响。毫米波雷达是反隐身技术的有效途径。由于频率为30 GHz, 94 GHz,140GHz的毫米波在目前隐身技术所能对抗的波段之外,同时毫米波雷达具有天线波束窄、分辨率高、频带宽、抗干扰力强并对目标细节反应敏感等特点,使得目标外形图像可在雷达荧屏上直接显示出来,因而具有反隐身能力。目前对长波或毫米波雷达主要研究解决如下问题: VHF雷达(频率160MHz~180MHz、波长1.65m~1.90m)在探测低飞目标或对付人工干扰时存在严重问题;OTH雷达提供的跟踪和定位数据不够精确;毫米波雷达(频率约为 94 GHz)探测概率不高。
2.采用双/多基地雷达
双 /多基地雷达系统是将发射机和接收机分臵在2个或2个以上不同的站址,其中包括地面、空中、海上或卫星等多种平台。利用远离发射机的接收机接收隐身飞机偏转的雷达波,从侧面探测隐身目标,并因无源而不会受到反辐射导弹的威胁。目前正在研究解决的主要问题是,不论是双站还是多站雷达,接收机都必须在发射波束的作用范围之内并与发射机精确同步。解决这个问题的一个办法是,采用广角天线并利用GPS。
3.采用无载频超宽波段雷达
无载频超宽波段雷达被称为“反隐身雷达”,无载频脉冲可覆盖 L、S、C等波段。产生这种脉冲的小型低功率雷达已广泛用于民用。目前,正是积极探索适用于防空的无载频超宽波段雷达,以及研究解决提高无载频超宽波段雷达平均功率和在没有载频引导下保证宽波段接收机能区分出噪声与目标回波的问题。
4.采用激光雷达和红外探测系统
由于隐身飞机主要是针对雷达电磁波隐身,其声、光、红外隐身效果较之雷达隐身相差很大,所以采用光学、红外、紫外探测器 ,可弥补雷达探测的缺陷。英国宇航公司曾将“轻剑” 雷达改装成光电跟踪系统,在6 km的距离上截获和跟踪了 B-2隐形轰炸机。目前正在研究解决的主要问题是 ,提高其作用距离以及在恶劣环境下的使用效能。
5.发展空基或天基平台雷达
隐身飞行器的隐身重点一般放在鼻锥方向±45°角范围内。因此,将探测系统安装在空中或卫星上进行俯视 ,可提高探测雷达截面较小目标的概率。美空军的 E-3A预警机和海军正在研制的“钻石眼”预警机以及高空预警气球,都能有效地探测隐身目标。美国还正在研制预警飞艇、预警直升机、预警卫星等。此外 ,俄罗斯、英国、印度等国都很重视发展预警机的工作。
中国在雷达反隐身技术上也取得了一定的突破。
中国曾展出过一款“谐振雷达”,据称,该雷达是一种新概念雷达,利用电磁谐振现象使目标回波信号增强10-100倍,可连续观察和跟踪飞机、隐身飞机、卫星、导弹等多种飞行目标和水面目标,有目标识别能力。成为入侵目标的克星,可以提供距离量程为600-2000公里的多种规格。
隐身技术与反隐身技术之间的竞争,最终将会使得两种技术相互促进,共同发展。任何一方的技术突破带来的失衡必然会导致另一方技术的奋起直追。技术上的领先和创新将是未来战争中出奇制胜的法宝。
第五篇:雷达工作 原理
雷达的原理
雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。
雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。
为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2
其中S:目标距离
T:电磁波从雷达到目标的往返传播时间
C:光速
雷达测定目标的方向是利用天线的方向性来实现的。通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。
测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。
雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。
其中,作用距离是指雷达刚好能够可靠发现目标的距离。它取决于雷达的发射功率与天线口径的乘积,并与目标本身反射雷达电磁波的能力(雷达散射截面积的大小)等因素有关。威力范围指由最大作用距离、最小作用距离、最大仰角、最小仰角及方位角范围确定的区域。
雷达的技术指标与参数很多,而且与雷达的体制有关,这里仅仅讨论那些与电子对抗关系密切的主要参数。
根据波形来区分,雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达。常规脉冲雷达周期性地发射高频脉冲。相关的参数为脉冲重复周期(脉冲重复频率)、脉冲宽度以及载波频率。载波频率是在一个脉冲内信号的高频振荡频率,也称为雷达的工作频率。
雷达天线对电磁能量在方向上的聚集能力用波束宽度来描述,波束越窄,天线的方向性越好。但是在设计和制造过程中,雷达天线不可能把所有能量全部集中在理想的波束之内,在其它方向上在在着泄漏能量的问题。能量集中在主波束中,我们常常形象地把主波束称为主瓣,其它方向上由泄漏形成旁瓣。为了覆盖宽广的空间,需要通过天线的机械转动或电子控制,使雷达波束在探测区域内扫描。
概括起来,雷达的技术参数主要包括工作频率(波长)、脉冲重复频率、脉冲宽度、发射功率、天线波束宽度、天线波束扫描方式、接收机灵敏度等。技术参数是根据雷达的战术性能与指标要求来选择和设计的,因此它们的数值在某种程度上反映了雷达具有的功能。例如,为提高远距离发现目标能力,预警雷达采用比较低的工作频率和脉冲重复频率,而机载雷达则为减小体积、重量等目的,使用比较高的工作频率和脉冲重复频率。这说明,如果知道了雷达的技术参数,就可在一定程度上识别出雷达的种类。
雷达的用途广泛,种类繁多,分类的方法也非常复杂。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、无线电测高雷达、气象雷达、航管雷达、引导雷达、炮瞄雷达、雷达引信、战场监视雷达、机载截击雷达、导航雷达以及防撞和敌我识别雷达等。除了按用途分,还可以从工作体制对雷达进行区分。这里就对一些新体制的雷达进行简单的介绍。(军事观察·warii.net)
双/多基地雷达
普通雷达的发射机和接收机安装在同一地点,而双/多基地雷达是将发射机和接收机分别安装在相距很远的两个或多个地点上,地点可以设在地面、空中平台或空间平台上。由于隐身飞行器外形的设计主要是不让入射的雷达波直接反射回雷达,这对于单基地雷达很有效。但入射的雷达波会朝各个方向反射,总有部分反射波会被双/多基地雷达中的一个接收机接收到。美国国防部从七十年代就开始研制、试验双/多基地雷达,较著名的“圣殿”计划就是专门为研究双基地雷达而制定的,已完成了接收机和发射机都安装在地面上、发射机安装在飞机上而接收机安装在地面上、发射机和接收机都安装在空中平台上的试验。俄罗斯防空部队已应用双基地雷达探测具有一定隐身能力的飞机。英国已于70年代末80年代初开始研制双基地雷达,主要用于预警系统。
相控阵雷达
我们知道,蜻蜓的每只眼睛由许许多多个小眼组成,每个小眼都能成完整的像,这样就使得蜻蜓所看到的范围要比人眼大得多。与此类似,相控阵雷达的天线阵面也由许多个辐射单元和接收单元(称为阵元)组成,单元数目和雷达的功能有关,可以从几百个到几万个。这些单元有规则地排列在平面上,构成阵列天线。利用电磁波相干原理,通过计算机控制馈往各辐射单元电流的相位,就可以改变波束的方向进行扫描,故称为电扫描。辐射单元把接收到的回波信号送入主机,完成雷达对目标的搜索、跟踪和测量。每个天线单元除了有天线振子之外,还有移相器等必须的器件。不同的振子通过移相器可以被馈入不同的相位的电流,从而在空间辐射出不同方向性的波束。天线的单元数目越多,则波束在空间可能的方位就越多。这种雷达的工作基础是相位可控的阵列天线,“相控阵”由此得名。
相控阵雷达的优点
(1)波束指向灵活,能实现无惯性快速扫描,数据率高;(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;(3)目标容量大,可在空域内同时监视、跟踪数百个目标;(4)对复杂目标环境的适应能力强;(5)抗干扰性能好。全固态相控阵雷达的可靠性高,即使少量组件失效仍能正常工作。但相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。
相控阵雷达与机械扫描雷达相比,扫描更灵活、性能更可靠、抗干扰能力更强,能快速适应战场条件的变化。多功能相控阵雷达已广泛用于地面远程预警系统、机载和舰载防空系统、机载和舰载系统、炮位测量、靶场测量等。美国“爱国者”防空系统的AN/MPQ-53雷达、舰载“宙斯盾”指挥控制系统中的雷达、B-1B轰炸机上的APQ-164雷达、俄罗斯C-300防空武器系统的多功能雷达等都是典型的相控阵雷达。随着微电子技术的发展,固体有源相控阵雷达得到了广泛应用,是新一代的战术防空、监视、火控雷达。
宽带/超宽带雷达
工作频带很宽的雷达称为宽带/超宽带雷达。隐身兵器通常对付工作在某一波段的雷达是有效的,而面对覆盖波段很宽的雷达就无能为力了,它很可能被超宽带雷达波中的某一频率的电磁波探测到。另一方面,超宽带雷达发射的脉冲极窄,具有相当高的距离分辨率,可探测到小目标。目前美国正在研制、试验超宽带雷达,已完成动目标显示技术的研究,将要进行雷达波形的试验。
合成孔径雷达
合成孔径雷达通常安装在移动的空中或空间平台上,利用雷达与目标间的相对运动,将雷达在每个不同位置上接收到的目标回波信号进行相干处理,就相当于在空中安装了一个“大个”的雷达,这样小孔径天线就能获得大孔径天线的探测效果,具有很高的目标方位分辨率,再加上应用脉冲压缩技术又能获得很高的距离分辨率,因而能探测到隐身目标。合成孔径雷达在军事上和民用领域都有广泛应用,如战场侦察、火控、制导、导航、资源勘测、地图测绘、海洋监视、环境遥感等。美国的联合监视与目标攻击雷达系统飞机新安装了一部AN/APY3型X波段多功能合成孔径雷达,英、德、意联合研制的“旋风”攻击机正在试飞合成孔径雷达。
毫米波雷达
工作在毫米波段的雷达称为毫米波雷达。它具有天线波束窄、分辩率高、频带宽、抗干扰能力强等特点,同时它工作在目前隐身技术所能对抗的波段之外,因此它能探测隐身目标。毫米波雷达还具有能力,特别适用于防空、地面作战和灵巧武器,已获得了各国的调试重视。例如,美国的“爱国者”防空导弹已安装了毫米波雷达导引头,目前正在研制更先进的毫米波导引头;俄罗斯已拥有连续波输出功率为10千瓦的毫米波雷达;英、法等国家的一些防空系统也都将采用毫米波雷达。
激光雷达
工作在红外和可见光波段的雷达称为激光雷达。它由激光发射机、光学接收机、转台和信息处理系统等组成,激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。隐身兵器通常是针对微波雷达的,因此激光雷达很容易“看穿”隐身目标所玩的“把戏”;再加上激光雷达波束窄、定向性好、测量精度高、分辨率高,因而它能有效地探测隐身目标。激光雷达在军事上主要用于靶场测量、空间目标交会测量、目标精密跟踪和瞄准、目标成像识别、导航、精确制导、综合火控、直升机防撞、化学战剂监测、局部风场测量、水下目标探测等。美国国防部正在开发用于目标探测和识别的激光雷达技术,已进行了前视/下视激光雷达的试验,主要探测伪装树丛中的目标。法国和德国正在积极进行使用激光雷达探测和识别直升机的联合研究工作。参考资料: