首页 > 精品范文库 > 12号文库
人造革干法工艺
编辑:落花人独立 识别码:21-343047 12号文库 发布时间: 2023-04-07 14:37:23 来源:网络

第一篇:人造革干法工艺

 干法聚氨酯合成革生产工艺

2010-03-12 22:00:06 中国人造革合成革网

 聚氨酯人造革主要分为干法聚氨酯人造革和湿法聚氨酯人造革。所谓干法聚氨酯人造革,是指将溶剂型聚氨酯树脂中的溶剂挥发掉后,得到的多层薄膜加上底布而构成的多层结构体。而湿法聚氨酯人造革,是将溶剂型聚氨酯,采用水中成膜法而得到的具有透气性和透湿性,又同时具有连续多孔层的多层结构体。

一、干法聚氨酯人造革

(一)生产工艺流程

注:

1、离型纸发送

2、离型纸贮存装置

3、第一涂料台 4、10M左右干燥箱

5、第一组冷却辊

6、第二涂料台 7、15—20M干燥箱

8、第二组冷却箱

9、第三涂料台

10、基布发送台

11、贴合装置 12、20—25M干燥箱

13、第三组冷却辊

14、剥离装置

15、人造革卷取

16、离型纸卷取

离型纸法聚氨酯人造革生产原理是将不同性能的面、底层配合液利用刮刀涂覆在离型纸上,面料经过干燥、冷却工艺后,再涂覆上粘合层底料,利用基布发送贴合装置将基材与底料复合,经过干燥、冷却后,利用剥离装置将成品人造革与离型纸分别成卷。

(二)、主要原料

1、离型纸

A、离型纸分类:

按用途分:①聚氯乙烯人造革用纸 ②聚氨酯人造革用纸 按花纹分:①平面纸 ②压纹纸

按光泽度分:①高光型 ②光亮型 ③半光亮型 ④半消光型 ⑤消光型 ⑥超消光型

按材质分:①硅系纸(表面涂敷有机硅聚合物,耐温≤190℃)②非硅系纸(表面涂敷丙烯聚合物,耐温≤150℃)③特殊用纸(PVC用)

B、性能要求:

①强度:由于在涂布后,进入烘箱干燥,温度较高,在多次使用中必须有足够的强度,最重要的撕裂强度。②表面均匀性:必须保持一定的离型均匀度及光泽,平面纸的平滑度及厚度要保持一致。

③耐溶剂性:在生产中,常用到多种溶剂,要做到既不溶解也不溶胀。④合适的剥离强度:离型纸要有适当的剥离强度,如果剥离太困难会影响到纸的重复使用次数,如果剥离太容易,在涂布及复合时易引起预剥离,而影响产品质量。

C、供应商:

目前国内离型纸还没有生产,主要依靠进口,世界上生产离型纸的厂商主要是:美国沃沦公司、英国维金斯公司、意大利宾达公司、日本创研株式会社、旭辊株式会社、大日本印刷株式会社等。各公司的主导产品品种各不相同。

2、树脂

一类是表皮层用树脂,另一类是粘接层用树脂,后者可分为I液型树脂与II液型树脂。一般来说,I液型聚氨酯是由含有活泼氢的高分子量化合物,含有活泼氢的低分子量化合物(又称扩链剂)以及二异氰酸酯化合物制造出来的。其分子结构可分两部分,一是含有活泼氢的高分子量化合物为基础,称为软链部分,二是含有低分子量化合物和二异氰酸酯相连结的称为硬链部分。硬链链节的比例有利于提高其熔点、玻璃化温度、硬度和强度,但相对降低了其弹性和溶解度。

相反,含有活泼氢的高分子量化合物是较柔软的链节,能降低其熔点、玻璃化温度,提高柔软度、弹性和挠曲性。聚氨酯树脂的这种结构对其性能影响很大,其性能取决于分子量的大小,分子间的引力,分子间的链节柔软性;聚氨酯树脂其性能随分子量的增加而提高,如拉伸强度、伸长率、熔点、硬度等,溶解度则相反,随着分子量增加而下降。通常干法人革要求表面处理层光滑耐磨,耐弯曲性好,耐溶剂性好,有良好的重复涂敷性,颜料分散均匀、展色性佳的等等特点。

因此,凝集力高的I液型树脂最为合适。此外,湿式聚氨酯革的多孔层在水中要求有快速凝固性,所以同样用分子内高凝集力的热塑性的I液型树脂。而粘结层要求和基布粘接性好,柔软,耐水解性好,所以最好采用凝集力低的,而且与异氰酸酯等交联剂在交联促进剂存在下并用的热固型的II液型聚氨酯树脂,II液型树脂是由含有活泼氢的高分子量化合物和二异氰酸酯进行加成聚合反应得到的,其末端上具有反应性的羟基,II液型聚氨酯树脂本身不能成膜,即使成膜也是低物性的皮膜,为了提高其物理性能和粘接性,可利用其末端反应的羟基和交联剂通过交联促进剂进行交联反应,形成网状结构才能得到高物性皮膜。

皮膜的物理化学性能是由II液型聚氨酯树脂中的含有活泼氢的高分子量化合物的组成、分子量的大小、交联剂的用量决定的,所以交联剂、交联促进剂等在配合时的添加量、固化条件、熟化条件等对皮膜物性有很大影响。通常选择树脂牌号时主要根据其综合质量数据指标而定,如溶剂组成、抗拉强度、模量、伸长率等等。各品种性能详细参考我公司新版说明书。

3、溶剂

在人造革生产过程中所使用的溶剂有着很重要的作用。第一,它是溶解树脂形成适合于配制一定粘度的可供涂覆、浸渍及表面处理的混合液的液体;第二,一些溶剂又常常用来作为制备聚氨酯树脂的反应介质;第三,一些溶剂又常常用来配制色浆,用于产品的着色、印刷、涂饰等。在选择使用溶剂的时候,除了考虑其溶解度、挥发速度的共性以外,特别是聚氨酯人造革对溶剂的要求较高,主要是考虑涂布液的异氰酸酯基(-NCO)的特点,所以应注意下面两点:

A、溶剂中不能含有与异氰酸酯基反应的物质,如有,将使聚氨酯变质而不能使用,所以醇、醚、醚醇类溶剂不能使用。

B、水的影响。普通工业级溶剂实际上多少都含有水分,因为溶剂与水之间具有一定的溶解度,这样容易使水分与异氰酸酯基发生反应,而消耗不少异氰酸酯,因此不论是在树脂制造过程中,还是稀释配料过程中,都必须用无水的溶剂,所以聚氨酯人造革所选择的溶剂要求不含杂质或杂质极少。一般选用工业一级品溶剂,其纯度在99%以上。使用时现用现配,配成的浆料不能存放时间太长,特别是II液型树脂混合液,以免吸潮,使浆料变质。

常用溶剂性能表(见下图)

溶剂名称

沸点℃ 相对密度(20℃下)水溶解度(V/V)溶度参数 二甲基甲酰胺(DMF)153 0.945 ∞ 12.1 甲苯(TOL)110.8 0.866 0.05 8.9 甲乙酮(MEK)79.6 0.806 26.8 9.1 丙酮 56.1 0.790 ∞ 9.41 乙酸乙酯(EA)77.1 0.900 8.7 9.08 环己酮 155.6 0.951 8.7 10.05

4、基布

目前人造革所使用的的基布大体分为三大类: A、机织布:①平织布 ②斜纹布 ③缎纹布 ④绒毛布 B、针织布:①纯棉 ②维棉 ③涤棉 ④纯化纤针织布

C、非织造布:又称不织布,俗称无纺布。无纺布可分为针刺型与非针刺型两种 

目前国内聚氯乙烯人造革和聚乙烯人造革常用的基布是各种棉布、维棉布或纯化纤布;干式聚氨酯人造革常用针织布或平织布及单面起绒布;而湿式聚氨酯人造革常用的是双面起毛布及合成纤维织物;湿式聚氨酯合成革常用合成纤维无纺布。通常起毛布又分为纯棉起毛布和混纺起毛布,根据鞋材、服装、及包用材的不同,而设计厚度、经纬纱织密度及成品所要求的断裂强度、断裂伸长率、及撕裂强度、涨破强度等指标。通常

人造革对基布的要求有以下几点: A、基布表面必须平整,厚度、起绒密度、长度、色泽等要求均匀一致。B、基布表面无线头、疙瘩、无孔洞等异常,接头处平整牢固。C、参照技术质量标准,进行批次抽检测试

D、要能经受住人造革生产时较高的加工温度,基布若是织物需保证经纬方向强度接近,若是无纺布,必须保证纵横方向强度一致。

5、着色剂

着色剂可分为染料和颜料两大类。两者的主要区别是溶解性不同。染料可溶于水、油、各种有机溶剂等。具有强烈的着染能力,色泽鲜艳,但耐热性、耐光性和耐溶剂性差,在人造革的加工温度下易分解,在制品的使用过程中容易渗出,迁移而造成串色和污染。颜料一般不溶于水、溶剂,在人造革中分散成细微颗粒,由其表面的遮盖作用而着色。它和染料相比较,透明性、鲜艳性稍差,但耐热性、耐光性好,不易迁移渗出。颜料可分为有机颜料和无机颜料两类。无机颜料具有优良的耐热性、耐光性和耐溶剂性,而且原料易得,制造简便,价格低廉,但其透明度、鲜明性差,色泽暗淡,相对密度大。有机颜料具有介于无机颜料和染料之间的综合性能,耐热性、耐光性及分散性不及无机颜料,但色泽鲜艳,分散性好。

理想的着色剂在人造革制造中应具备如下条件: A、色泽鲜艳、着色力强、分散性好、不凝集。

B、耐热性好,在树脂的加工温度下和最高使用温度下有良好的热稳定性,不变色、不分解。

C、耐溶剂性好,与溶剂接触后不会因溶剂而迁移、串色。

D、耐迁移性好,要求着色剂在树脂中不会发生色迁移,颜料不会析出。

E、耐化学稳定性好,有良好的耐酸、碱性,与树脂中其他助剂不会发生化学反应。

F、无毒、无臭、着色剂不含有对树脂有影响的杂质。

(三)配方工艺设计

聚氨酯人造革使用的原材料最主要的是聚氨酯树脂,选用时根据用户提供的样品外观、软硬度、颜色、光泽度及物理机械性能要求,先做小样试验,了解表皮层混合液和粘合层混合液的配合,摸索好工艺条件后再投入使用。

聚氨酯人造革生产过程中,树脂浆料经过一系列过程,最后溶剂完全挥发掉,这样便接触到生产合理工艺问题,应根据所加工的纹路大小、深度来控制配合液的综合粘度,粘度过低后容易造成表面花纹不清晰、粘连,成本相对增大。而粘度偏高,涂布量降低时,又容易使混合液不易进入离型纸纹内,涂布间隙小,出现卡刀断纸现象易给操作人员带来不便。

在产品工艺设计方面,应根据产品的用途进行设计。比如鞋用革要求的机械强度高,在选用基布时应选用物理性能较高的起毛布、平纹织物,客户要求鞋革的表面平整、光滑,就应在选择离型纸时,选用小花纹、比较光亮或高光亮型,聚氨酯树脂表皮层应用偏高模量型号,而粘接层应考虑耐水解,基布的颜色和表皮层的颜色协调接近等。

(四)、生产中的异常排除

序号 缺陷

原因 解决方法 表面发生针孔 溶剂沸点低 加高沸点的溶剂

面层粘度过高 涂层过厚 涂薄些

第一个烘箱温度高 面层烘干时间短 降低烘箱温度

面层树脂被溶解 降低面层混合液粘度 延长干燥时间 选用耐溶剂的树脂,粘合层少用强溶剂贴合基布后发生针孔 粘合后烘箱温度太低 涂覆量大 贴合间隙小 贴合压力过大 贴合后烘箱温度低 风量小

面层干燥后冷却差

粘合层DMF过多,干燥速度慢 增加粘合层粘度 降低涂覆量 调大贴合辊间隙 降低贴合压力

适当提高二烘箱温度 提高风量

充分使面层冷却

少用DMF,使用甲苯、乙酸乙酯表面处理后发生针孔 熟化不充分 面层太薄不均匀 起毛布不均匀

表面处理剂溶剂性太强、涂布量大 充分熟化 加大面层厚度,涂匀 选用均匀的起毛布

少用强溶剂DMF,减少涂布量表皮产生刮刀线条 刮刀刀刃有缺陷 面层粘度太高 涂刮刀刃半径小 浆料混入异物

离型纸有缺陷 修理或更换刮刀 降低面层粘度 暗大涂刮刀刃半径 涂刮前应过滤 更换好的离型纸

序号 缺陷 原因 解决方法澎润现象 离型纸的离模性 树脂本身易膨润 表皮层涂布量小 涂覆不均匀

粘合层的树脂不同 溶剂不同

粘合层涂布量太大

干燥时间过长 用较重的离型纸 用不膨润的树脂 表皮层涂厚一些 涂均匀

选用不膨润树脂

选用不易膨润的溶剂,如DMF、甲苯 少涂粘合层 提高车速表面凹陷 离型纸的离模性 表皮层用的树脂耐溶剂差

表面处理后凹陷是由于表面处理剂中DMF量过多 贴合后充分干燥,充分熟化 表皮层选用耐溶剂树脂,粘合层少用强溶剂 表面处理剂少用DMF,改用可溶性醇类缩孔现象 离型纸有问题 涂布太薄

浆料粘度太低 选用其他离型纸 涂布加厚 提高浆料粘度手感发硬或有皱纹 树脂是硬牌号 涂刮量太厚 基布发硬

粘合层交联剂多 选用软牌号树脂 涂刮薄些 选用软基布

调整交联剂用量

第二篇:干法安装工艺

干法安装工艺

干法安装是直接在板块上、下端钻孔或凿凹槽,用特制的连接件与埋在结构墙内的膨胀螺栓连接固定,在石板与墙体间形成80~90mm宽空气层的做法,如图示。

外墙花岗石干挂法施工

(1)本工程外墙花岗石板有磨光和毛面两种,但均需颜色一致,以免影响外观,光泽度、毛面要求、体积密度、吸水率、弯曲强度、干燥压缩强度都要满足有关要求。加工尺寸允许偏差符合规范规定,板上下侧开槽,板面无裂纹,板边无缺棱掉角,托板挑板垫板及窗口外套箍,销钉螺栓等零件均为不锈钢制品。厚为6mm,包括膨胀螺栓也为不锈钢件。对不锈钢挂件必须做化学成分,极限强度,屈服强度,延伸率,挂件变形等物理性能测试,满足要求。

(2)板材厚为25mm,大小尺寸根据图纸分线要求,排好尺寸,编号顺序进行加工订货,注意留设纵横缝隙。

(3)弹线:按墙面排板图,弹出各种板排列线,外墙面水平线以设计尺寸为基准,要求墙面剔除胀模墙体或补平凹进墙面,须使修补的墙面距设计轴线误差不大于1cm,其余误差通过挂件托板来消除。

(4)挂板安装:工艺为按弹线定各挂件相应位置→钻孔→孔内填防水胶泥→孔内埋入φ10膨胀螺栓→用胶泥抹平螺栓周圈→挂托板→试挂花岗石板确定正确位置,调节托板前后位置→紧固螺栓定位。挂板方法应先挂南墙,再挂北墙,每面大墙由下向上依次挂板,在挂板时在板缝处应随挂随在板边涂密封胶,保证四周密封,不渗漏水要求。先挂窗口板(有泛水),二块立板和上板(有滴水槽),每窗口四块板,外有一不锈钢焊制的套箍,以固定窗套子板,其安装工艺为:安装窗台不锈钢→窗台抹水泥砂浆找坡层→窗台板就位(外皮线与泛水控制准确)→安装窗箍→左右立板安装→上板就位与立板销住→套箍与挂件焊牢→排板与套箍之间用环氧粘接→清理窗套石材表面。

第三篇:干法选煤技术与工艺

河津市瑞泰选煤有限公司干法选煤技术与工艺

一 项目背景

我国是世界上以燃煤为主的国家之一,煤炭在我国一次性能源消费结构中占70%,以煤炭作为主要能源直接燃烧,造成了严重的大气污染,燃煤的主要污染物是二氧化硫和烟尘。为了减少环境污染,必须大力发展洁净煤技术。

洁净煤技术是旨在减少污染和提高效率的煤炭开采、加工、燃烧、转换和污染控制新技术的总称。选煤是洁净煤技术的基础,通过选煤可以优化产品结构,提高煤炭利用效率。因此,加快发展选煤技术对于实现煤炭资源的综合利用、节约能源、减少环境污染具有十分重要的意义。

据了解,目前各主要产煤国原煤入选比例分别为:美国55%,俄罗斯60%、英国75%、德国95%、澳大利亚75%、波兰50%。和这些国家相比较,我国煤炭的平均入选比例仅为33%,为此,我国把发展选煤纳入煤炭工业中长期发展规划,计划到2010年全国原煤入洗率达到50%,2020年达到70%。

为了顺应中国煤炭工业战略,促进洁净煤事业全面发展,需要研究高效的干法选煤技术。干法选煤技术主要是利用煤与矸石的物理性质差别实现分选。干法选煤包括风选、摩擦选、磁选、电选、X射线选、微波选、空气重介流化床选煤

等,其中已实现工业应用的是风力选煤,在我国得到比较广泛应用的干法分选设备是CFX型风力摇床和FGX型干选机。二 干法选煤的主要优点 投资少,建设周期短,投产快。干法选煤工艺简单,设备少,不用水,不需煤泥水处理系统,可不建厂房,投资为同型湿法选煤厂的1/4-1/5.2 维修量小,运转平稳,操作简单,生产成本低,加工费仅为4-6元/T。劳动生产效率高,生产工人少。年处理60万t以下干选系统全员效率50-70t/工;年处理60万t以上干选系统80t/工。入料粒度范围宽。对80mm以下原煤可分级入选,也可不分级入选。对原煤水分要求不严,外在水分小于9%,内在水分不限。原煤经分选后,不仅不增加产品水分,而且产品水分还会比原煤略有降低。耗风量小。所需风量只用于松散床层,造成物料有较好的流动性,而不是将物料悬浮。因此,用风量比传统风选少,不足其1/3.7 占地面积小,占用空间小,建设周期短,维修量低。8 除尘效果好。两段或三段除尘工艺和负压操作,保 证了大气环境和工作环境不受粉尘污染,排出的部分气体含尘小于50mg/m3,低于国家规定的150mg/m3标准。三 干法选煤工作原理

干法选煤是指粒度和密度不同的物料在空气流、机械振动或摇动的共同作用下,服从颗粒的干扰沉降规律,进行分层。粒度相同的颗粒中密度较大的集中在床面底层,密度较小的集中在床面上层;密度相同的颗粒中粒度较大的集中在下层,粒度较小的集中在上层。离析作用和风力作用

床面上物料的松散和分层是由机械振动和上升气流的悬浮作用实现的,松散强度随机械振动强度和风速的提高而增强。在无风作用的情况下,不同密度矿粒依靠位能降低的原理分层,就不可避免使矿粒形成一种类似筛孔可变的筛子,造成离析分层。即密度大的颗粒向下运动,反之被挤到上层,密度小、粒度也小的颗粒则透过颗粒间的缝隙漏到下层。在有风情况下,一方面可以加强粒群的松散,另一方面可以将密度小、粒度也小的颗粒吹到床层上部,强化分层。在离析作用和风力作用的共同作用下,使物料按密度进行分层。自生介质的分选作用

在干选机中,细颗粒物料和风组成具有一定密度的气-固悬浮体,称之为自生介质。按照阿基米德原理,小于悬浮

密度的煤上升,大于悬浮体密度的矸石中煤则下沉。随着分选过程的进行,细粒粉煤不断随大粒度精煤排出,剩余粒度较粗、密度较高的中等颗粒物料,又与空气组成新的密度更高的气固悬浮体,有利于中煤和矸石的分选 颗粒相互作用的浮力效应

在干选机的分选过程中,作为自生介质的细颗粒物料逐渐随大颗粒精煤排出,其余物料进入后续分选过程。此时,起主要分选作用的不再是自生介质,而是颗粒相互作用的浮力效应,即物料沿床面横断面自上而下相对密度逐渐升高,低密度物料向下运动是,由于无法克服下层物料形成的强大浮力而转到煤层上面,高密度物料则能克服这种阻力,逐渐移动到床层底部,从而完成按密度分层。

综上所述,干选机的分选原理就是利用振动力和风力的综合作用造成床层松散和矿粒按密度分层。在不同的区段既有自生介质(粉煤)与空气形成的混合介质分选(精煤段),又有颗粒相互作用的浮力效应(中煤矸石段),形成一种不同于其他选煤设备的综合分选机理。四 CFX干选机的分选过程

CFX型干选机由分选床、振动源、风室、机架、调坡装置等组成,如下图所示。其分选过程:入选物料经振动给料机给入具有一定纵向和横向倾角的分选床,振动源带动分选

床振动,床面下有若干个可控制风量的风室,空气由离心通风机供入风室,通过床面上的风孔,气流向上作用于被分选物料,在振动力和风力的共同作用下,物料松散并按密度分层,轻物料在上,重物料在下。风力分选机还利用了入料中的细颗粒作为自生介质和空气组成气固混合悬浮体,在一定程度上相当于空气煤泥介质分选机,改善了粗粒级的分选效果。

CFX型干选机分选过程(如图)

由于分选床具有较大的横向坡度,表层煤在重力作用下进入下一条平行沟槽再选,经过平行沟槽的多次分选,得到的精煤首先在排料边排出。沉入槽底的矸石中煤等高密度物料,逐渐移动到矸石中煤排料端排出,从而完成分选过程。在排料边,从精煤、中煤到矸石产品的灰分逐渐提高,可出多种产品。

五 CFX型干选机干法选煤工艺流程

干法选煤工艺与一般选煤工艺基本相同,但又有其自身 特点:干选机分选粒度级别宽,可以入选80-0mm粒级物料;可以用来分选12-0mm、20-0mm等粒度较小的筛下物料;干选机对6-0mm细粒级粉煤分选效果不理想,但粉煤作为自生介质可以使大于6mm的原煤分选效果得到明显提高;干选机可以按照用户要求出灰分、发热量由低到高的多种产品;干选机最适合于高密度分选,排出矸石。

根据以上特点干法选煤工艺包括以下作业:原煤破碎分级、干法分选、供风、除尘、产品运输与储存。如下图所示。

有时为了保证精煤和排出中煤矸石的治理,还需要出一部分中煤产品或将中煤分出再选。一般中煤量约占入选量的10%左右。

第四篇:干法氟化铝生产技术工艺

干法氟化铝工艺及控制

一、工艺简介

氟化铝(AlF3)是铝电解生产过程中的一种主要辅助材料(主要用作于铝电解的助熔剂,用于调整电解槽电解质的分子比水平),其含水量对电解铝生产和净化过程影响很大。氟化铝生产有代表性的工艺有氢氟酸—湿法工艺、氟化氢—无水工艺(工艺流程见图1)、氟硅酸法工艺。五十年代初,我国第一家电解铝厂—抚顺铝厂,引进前苏联技术,建成我国首家氟化盐厂。我国还引进瑞士Buss公司干法工艺,于二十世纪九十年代初在湘乡铝厂建成了无水氟化铝生产线, 现该厂已有三条干法线,目前为世界最大氟化盐生产厂。无水氟化铝具有主含量高、水分低、堆积比重大的特点,特别适用于电解槽启动后降低电解质分子比。与湿法产品相比,无水氟化铝在使用中有以下优点:

a、主含量在90%以上,高出湿法产品近5个百分点,杂质含量低,节约了氟化铝用量,降低了生产成本,有利于提高原铝质量。

b、水分含量低,小于1.0%,远远低于湿法产品水分7.0%的水平,在电解过程中使用无水氟化铝产品,AlF3几乎不发生水解反应,其可利用的有效成份远远高于湿法产品。

更为主要的是避免了使用湿法产品因氟化铝的水解造成的操作环境恶劣的状况,有利于环境保护。但传统干法氟化铝工艺,设备投资大,工艺复杂,一条年产万吨级生产线,需投资上亿元人民币,且后期维护困难,综合成本较高.,所以开发新的干法氟化铝生产工艺成为该行业的发展方向。氟硅酸法工艺正是在种情况下产生的。该工艺使用了铝型材行业的废渣—氟铝酸铵,一方面开辟了新的氟资源,另一方面解决了氟铝酸铵的积压和污染问题。该重大关键技术的突破,开辟了新的干法氟化铝生产工艺,较传统工艺可节约投资约50%。将湿法和干法工艺相结合,避免了传统湿法工艺脱水过程中的水解效应,对氟化铝行业的技术进步有积极的推动作用。

干法氧化铝流程简图

本文介绍氟化氢--无水工艺法制备干法氟化铝工艺及控制方案。如上图所示,背景为工艺设备安装位置截图,前景为工艺流程简图。干法氟化铝按工艺流程分为氟化氢制备(包括酸给料、萤石给料、氟化氢反应炉)及氟化铝制备包括流化床、尾气处理、成品处理。流程如下:1.萤石(CaF2)粉料与浓硫酸(98%)及发烟硫酸(103%)的混合物在反应炉里反应生成HF气体与石膏(CaSO4)2.HF气体经过净化(酸洗)后在流化床(上下两段)内与干燥后的粉料[AL(OH)3]反应生成成品(ALF3),成品经过冷却后去包装,尾气进行处理后方空。主设备是流化床,流化床分上下两段,正常情况下,干燥后的粉料由给料螺旋(变频控制)从上段底部送入床内,与下段逆流而上的热氟化氢气体接触反应,产生的尾气由顶部排出去尾气吸收系统。为使物料充分接触、反应完全,达到流化状态。床上下段的顶底需有一定压差,床内负压由两个真空泵实现。反应生成的物料由溢流管流入下段或通过排料螺旋送入下段,继续反应生成的氟化铝由底侧部排出进入冷却工段。如果床温过高,给料螺旋调节能力不够,则可启动紧急给料螺旋,将粉料有下段送入达到降温的目的。给料螺旋故障或启动时,料由气力输送泵直接由上下两段送入床内。流化床如图。

二、控制要求

1)采用大屏幕微机实时监测与控制系统;2)可供监测与控制的参数包括:

(1)预净化酸流量控制,预净化酸泵槽液位控制,硫酸送料槽液位控制,发烟硫酸送料槽液位控制,中央吸收净化器出口温度控制,硫酸一级预热器出口温度控制,大气冷凝塔进水流量控制,预反应器转速控制,HF反应炉内压力,流化床锥部负压控制,I号粗酸泵槽液位控制,II号粗酸泵槽液位控制,再氟器出气温度控制,净化塔出气温度控制,3V-1229压力控制,粗HF储槽液位控制,精馏塔收集器液位控制,硫酸吸收酸泵槽液位控制,硫酸吸收塔循环酸温度控制,进3C-1237水流量控制,硫酸流量控制, 烟酸流量控制,发烟硫酸反应釜温度控制, I号弱酸洗涤器温度控制, I号弱酸洗涤器液位控制, 反应炉燃烧室流量控制, 精馏塔冷凝器冷冻下水流量控制, 进3E-1230蒸汽流量控制, 反应炉燃烧室温度, 进3V-1234硫酸流量, 燃烧室出口压力控制, 反应炉内压力控制,流化床尾气温度控制.(2)反应炉转速与申克称及点火系统联锁;硫酸流量联锁;烟硫酸流量联锁; 硫酸一级预热器出口温度联锁;Ⅰ号弱酸洗涤器(C-1237)温度联锁;号弱酸洗涤器(C-1237)液位联锁;3V-1229安全压力联锁;硫酸截断阀联锁;发烟硫酸截断阀联锁;真空泵A泵加水截断阀联锁;真空泵S泵加水截断阀联锁;纯碱高位槽温度联锁。

3)整个系统具有手动与自动功能;

4)系统具备设备运行状态显示,事故声光报警及破管堵管处理功能,系统故障自监测及诊断功能,生产日报、月报的储存与打印功能。

三、控制方案

1.模拟量控制部分:实际应用中分成三类,智能PID、串级PID、比值控制。1)硫酸送料槽液位控制回路(智能PID):

硫酸储槽液位是根据出口管道上的调节阀的开口大小来实现。其控制框图如下:

2)空燃比控制(比值控制)

进燃烧室的煤气与空气按一定比例,以保证燃烧充分又不能发生爆炸事故。控制原理是:由流量计连续监测煤气管道的煤气流量,根据计算机人工设定的空燃比计算出所需空气的量,控制空气调节阀的的开度,以调节进燃烧室的空气量其控制框图如下:

3)流化床顶层料温控制回路(串级回路)

流化床是整个氟化铝生产中最重要的设备,床温的稳定与否直接影响到产品的质量。通过调节给料螺旋的转速来调节进料量,以达到使顶层料温稳定的目的。由于氢氧化铝与氟化氢反应是一个吸热反应,加料可以降低顶层料温。但顶层料温的变化有一段时间的滞后,因此引入了反映相对灵敏的尾气温度作为副调对象,定层料温作为主调反馈,构成一串级回路。方案如图所示:

2. 逻辑控制部分:

1)参与连锁的设备(阀门、泵等)有自动、手动两种工作方式:自动状态下设备跟随逻辑条件动作;手动时由面板人工操作。2)硫酸流量连锁控制:硫酸预热器蒸汽阀、硫酸二级预热器出口阀与硫酸流量连锁,手动方式下、面板可操作阀门的开闭;自动状态下,硫酸流量低时则关闭硫酸预热器蒸汽阀、硫酸二级预热器出口阀。方案如下:

3)烟酸流量连锁控制:烟酸预热器蒸汽阀与烟酸流量连锁,连锁方式下,烟酸流量小于设定值时则关闭烟酸预热器蒸汽阀。

4)其它类似连锁设备有:发烟硫酸反应釜温度与硫酸二级预热器蒸汽阀连锁;I号弱酸洗涤器温度与I号弱酸洗涤器冷却水阀连锁;I号弱酸洗涤器液位与I号弱酸洗涤器出口阀连锁;精馏塔冷凝器冷冻下水流量与E-1231冷却下水阀连锁;进3E-1230蒸汽流量与进E-1230蒸汽阀连锁;HF反应炉紧急出口阀与HF反应炉内压力连锁;紧急净化塔进水阀与反应炉内压力及紧急净化塔浇灌流量连锁;纯碱高位槽温度联锁。

5)硫酸大罐出口阀连锁控制:预反应器转低、真空泵(一用一备)停车、自动点火信号丢失,以上信号任一发生则关闭硫酸大罐出口阀。烟酸大罐出口阀连锁控制与本方案相同。

第五篇:第三节 干法和半干法脱硫工艺

第三节 干法和半干法脱硫工艺 喷雾干燥法脱硫工艺

喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaS03,烟气中的SO2被脱除。与此同时,吸收剂带入的水分迅速被蒸发而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂呈干燥颗粒状,随烟气带出吸收塔,进入除尘器被收集。脱硫后的烟气经除尘器除尘后排放。为了提高脱硫吸收剂的利用率,一般将部分除尘器收集物加入制浆系统进行循环利用。该工艺有两种不同的雾化形式可供选择,一种为旋转喷雾轮雾化,另一种为气液两相流。

喷雾干燥法脱硫工艺具有技术成熟、工艺流程较为简单、系统可靠性高等特点,脱硫率可达到85%以上。该工艺在美国及西欧一些国家有一定应用范围(8%)。脱硫灰渣可用作制砖、筑路,但多为抛弃至灰场或回填废旧矿坑[9]。烟气循环流化床脱硫工艺

该工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。一般采用干态的消石灰粉作为吸收剂,也可采用其它对SO2有吸收反应能力的干粉或浆液作为吸收剂。

未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷人均匀水雾降低烟温的条件下,吸收剂与烟气中的SO2反应生成CaSO3和CaSO4。

脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进人再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaS03、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于1.3时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在100-200 MW等级机组。由于其占地面积少,投资省,尤其适合于老机组烟气脱硫。

炉内喷钙脱硫技术

炉内喷钙、尾部增湿脱硫工艺主要有LIFAC、LIMB和LIDS三种。

LIFAC脱硫技术(炉内喷钙尾部增湿脱硫技术)是由芬兰的Tempella公司和IVO公司首先开发成功并投人商业应用的,该技术是将石灰石于锅炉的850-1150℃部位喷入起到部分固硫作用[10]。在尾部烟道的适当部位(一般在空气预热器和除尘器之间)装设增湿活化反应器,使炉内未反应的CaO和水反应生成Ca(OH)2,进一步吸收二氧化硫,提高脱硫率。

LIFAC工艺主要包括以下三步:(1)炉内喷钙系统

将磨细到325目左右的石灰石粉用气流输送方法喷射到炉膛上部温度为900-1150℃的区域,CaC03立即分解并与烟气中SO2和少量S03反应生成CaSO3和CaS04。可使炉内喷钙的脱硫率达到75 %,投资占整个脱硫系统投资的10%左右。

(2)炉后增湿活化

在安装于锅炉与电除尘器之间的增湿活化器中完成,在活化器内,炉膛中未反应的Ca0与喷人的水反应生成Ca(OH)2, SO2与生成的新鲜Ca(OH)2快速反应生成CaS03,接着又部分被氧化为CaS04。烟气经过加水增湿活化,可使系统的总脱硫率达到75%以上,而其投资约占整个系统投资的85 %。

(3)灰浆或干灰再循环

将电除尘器捕集的部分物料加水制成灰浆喷入活化器增湿活化,可使系统总脱硫率提高到85 %,占整个系统投资的5%[11]。

电子束法脱硫工艺

该工艺流程有排烟预除尘、烟气冷却、氨的喷入、电子束照射和辐产品捕集等工序所组成。锅炉所排出的烟气,经过除尘器的粗滤处理后进人冷却塔,在冷却塔内喷射冷却水,将烟气冷却到适合于脱硫、脱硝处理的温度(约70 ℃)。烟气的露点通常约为50℃,被喷射呈雾状的冷却水在冷却塔内完全得到蒸发,因此,不产生废水。通过冷却塔后的烟气流进反应器,在反应器进口处将氨水、压缩空气和软水混合喷人,加氨量取决于SOX和NOX浓度,经过电子束照射后,SOX和NOX在自由基作用下生成中间生成物硫酸(H2SO4)和硝酸(HNO3)。然后硫酸和硝酸与共存的氨进行中和反应,生成粉状微粒(硫酸氨与硝酸氨的混合粉体)。这些粉状微粒一部分沉淀到反应器底部,通过输送机排出,其余被副产品除尘器所分离和捕集,经过造粒处理被送到副产品仓库储藏。净化后的烟气经脱硫风机由烟囱向大气排放。

活性炭吸附法

活性炭具有较大的表面积、良好的孔结构、丰富的表面基团、高效的原位脱氧能力,同时有负载性能和还原性能,所以既可作载体制得高分散的催化体系,又可作还原剂参与反应提供一个还原环境,降低反应温度。SO2、O2与H2O被吸附剂吸附,发生下述总反应:

2SO2+2O2+2H2O→2H2SO4

活性炭吸收SO2和NOX后生成的物质存在于活性炭表面的微孔中,降低了活性炭的吸附能力,因此对吸附SO2后表面上生成硫酸的活性炭要定期再生,先用水洗,得到稀硫酸溶液,然后对活性炭进行十燥。对吸附SO2的活性炭加热,硫酸在炭的作用下还原为SO2得到富集,可用于生产硫酸或硫磺,但要消耗一部分活性炭[12]。气相催化氧化法

气相催化氧化法烟气脱硫是在催化剂接触表面上,烟气中的SO2直接氧化为SO3的干式烟气脱硫方法。常用的催化剂为V2O5,广泛用于处理硫酸尾气,处理电厂锅炉气及炼油厂尾气技术尚未成熟。反应机理简单,在钒催化剂表面上,SO2氧化为SO3,须根据既要有较高的转化率,又要有较快的反应速度的原则来选择适宜的反应温度,美国孟山都等公司联合研究发展的孟山都催化氧化法(Monsanto Cat-OX)是气相催化氧化法的典型工艺。经高温电除尘器净化的烟气进入置有若干层钒催化剂的转化器,使烟气中80~90%的SO2氧化为SO3,经转化器的烟气再经省煤器、空气预热器冷却后,在一台填充塔内用冷硫酸洗涤除去SO3,可得浓度为80%的硫酸。烟气中残余的飞灰沉积在催化剂表面,使转化器阻力增加,需定期取出催化剂清理。

人造革干法工艺
TOP