第一篇:专业英语 工程力学
1.In the finite element method ,the actual continuum or body of matter like solid ,liquid or
gasis represented as an assemblage of subpisions called finite elements.these elements areconsidered to be interconnected at specified joints which are called nodes or nodal points.the nodes usually lie on the element boundaries where adjacent elements are considered to be connected.在有限元方法中,本来连续体物质像固体液体气体被看做是一个划分后有限单元的集合。这些单元被认为是在指定的关节是相互联系的,这些关节被称为节点。这些节点通常附着在与附近单元相联系的边界上
2.With the program registered in some information support, and the data and proper control
commands added, the program is ready to be tested by submitting it for processing.At the beginning, the program will include some errors that may be syntax errors and logic errors.Syntax errors appears because some of the rules of the language are violated.Normally these can be easily detected and corrected.Logic errors correspond to the case that a syntax error-free program is submitted for execution, but it does not produce the desired results.随着程序的编写在信息的支持下,数据和合适的控制命令的增加,这个程序快速的被测试,通过提交它给过程。在开始时,这个程序会包含一些错误,语法错误和逻辑错误。语法错误出现,是因为一些语言规则被违反。通常这些能容易被发觉和改正。逻辑错误相应的原因,是一个语法自由错误程序被提交执行,但是它没有产生想要的结果。
3.This large discrepancy was explained by the proposal of Griffith that glassy materials
contained cracklike defects which are as stress raisers.Griffith argued that for the case of uniaxial tensile loading of a material containing a crack in the plane perpendicular to the tensile axis, the crack would begin to grow and cause ultimate failure at stresses below the theoretical strength.这个大的差异被Griffith的提议解释,这个提议是玻璃质材料存在易碎的缺陷即应力集中。Griffith认为,例如单轴拉力荷载作用一个物体上,附体在垂直于拉力轴线的平面上有裂纹,裂纹将开始增在,在理论强度应力下导致最终的破坏
4.In recent years, high-strength alloys have become increasingly widely used.Because
fabrication methods are often imperfect, many structures made from these materials contain cracklike defects.As a consequence of this, fracture prior to plastic yield has become an increasingly familiar mode of failure.Under these circumstances,designs based solely on resistance to plastic deformation are often inadequate when high-strength materials are used.It is, therefore, important for many applications to have a theory for metals which can either predict the breaking loads for structures containing flaws or cracks of known geometry, or predict the maximum tolerable flaw size for a given load.The subject of relating the fracture strength of a part to the size of the flaws it contains is called fracture mechanics.在最近几年,高强度合金的应用变得越来越广泛。因为制作方法常常不完美。许多用这些材料做成的结构存在易碎的缺点。这个导致的后果就是,断裂提前于屈服的破坏模式变得越来越平凡。在这些情况下,建立在完全抵抗塑性变形的基础上设计,在使用高强度合金时,常常不适当。因此,一个应用对于能够预测有裂纹和几何缺陷的结构的破坏,或是预测在一个荷载作用下,最大允许裂纹尺寸的理论就很重要。这个关于断裂强度和相应的断裂尺寸的学科被称为断裂力学
5.If the strain in the sample were to be strictly uniaxial, the holes would tend to elongate in
the tension direction and become smaller in the transverse direction.This would result in
long stringlike holes which would have little detrimental effect on the strength of the body.如果例子中的应变是严格的单轴应变,这些洞会趋向于拉伸沿着拉力方向,在横向上变小。这会产生长线型的洞,这些洞对物体的强度会有一些不利的影响
6.Civil engineering is claimed to be the art of directing the great sources of power in nature for
the use and convenience of man.The part played by civil engineers in pioneering work and in developing wide areas of the world has been and continues to be enormous.Civil engineers must make use of many different branches of knowledge including mathematics, theory of structures, hydraulics, soil mechanics, surveying, hydrology, geology and economics.建筑工程被称作竖起来的艺术,力量的来源于现实生活中人们的使用和舒适。发挥工程师在创业和在世界的发展中的广大地区扮演着并将继续充当重要的角色,土木工程师一定使用许多不同的学科,包括数学,结构理论,水力学,土力学,测量,水文,地质学和经济学
7.In a world that is becoming more and more interdependent, there is an ever-increasing need
to link communications systems on various continents and to provide live international television coverage.This need is now being met by the communications satellites.在一个越来越相互依存的世界里,对于把各个大陆的通讯系统连接起来和提供国际电视直播报道的需求不断增长,这种需求现在被通讯卫星所实现。
第二篇:工程力学
工程力学、流体力学、岩土力学、地基与基础、工程地质学、工程水文学、工程制图与cad、计算机应用、建筑材料、混凝土结构、钢结构、工程结构、给水排水工程、施工技术与管理。结构力学,工程测量,土力学与基础工程。
主要实践性教学环节:包括工程制图、认识实习、测量实习、工程地质实习、专业实习或生产实习、结构课程设计、毕业设计或毕业论文等,一般安排40周左右。
主要专业实验:材料力学实验、建筑材料实验、结构试验、土质试验等
第三篇:工程力学
飞行器及其动力装置、附件、仪表所用的各类材料,是航空航天工程技术发展的决定性因素之一。航空航天材料科学是材料科学中富有开拓性的一个分支。飞行器的设计不断地向材料科学提出新的课题,推动航空航天材料科学向前发展;各种新材料的出现也给飞行器的设计提供新的可能性,极大地促进了航空航天技术的发展。
航空航天材料的进展取决于下列3个因素:①材料科学理论的新发现:例如,铝合金的时效强化理论导致硬铝合金的发展;高分子材料刚性分子链的定向排列理论导致高强度、高模量芳纶有机纤维的发展。②材料加工工艺的进展:例如,古老的铸、锻技术已发展成为定向凝固技术、精密锻压技术,从而使高性能的叶片材料得到实际应用;复合材料增强纤维铺层设计和工艺技术的发展,使它在不同的受力方向上具有最优特性,从而使复合材料具有“可设计性”,并为它的应用开拓了广阔的前景;热等静压技术、超细粉末制造技术等新型工艺技术的成就创造出具有崭新性能的一代新型航空航天材料和制件,如热等静压的粉末冶金涡轮盘、高效能陶瓷制件等。③材料性能测试与无损检测技术的进步:现代电子光学仪器已经可以观察到材料的分子结构;材料机械性能的测试装置已经可以模拟飞行器的载荷谱,而且无损检测技术也有了飞速的进步。材料性能测试与无损检测技术正在提供越来越多的、更为精细的信息,为飞行器的设计提供更接近于实际使用条件的材料性能数据,为生产提供保证产品质量的检测手段。一种新型航空航天材料只有在这三个方面都已经发展到成熟阶段,才有可能应用于飞行器上。因此,世界各国都把航空航天材料放在优先发展的地位。中国在50年代就创建了北京航空材料研究所和北京航天材料工艺研究所,从事航空航天材料的应用研究。
简况 18世纪60年代发生的欧洲工业革命使纺织工业、冶金工业、机器制造工业得到很大的发展,从而结束了人类只能利用自然材料向天空挑战的时代。1903年美国莱特兄弟制造出第一架装有活塞式航空发动机的飞机,当时使用的材料有木材(占47%),钢(占35%)和布(占18%),飞机的飞行速度只有16公里/时。1906年德国冶金学家发明了可以时效强化的硬铝,使制造全金属结构的飞机成为可能。40年代出现的全金属结构飞机的承载能力已大大增加,飞行速度超过了600公里/时。在合金强化理论的基础上发展起来的一系列高温合金使得喷气式发动机的性能得以不断提高。50年代钛合金的研制成功和应用对克服机翼蒙皮的“热障”问题起了重大作用,飞机的性能大幅度提高,最大飞行速度达到了3倍音速。40年代初期出现的德国 V-2火箭只使用了一般的航空材料。50年代以后,材料烧蚀防热理论的出现以及烧蚀材料的研制成功,解决了弹道导弹弹头的再入防热问题。60年代以来,航空航天材料性能的不断提高,一些飞行器部件使用了更先进的复合材料,如碳纤维或硼纤维增强的环氧树脂基复合材料、金属基复合材料等,以减轻结构重量。返回型航天器和航天飞机在再入大气层时会遇到比弹道导弹弹头再入时间长得多的空气动力加热过程,但加热速度较慢,热流较小。采用抗氧化性能更好的碳-碳复合材料陶瓷隔热瓦等特殊材料可以解决防热问题。
分类 飞行器发展到80年代已成为机械加电子的高度一体化的产品。它要求使用品种繁多的、具有先进性能的结构材料和具有电、光、热和磁等多种性能的功能材料。航空航天材料按材料的使用对象不同可分为飞机材料、航空发动机材料、火箭和导弹材料和航天器材料等;按材料的化学成分不同可分为金属与合金材料、有机非金属材料、无机非金属材料和复合材料。
材料应具备的条件 用航空航天材料制造的许多零件往往需要在超高温、超低温、高真空、高应力、强腐蚀等极端条件下工作,有的则受到重量和容纳空间的限制,需要以最小的体积和质量发挥在通常情况下等效的功能,有的需要在大气层中或外层空间长期运行,不可能停机检查或更换零件,因而要有极高的可靠性和质量保证。不同的工作环境要求航空航天材料具有不同的特性。
高的比强度和比刚度 对飞行器材料的基本要求是:材质轻、强度高、刚度好。减轻飞行器本身的结构重量就意味着增加运载能力,提高机动性能,加大飞行距离或射程,减少燃油或推进剂的消耗。比强度和比刚度是衡量航空航天材料力学性能优劣的重要参数:
比强度=/
比刚度=/式中[kg2][kg2]为材料的强度,为材料的弹性模量,为材料的比重。
飞行器除了受静载荷的作用外还要经受由于起飞和降落、发动机振动、转动件的高速旋转、机动飞行和突风等因素产生的交变载荷,因此材料的疲劳性能也受到人们极大的重视。
优良的耐高低温性能 飞行器所经受的高温环境是空气动力加热、发动机燃气以及太空中太阳的辐照造成的。航空器要长时间在空气中飞行,有的飞行速度高达3倍音速,所使用的高温材料要具有良好的高温持久强度、蠕变强度、热疲劳强度,在空气和腐蚀介质中要有高的抗氧化性能和抗热腐蚀性能,并应具有在高温下长期工作的组织结构稳定性。火箭发动机燃气温度可达3000[2oc]以上,喷射速度可达十余个马赫数,而且固体火箭燃气中还夹杂有固体粒子,弹道导弹头部在再入大气层时速度高达20个马赫数以上,温度高达上万摄氏度,有时还会受到粒子云的侵蚀,因此在航天技术领域中所涉及的高温环境往往同时包括高温高速气流和粒子的冲刷。在这种条件下需要利用材料所具有的熔解热、蒸发热、升华热、分解热、化合热以及高温粘性等物理性能来设计高温耐烧蚀材料和发冷却材料以满足高温环境的要求。太阳辐照会造成在外层空间运行的卫星和飞船表面温度的交变,一般采用温控涂层和隔热材料来解决。低温环境的形成来自大自然和低温推进剂。飞机在同温层以亚音速飞行时表面温度会降到-50[2oc]左右,极圈以内各地域的严冬会使机场环境温度下降到-40[2oc]以下。在这种环境下要求金属构件或橡胶轮胎不产生脆化现象。液体火箭使用液氧(沸点为-183[2oc])和液氢(沸点为-253[2oc])作推进剂,这为材料提出了更严峻的环境条件。部分金属材料和绝大多数高分子材料在这种条件下都会变脆。通过发展或选择合适的材料,如纯铝和铝合金、钛合金、低温钢、聚四氟乙烯、聚酰亚胺和全氟聚醚等,才能解决超低温下结构承受载荷的能力和密封等问题。
耐老化和耐腐蚀 各种介质和大气环境对材料的作用表现为腐蚀和老化。航空航天材料接触的介质是飞机用燃料(如汽油、煤油)、火箭用推进剂(如浓硝酸、四氧化二氮、肼类)和各种润滑剂、液压油等。其中多数对金属和非金属材料都有强烈的腐蚀作用或溶胀作用。在大气中受太阳的辐照、风雨的侵蚀、地下潮湿环境中长期贮存时产生的霉菌会加速高分子材料的老化过程。耐腐蚀性能、抗老化性能、抗霉菌性能是航空航天材料应该具备的良好特性。
适应空间环境 空间环境对材料的作用主要表现为高真空(1.33×10[55-1]帕)和宇宙射线辐照的影响。金属材料在高真空下互相接触时,由于表面被高真空环境所净化而加速了分子扩散过程,出现“冷焊”现象;非金属材料在高真空和宇宙射线辐照下会加速挥发和老化,有时这种现象会使光学镜头因挥发物沉积
而被污染,密封结构因老化而失效。航天材料一般是通过地面模拟试验来选择和发展的,以求适应于空间环境。
寿命和安全 为了减轻飞行器的结构重量,选取尽可能小的安全余量而达到绝对可靠的安全寿命,被认为是飞行器设计的奋斗目标。对于导弹或运载火箭等短时间一次使用的飞行器,人们力求把材料性能发挥到极限程度。为了充分利用材料强度并保证安全,对于金属材料已经使用“损伤容限设计原则”。这就要求材料不但具有高的比强度,而且还要有高的断裂韧性。在模拟使用的条件下测定出材料的裂纹起始寿命和裂纹的扩展速率等数据,并计算出允许的裂纹长度和相应的寿命,以此作为设计、生产和使用的重要依据。对于有机非金属材料则要求进行自然老化和人工加速老化试验,确定其寿命的保险期。复合材料的破损模式、寿命和安全也是一项重要的研究课题。
第四篇:工程力学教案
《工程力学》主要讲授静力学的基本内容和轴向拉压、扭转、弯曲、应力状态理论、强度理论、压杆稳定、组合变形等主要内容,该课程是电气工程,安全工程、测绘工程等专业的一门重要的专业基础课程,是相关专业的学生学习后续课程、掌握本专业技术所必备的理论基础。以下是工程力学教案,欢迎阅读。
一、课程目的与任务
掌握力系的简化与平衡的基本理论,构筑作为工程技术根基的知识结构;通过揭示杆件强度、刚度等知识发生过程,培养学生分析解决问题的能力;以理论分析为基础,培养学生的实验动手能力;发挥其它课程不可替代的综合素质教育作用。
二、教学基本要求
1.掌握工程对象中力、力矩、力偶等基本概念及其性质;能熟练地计算力的投影、力对点之矩。
2.掌握约束的概念和各种常见约束力的性质;能熟练地画出单个刚体及刚体系的受力图。
3.掌握各种类型力系的简化方法和简化结果;掌握力系的主矢和主矩的基本概念及其性质;能熟练地计算各类力系的主矢和主矩。
4.掌握各种类型力系的平衡条件;能熟练利用平衡方程求解单个刚体和刚体系的平衡问题。
5.理解材料力学的任务、变形固体的基本假设和基本变形的特征;掌握正应力和切应力、正应变和切应变的概念。
6.掌握截面法;熟练运用截面法求解杆件(一维杆件)各种变形的内力(轴力、扭矩、剪力和弯矩)及内力方程;掌握弯曲时的载荷集度、剪力和弯矩的微分关系及其应用;熟练绘制内力图。
7.掌握直杆在轴向拉伸与压缩时横截面的应力计算;了解安全因数及许用应力的确定,熟练进行强度校核、截面设计和许用载荷的计算。
8.掌握胡克定律,了解泊松比,掌握直杆在轴向拉伸与压缩时的变形计算。
9.掌握剪切和挤压(工程)实用计算。
10.掌握扭转时外力偶矩的换算;掌握圆轴扭转时的切应力与变形计算;熟练进行扭转的强度和刚度计算。
11.掌握纯弯曲、平面弯曲、对称弯曲和横力弯曲的概念;掌握弯曲正应力公式;熟练进行弯曲强度计算;掌握杆件的斜弯曲、弯拉(压)组合变形的应力与强度计算。
12.掌握梁的挠曲线近似微分方程和积分法,了解叠加法求梁的挠度和转角。
三、教学的重点与难点
教学重点:
1.绘制物体受力分析图;
2.力线平移定理及力系的平衡方程及其应用;
3.轴向拉压的强度条件、静定桁架节点位移计算;
4.圆轴扭转时横截面上的切应力与相对扭转角及扭转的强度和刚度条件;
5.平面对称弯曲的内力图及利用载荷集度、剪力方程和弯矩方程的微分关系、积分关系和突变关系绘制梁的内力图;
6.平面对称弯曲梁的弯曲正应力及梁变形的积分法和叠加法。
教学难点:
1.平面力系物系平衡问题的解法;
2.简单桁架的内力计算及静定桁架节点位移计算;
3.平面对称弯曲的内力图及利用载荷集度、剪力方程和弯矩方程的微分关系、积分关系和突变关系绘制梁的内力图;
4.计算梁变形的积分法和叠加法。
四、课程内容与学时分配
第一部分 静力学基本概念与公理(4学时)
1.静力学基本概念与公理
2.约束和约束力
3.受力图
第二部分 汇交力系(1学时)
1.汇交力系的合成2.汇交力系的平衡条件
第三部分 力偶系(1学时)
1.力对点之矩矢
2.力对轴之矩
3.力偶矩矢
4.力偶等效条件和性质
5.力偶系的合成和平衡条件
第四部分平面任意力系(8学时)
1.力的平移
2.平面任意力系向一点简化
3.平面任意力系的平衡条件
4.刚体系的平衡
5.静定与静不定问题的概念
第五部分 绪论(2学时)
1.材料力学的研究对象
2.材料力学的基本假设
3.外力与内力
4.正应力与切应力
5.正应变与切应变
第六部分 轴向拉伸与压缩(含实验共10学时)
1.基本概念
2.轴力与轴力图
3.拉压杆的应力与圣维南原理
4.材料在拉伸与压缩时的力学性能
5.应力集中概念
6.失效、许用应力与强度条件
7.胡克定律与拉压杆的变形
8.简单拉压静不定问题
9.连接部分的强度计算
第七部分 扭转(6学时)
1.基本概念
2.动力传递与扭矩
3.切应力互等定理与剪切胡克定律
4.圆轴扭转横截面上的应力
5.极惯性矩与抗扭截面系数
6.圆轴扭转破坏与强度条件
7.圆轴扭转变形与刚度条件
第八部分 弯曲内力(2学时)
1.基本概念
2.梁的计算简图
3.剪力与弯矩
4.剪力、弯矩方程和剪力、弯矩图
5.剪力、弯矩与载荷集度间的微分关系
第九部分 弯曲应力(6学时)
1.基本概念
2.平面对称弯曲正应力
3.惯性矩与平行移轴定理
4.平面对称弯曲矩形截面切应力
5.梁的强度条件
6.梁的合理强度设计
7.双对称截面梁的非对称弯曲
8.弯拉(压)组合第十部分 弯曲变形(含实验共6学时)
1.工程中的弯曲变形问题
2.挠曲线近似微分方程
3.用积分法、叠加法求弯曲变形
4.简单超静定梁
5.梁的刚度条件和合理刚度设计
第五篇:《工程力学》学习心得
《工程力学》学习心得
大二马上就要过去了,在即将过去的一年的大学学习中,我们已经把力学中的理论力学和材料力学都快学习完了。这一年的学习让我了解了许多有关于力的新知识和计算的新方法,老师讲了很多例题的解法,特别是学习的方式更是让我的受益匪浅。
在半年学习力学的过程中,一开始,我以为力学不一定很难,因为很多内容是大学物理里的,所以我应该很容易掌握,但经过一段时间的学习后,我发现它并不是想象中的那么容易,首先,学习内容多,而且有部分特别难。除此之外在学习力学的过程中,还要必须学会画图,学会受力分析。
从老师刚开始老师给我们讲述有关于力学的一些基本知识,并阐明了学习的目标和宗旨到现在将近一年,有时感觉力学容易有时有感觉难。上学期力学考的不是很理想,就是因为有阶段没好好听课,导致材料力学里弯曲变形没学懂,考试前没好好复习,这学期刚开始还是有些吃力,但是后来就慢慢赶上老师的进度,感觉老师应该每次上课时应该穿插讲一点以前学过的知识来巩固我们以前的知识。老师也很负责,先把新知识仔细地将一遍,然后再将例题一一讲解一遍,然后挑一两道相似的习题给我们同学现场做,有时还会随意抽同学上黑板做。放学后,老师还会布置一定的作业,到每周力学实验课连同上次力学实验一起交上去。,每次上课都让同学把与上课无关的东西收起来。上课的时候每次做题他都会看看学生的步骤。到考试之前,他还会让我们找个时间来答疑。
通过上学期的学习,我发现其实态度比学习方法更重要,在学习中我们应该端正自己的态度,如果一个学生不能端正自己的态度,大学基本上也学不到多少东西。而且这种心态不能有丝毫松懈,一旦松懈,就得花更长的时间来“补课”。有句话说:“学如逆水行,不进则退。心似平原散马,易放难收。”
上学期力学只考了七十几分,是我对自己有了一个全新的认识。在这学期我一定会好好努力,并且通过自己的努力,争取在期末能得到理想的成绩。给自己即将结束的力学之旅画上一个完整的句号。