第一篇:24.3 正多边形和圆(教案)
24.3正多边形和圆
【知识与技能】
了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】
结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】
学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】
正多边形与圆的相关概念及其之间的运算.【教学难点】
探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识
观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?
(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来? 【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知 1.正多边形和圆的关系
问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵ABBCCDDEEA,∴AB=BC=CD=DE=EA,CDA3BCEAB,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念
综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:
360°n;内角的度数为:180°(n-2)n 3.正多边形和圆有关的计算问题
例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形
画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆
正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解
1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,„„正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;
(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°
4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结
通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?
【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时 练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.
第二篇:正多边形和圆反思
正多边形和圆教学反思
孙叶
这一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。
我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。
这节课的第二个问题是:探究正三角形的外接圆半径R和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。
整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。
第三篇:圆与正多边形教案一
正多边形与圆
田小华
一.学习目标:
1、了解正多边形的概念、正多边形和圆的关系;
2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;
3、能够用直尺和圆规作图,作出一些特殊的正多边形; 二.教学重难点
学习重点:正多边形的概念及正多边形与圆的关系。学习难点:利用直尺与圆规作特殊的正多边形。三.自学提纲
了解正多边形的概念,掌握如何利用尺规做正多边形的画法,理解正多边形与圆的的定理。
四.教学过程: 1.情境创设:
我们国旗上的五角星怎么画的?能不能利用尺规作出正五边形 及所有边相等的正多边形
提问:1.等边三角形的边、角各有什么性质? 2.正方形的边、角各有什么性质?
拓展:如果圆内接正三角形,正方形有什么性质
二、探索活动:活动一 观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念
正多边形的概念:(学生读出,并及时理解)
(注:各边相等与各角相等必须同时成立)
提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形等.
定理:
此定理讲述了元与正多边形的关系,和包含了做圆内接正多边形的方法,我们拿正五边形来做事例 分析书上的例题 P33 拓展1:已知:如图,五边形ABCDE内接于⊙O,弧AB=弧BC=弧CD=弧DE=弧EA.(图形师生共同作图)
(1)求证:五边形ABCDE是正五边形. 探讨:以圆心到弦AB的弦心距为半径,还以O为圆心画圆。这个圆与正五边形什么关系?
活动二 用量角器作正多边形,探索正多边形与圆的内在联系
1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;
2、正多边形的外接圆的圆心叫正多边形的中心。
活动四 利用直尺与圆规作特殊的正多边形 问题:用直尺和圆规作出正方形,正六多边形。
思考:如何作正八边形正三角形、正十二边形?
拓展2:各内角都相等的圆内接多边形是否为正多边形?
五、课堂练习
课本P34练习1,2和P35习题3,4
六.小结:本节课主要讲的是圆与正多边形联系,及如何作正(四,五,六,八)多边形,及进一步探讨正多边形的对称性。
第四篇:《正多边形和圆》第二课时参考教案
24.3 正多边形和圆
第二课时
教学目标:
1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.
2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.
3、通过画图培养学生的画图能力;
4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.
5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力. 教学重点:
(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形. 教学难点:
准确作图. 教学过程:
一、新课引入:
前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.
二、新课讲解:
由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径rn,画出圆来,然后n等分圆周就能画出所需的正n边形.
n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.
另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.
由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.
(三)重点、难点的学习与目标完成过程
复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等)现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.
学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.
大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)
请同学们用尺规画出半径为2cm的正方形.
大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理)还有什么方法?(安排中上等生作各直角的角平分线.)请同学们用此二法在图上画出正八边形.
照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等)综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……
大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.
方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.
方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)
在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.
请同学们用第二种方法画半径3cm的圆内接正六边形(安排学生在练习本上画)如果我们沿用由正方形画正八边形的思路同学们想想看,会画正六边形就应会画正多少边形?(安排中下生回答:正十二边形,正二十四边形…)理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.
大家再观察,会画正六边形,除上述正多边形外,还可得到正几边形?(安排中等生回答:正三角形)画半径为2cm的正三角形,尺规作图时必得先画出正六边形吗?哪位同学有好方法?(安排举手同学回答:画出⊙O直径AB,以A为圆心,2cm为半径画弧交⊙O于C、D,连结B、D、C即可)请同学们按此法画半径为2cm的正三角形.
请同学们思考一下如何用尺规画半径为2cm的正十二边形?
在学生充分讨论研究的多种方案中送出:先作互相垂直的直径,然后分别以直径的四个端点为圆心2cm长为半径画弧,交⊙O的各点即得⊙O的12等分点.引导学生观察∠DOE=∠DOB-∠EOB ∠DOB=90°,∠EOB=60°∴∠DOE=30°. ∴ DE是⊙O内接正12边形一边.
三、课堂小结:
这堂课你学了哪些知识?(安排中等生回答:1.用量角器等分圆周作正n边形;2.用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形)
四、布置作业
第五篇:24.3 正多边形和圆(教案)
24.3正多边形和圆
教学目标 【知识与技能】
了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】
结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】
学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】
正多边形与圆的相关概念及其之间的运算.【教学难点】
探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.教学过程
一、情境导入,初步认识
观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?
(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来? 【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知 1.正多边形和圆的关系
问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.证明:在⊙O中,∵ABBCCDDEEA,∴AB=BC=CD=DE=EA,CDA3BCEAB,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?
答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.2.正多边形的有关概念
综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:
360°n;内角的度数为:180°(n-2)n 3.正多边形和圆有关的计算问题
例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.4.画正多边形
画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆
正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.三、运用新知,深化理解
1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,„„正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;
(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°
4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结
通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?
课后作业
1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时 练习的“课后作业”部分.教学反思