首页 > 实用范文 > 整改措施
EMC 电源谐波整改(精选5篇)
编辑:青苔石径 识别码:123-378659 整改措施 发布时间: 2023-04-11 04:24:27 来源:网络

第一篇:EMC 电源谐波整改

LED电源总谐波失真(THD)分析及对策

1.总谐波失真 THD 与功率因数 PF 的关系

市面上很多的 LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流 滤波电路,见图 1.图1 该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比 较小,大约为 60°左右,致使输入电流波形为尖状脉冲,脉宽约为 3ms,是半个周期(10ms)的 1/3.输入电压及电流波形如图 2 所示。由此可见,造成 LED 电源输入电流畸变的根本原 因是使用了直流滤波电解电容器的容性负载所致。

图2 对于 LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描述。根据傅里叶变换原理,瞬时输入电流可表为:

式中,n 是谐波次数,傅里叶系数 an 和 bn 分别表为:

每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值 In 可用下式计算:

输入总电流有效值

上式根号中,I1 为基波电流有效值,其余的 I2,3,分别代表 2,3,… n 次谐波电流有效值。用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD),总谐波含量反映了波形的 畸变特性,因此也叫总谐波畸变率。定义为

根据功率因数 PF 的定义,功率因数 PF 是指交流输入的有功功率 P 与输入视在功率 S 之比值,即

其中,为输入电源电压; U cosΦ1 叫相移因数,它反映了基波电流 i1 与电压 u 的相位关系,Φ1 是基波相移角;输入基波电流有效值 I1 与输入总电流有效值 Irms 的百分比即 K=I1 / Irms 叫输入电流失真系数。上式表明,在 LED 驱动电源等非线性的开关电源电路中,功率 因数 PF 不仅与基波电流 i1 电压 u 之间的相位有关,而且还与输入电流失真系数 K 有关。将式(6)代入式(7),则功率因数 PF 与总谐波失真 THD 有如下关系:

上式说明,在相移因数 cosΦ1 不变时,降低总谐波失真 THD,可以提高功率因数 PF;反之 也能说明,PF 越高则 THD 越小。例如,通过计算,当相移角 Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950.2.谐波测量与分析

为了很好地分析如图 1 所示的 LED 驱动电源的谐 波含量,介绍一种使用示波器测量输 入电流的方法。先在电源输入回路串接一个 10-20W 或以上的大功率电阻如 R=10 OHM,通电 后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位,因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。由波形显 示可知,其脉冲电流 i(t)与图 2 的电流波形是一致的,见图3.图3 此电流脉冲波近似于余弦脉冲波,因此可用余弦脉冲函数表为:

为了计算方便,现取正弦交流输入电压的一个周期 T:-5ms≤t≤15ms,即 T=20ms.由此,一个周期为 20ms 的输入脉冲电流的表达式如下:

上式中,余弦脉冲电流幅值 Im 可由示波器显示的电压幅值与电阻值之比而算出,即 Im=Um/R,已知测得 Um=1.5V,则 Im=1.5/10=0.15A.图中脉冲宽度τ=3ms.对于图 2 所示的输入电流波形,是关于前后半波上下对称的奇次对称波,因而只含有 a1、a3、a5……等奇次谐波分量,而直流分量 a0 和偶次谐波分量 a2、a4、a6……均为零。将式(10)的输入电流波形进行傅里叶分解得:

根据积分公式:

并且有 a=π/τ,b=nω,ω=2π/T,因此有:

当 n=1 时将 T=20ms、τ=3ms、Im=0.15A 代入上式,得

计算得基波电流幅值 a1=I1m=0.06×(0.608+0.327)=0.056(A).同理,分别计算 a3,a5,a7,a9 次谐波幅值,如表 1 所示。

表 1.谐波幅值表

根据表 1,LED 驱动电源的输入电流的傅里叶级数为:

根据谐波幅值 Inm 与谐波有效值 In 的关系,谐波有效值:

由式(16),则分别计算各次谐波电流有效值如下(单位 A): I1=0.040,I3=0.033,I5=0.023,I7=0.012,I9=0.003.根据式(5),LED 驱动电源的输入总电流有效值:

将表 1 数据代入式(17),则输入总电流有效值 Irms=0.058(A).实际中,这个输入电 流值可用测量真有效值的万用表测得或由功率计的输入电流显示屏读取。根据式(6)计算总谐波失真:

根据表 1 的谐波幅值数据,并以基波(一次谐波)分量 100%为基准,制定谐波电流幅值频谱图(忽略高于 9 次以上的谐波)见图 4.图4 现按式(7)计算功率因数 PF,当基波相移角 Φ1 为零,cosΦ1=1 则有:

实测 PF=0.65,二者基本一致。实际 LED 驱动电源的输入功率:

3.谐波的危害

谐波的危害 由以上分析计算可知,这类 LED 驱动电源输入电流谐波含量高,对于这类装置如功率 不大和少量的使用,其危害性也许不一定会表现出来,然而若成千上万的大量密集地使用,它所产生的谐波电流总量会严重污染整个供电系统和其他用电用户,同时也使电网电压波 形发生畸变。理论和实践证明,过大的电流谐波会产生以下危害: A.能使配电设施如电力变压器和发电机、感性负载设备如电动机等磁性材料的铁芯损 耗 Pkz 得到额外的增加,即增加了由于谐波电流引起的磁滞损耗 Ph 分量和涡流损耗 Pc 分 量,使其过热而损坏,见式(21),其中 fn 是各次谐波电流频率。

B.谐波电流通过功率补偿设备的电力电容器,图 5 是电容器的等效图。由图 5 可见,B.当由谐波电流引起的容抗与寄生电感引起的感抗相等时形成谐振,产生强大的谐波电流,从而导致电力电容器过流或过压损坏。

图5 C.能对线路上的继电保护、仪器仪表、自动控制、电子通讯、卫星导航以及计算机系 C.统产生强烈的干扰,从而引起误动作、出现噪声等异常现象。D.在三相四线制供电系统的中,线路正常时三相交流电基本平衡,各相电流在中线内 D.相互抵消,理论上中线电流接近于零,因此我国电力系统的中线一般比相线细。然而过大 的三相三次及高次谐波电流,会使电网的相电流无法在中线内相互抵消,致使中线内电流 产生叠加而过流损坏,线路示意图如图 6.此外,中线电流过大引起三相不平衡,即三相电 位发生偏移,严重时导致大批 LED 灯具烧毁,甚至引起火灾!

图6 E.当大量的大功率的高谐波含量的电源设备使用时,其偶次谐波(a2、a4、a6……)不容忽视,它使供电回路电流正负半周不对称。尤其是含量较大的二次谐波,它的直流分 量使电力变压器铁芯产生局部磁化,损耗增大,严重时会危及变压器及电力运行安全。因此,无论是从保护电力系统安全还是从保护用电设备和人身安全来看,严格控制并 限定电流谐波含量,以减少谐波污染造成的危害已成为人们的共识。4.降低 THD 的措施

随着开关电源类电子产品的应用普及,国际电工委员会制定了 IEC61000-3-

2、欧盟制 定了 EN60555-2 和我国制定了 GB17625.1-2003 等法规,对用电设备的电压、电流波形失真 作出了具体限制和规定。目前这些法规也适用于 LED 灯具及 LED 驱动电源。对于输入有功功率大于 25W 的 LED 照明灯具,谐波电流不应超过表 2 限值。

表 2.C 类设备的限值

对于输入有功功率不大于 25W 的 LED 照明灯具,规定符合如下的其中一项: a.谐波电流不应超过表 3 的第 2 栏中与功率相关的限值;

表3 D类设备的限制

b.用基波电流百分数表示的 3 次谐波电流不应超过 86%,5 次谐波不超过 61%;而且,假设基波电压过零点为 0°,输入电流波形应是 60°或之前开始流通,65°或之前有最后 一个峰值(如果在半个周期内有几个峰值),在 90°前不应停止流通。

图 1 所示的 LED 驱动电源的输入功率为 8.8W,根据表 3 第 2 栏的限值,THD 显然超标。一个好的 LED 驱动电源,不仅需要高功率因数 PF,而且还要实现低 THD,使奇次谐波含量 不超过标准规定值。

但有的电源设计者,为了片面强调高 PF 而将滤波电容值减小,其结果是桥式整流器的 导通角增加,PF 增大,但桥式整流器输出的脉动直流电压导致电路的峰值电流极高,使电 源变换器的功率管等损耗剧增,很容易损坏功率管、高频变压器、高频输出整流管元件。

目前,性能比较优良的 LED 驱动电源,均采用了有源功率因数校正(Advantage Power Factor Correetion)APFC 电路,图 7 是一种常用的临界导通模式(TCM)的单级 PFC 反激式电源变换器示意图。

图7 这种电路能使输入电流即电感电流的波形(见图 8)与整流二极管输出的脉动电压波形保持一致的特点,不存在整流二极管导通角的影响,因此输入电流与输入电压的具有相同 相位,如图 9 所示。

图8

图9 这种电路的功率因数 PF 与总谐波失真 THD 的关系如下:

该电路通常可以做到 PF≥0.96、THD≤30%,甚至可以使 PF 值接近于 1,输入电流失真 系数 K=I1 / Irms≤3,THD≤10%.图 10 的输入电路是一种通用的填谷式的无源功率因数控制(PPFC)电路,对于输入功率 较小的 LED 驱动电源采用此电路,有成本低、线路简单等优点。其功率因数可在 0.85-0.9, 但谐波含量往往会超过符合规定。

图 10 它的电压和输入电流的波形如图 11

图 11 图(12)是其测试结果,结果表明谐波含量超标。

图 12

图 13 针对图 10 电路的这一缺陷,可以提出一种改进方案。即在无源 PFC 电路中,增加一个 2-5 OHM/2W 的电阻与二极管 D3 串联,见图 13.这样可以有效地降低谐波含量,同时还能 进一步提高 PF,对于这种结构的 LED 驱动电源,是一种行之有效的改良方法。

第二篇:EMC整改

首先,要根据实际情况对产品进行诊断,分析其干扰源所在及其相互干扰的途径和方式。再根据分析结果,有针对性的进行整改。

一般来说主要的整改方法有如下几种。减弱干扰源 在找到干扰源的基础上,可对干扰源进行允许范围内的减弱,减弱源的方法一般有如下方法:

a 在IC的Vcc和GND之间加去耦电容,该电容的容量在0。01μF棗0。1μF之间,安装时注意电容器的引线,使它越短越好。

b 在保证灵敏度和信噪比的情况下加衰减器。如VCD、DVD视盘机中的晶振,它对电磁兼容性影响较为严重,减少其幅度就是可行的方法之一,但其不是唯一的解决方法。

c 还有一个间接的方法就是使信号线远离干扰源。电线电缆的分类整理 在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因,因为频率的因素,可大体分为高频耦合与低频耦合。因耦合方式不同,其整改方法也是不同的,下边分别讨论:

(1)低频耦合 低频耦合是指导线长度等于或小于1/16波长的情况,低频耦合又可分为电场和磁场耦合,电场耦合的物理模型是电容耦合,因此整改的主要目的是减小分布耦合电容或减小耦合量,可采用如下的方法:

a 增大电路间距是减小分布电容的最有效的方法。

b 追加高导电性屏蔽罩,并使屏蔽罩单点接地能有效的抑制低频电场干扰。

c 追加滤波器可减小两电路间的耦合量。

d 降低输入阻抗,例如CMOS电路的输入阻抗很高,对电场干扰极其敏感,可在允许范围内在输入端并接一个电容或阻值较低的电阻。磁场耦合的物理模型是电感耦合,其耦合主要是通过线间的分布互感来耦合的,因此整改的主要方法是破坏或减小其耦合量,大体可采用如下的方法: a 追加滤波器,在追加滤波器时要注意滤波器的输入输出阻抗及其频率响应。

b 减小敏感回路与源回路的环路面积,即尽量使信号线或载流线与其回线靠近或扭绞在一体。c 增大两电路间距,以便减小线间互感来减低耦合量。

d 若有可能,尽量使敏感回路与源回路平面正交或接近正交来降低两电路的耦合量。

e 用高导磁材料来包扎敏感线,可有效的解决磁场干扰问题,值得注意的是要构成闭和磁路,努力减小磁路的磁阻将会更加有效。

(2)高频耦合 高频耦合是指长于1/4波长的走线由于电路中出现电压和电流的驻波,会使耦合量增强,可采用如下的方法加以解决:

a 尽量缩短接地线,与外壳接地尽量采用面接触的方式。

b 重新整理滤波器的输入输出线,防止输入输出线间耦合,确保滤波器的滤波效果不变差。c 屏蔽电缆屏蔽层采用多点接地。

d 将连接器的悬空插针接到地电位,防止其天线效应。改善地线系统 理想的地线是一个零阻抗,零电位的物理实体,它不仅是信号的参考点,而且电流流过时不会产生电压降。在具体的电气电子设备中,这种理想地线是不存在的,当电流流过地线时必然会产生电压降。据此可根据地线中干扰形成机理可归结为以下两点,第一,减小低阻抗和电源馈线阻抗。第二,正确选择接地方式和阻隔地环路,按接地方式来分有悬浮地、单点接地、多点接地、混合接地。如果敏感线的干扰主要来自外部空间或系统外壳,此时可采用悬浮地的方式加以解决,但是悬浮地设备容易产生静电积累,当电荷达到一定程度后,会产生静电放电,所以悬浮地不宜用于一般的电子设备。单点接地适用于低频电路,为防止工频电流及其他杂散电流在信号地线上各点之间产生地电位差,信号地线与电源及安全地线隔离,在电源线接大地处单点连接。单点接地主要适用于频率低于3MHz的情况。多点接地是高频信号唯一实用的接地方式,在射频时会呈现传输线特性,为使多点接地的有效性,当接地导体长度超过最高频率1/8波长时,多点接地需要一个等电位接地平面。多点接地适用于300KHz以上。混合接地适用于既然有高频又有低频的电子线路中。屏蔽 屏蔽是提高电子系统和电子设备电磁兼容性能的重要措施之一,它能有效的抑制通过空间传播的各种电磁干扰。屏蔽按机理可分为磁场屏蔽与电场屏蔽及电磁屏蔽。电场屏蔽应注意以下几点: a 选择高导电性能的材料,并且要有良好的接地。

b 正确选择接地点及合理的形状,最好是屏蔽体直接接地。磁场屏蔽通常只是指对直流或甚低频磁场的屏蔽,其屏蔽效能远不如电场屏蔽和电磁屏蔽,磁屏蔽往往是工程的重点,磁屏蔽时: a 要选用铁磁性材料。

b 磁屏蔽体要远离有磁性的元件,防止磁短路。

c 可采用双层屏蔽甚至三层屏蔽。

d 屏蔽体上边的开孔要注意开孔的方向,尽可能使缝的长边平行于磁通流向,使磁路长度增加最少。一般来说,磁屏蔽不需要接地,但为防止电场感应,还是接地为好。电磁场在通过金属或对电磁场有衰减作用的阻挡体时,会受到一定程度的衰减,即产生对电磁场的屏蔽作用。在实际的整改过程中视具体需要而定选择何种屏蔽及屏蔽体的形状、大小、接地方式等。改变电路板的布线结构 有些频率点是通过电路板上走线分布参数所决定的,通过前述方法不大有用,此类整改通过在走线中增加小的电感、电容、磁珠来改变电路参数结构,使其移到限值要求较高的频率点上。对于这类干扰,要想从根本上解决其影响,就要重新布线。

小结:总之前面几种方法对提高电磁兼容性都有好处,但应用最为广泛的是改变地线结构及电线电缆的分类整理的方法,这些方法不仅节约成本,而且是最有效的整改方法。屏蔽虽然会增加成本,但是其所起到的屏蔽效能有时是其它方法无法媲美的。所以,在实际的整改中应以改变地线结构、电线电缆的分类整理、屏蔽的方法为主,以其它方法为辅

第三篇:危害谐波变频电源及解决措施

危害谐波变频电源及解决措施

来源:直流电源http://www.teniu.cc

变频电源问题的变速驱动器在工业领域中的应用,与传统的机械变速相比,变频电源控制有很多优点,被广泛采用,但由于可变频率逆变器电路中,为形成一个负载一个典型的非线性,可变频率的电源中的字段通常和其他设备在同一时间运行,如计算机和传感器,这些设备的电源的开关特性通常安装非常接近,这可能会导致相互影响。因此,变频电源与电力电子器件的主要公共电网的谐波源之一,电能质量有着重要的影响。供电系统中的非正弦周期电的傅哩噎系列分解,除了得到相同的基频分量和电网的谐波,但也获得了一系列的基频分量的定义是大于电网,电源称为谐波。比基波和谐波频率(N = fn/f1)称为谐波次数。有时非谐波(非谐波)或分数谐波。谐波实际上是一种干扰,使权力的“污染”,电能质量恶化。谐波电工领域发生,传输,测量,危害和抑制的主要研究,其频率范围一般为2≤N≤40。电气设备生产过程中,两个谐波对公用电网谐波电流和谐波电压在公共供电网络上被称为谐波源。具有非线性特性的电气设备是主要谐波源,如电力电子转换器的设备,通信控制器和电弧炉,感应炉,荧光灯,变压器等。的根本原因是由于非线性负载引起的谐波。当电流通过负载时,的关系不是线性的与所施加的电压,在非正弦电流的形成,导致谐波。谐波频率的基波频率的整倍数,根据法国数学家傅里耶(M.Fourier)的任何重复的波形,可以分解成正弦波成分分析原理包含多个基波的谐波的基本频率和一系列。谐波正弦波,每个谐波的频率,振幅和相位是不同的。谐波可以分为偶数和奇次谐波。在平衡的三相系统中,由于对称关系,偶次谐波已经被淘汰,只有奇次谐波的存在,导致奇次谐波的危害比谐波更多。电气设备的工业企业,在中国有越来越多的谐波,如DC晶闸管电路供电的起重机械,交-交变频器,轧钢机直流传动装置,晶闸管串级调速的风扇和水泵和冶炼电弧炉。这些设备使用电流不是正弦曲线,系统电压失真的谐波分量。在谐波源设备本身的特征和工作条件的高次谐波电流被确定,而不管网络参数,所以它可以被视为一个恒定电流源。所有种晶闸管电路和电路形式所产生的谐波,称为电路的特征谐波。除了特征谐波,在三相电压不平衡,触发脉冲不对称或不稳定的工作状态,该电路可以产生非特征谐波。谐波分析和计算最显着的特征谐波,5,7,11,13。如直流电流纹波,5次谐波的幅值会增加,其余部分的谐波振幅值将被减小。当电源被连接有多个谐波源,由于相位均匀的高次谐波电流成分的谐波源是不同的,将是小于的各个组成部分的算术和。变压器磁化电流的含3,第5,第7和第二高次谐波分量等。由于变压器的初级和次级绕组的角度连接的一组,提供了一条路径的3次谐波,所以3的高次谐波电流不流入电网。但是,当励磁电流的不平衡,3次谐波(高达20%)的残差分量注入电网。三,电力系统谐波的危害,谐波的危害主要有以下几个方面:

(1)增加的运输,供应和使用的电气设备的额外损失,使设备过热的温度,降低利用效率和经济效益设备

(2)在对传输线的:增加的能量损失的高次谐波电流的传输线的谐波的影响。当谐振谐波频率注入电网位于网络内的共振点附近,会导致传输线和电力电缆线路的绝缘击穿。

(3)在变压器上的谐波的影响:谐波电压的变压器的磁滞损耗,涡流损耗和绝缘的电场强度,存在的谐波电流增加铜损。具有不对称负载的变压器,将大大增加励磁电流的谐波分量。危害谐波变频电源和解决措施(2)(4)电力电容器上的谐波的影响:在所述电容器两端的电压谐波,电容器是非常小的电源谐波阻抗,高次谐波电流被叠加在电容器是根本,电容电流增大,温度升高,寿命缩短,甚至爆炸电容器的过载,谐波也可能是在配合引起的电容器在电力系统中的电力谐波,故障加重。(5)影响继电保护和自动装置的工作可靠性,特别是对电磁继电器,电力谐波经常会导致继电保护和自动装置误动或误动,动作失去选择性,可靠性低,容易造成系统事故,燕中巍和电力系统的安全运行。(6)的通信系统的干扰:电力线通过的大振幅低频谐波电流奇数通过磁耦合,会产生干扰电压电力线附近,干扰通信系统中的通信线路,影响通信线路呼叫的清晰度,即使在极端情况下,也威胁到通信设备和人员的安全。(7)电气设备的影响:电力谐波会使的图形失真电视,电脑,屏幕亮度起伏变化,使机器元件的温度过热,计算机和数据处理系统错误,严重时甚至会损坏机器。此外,电力谐波的不利影响将是测量和测量仪器的指示是不准确的,整流装置,它已成为一种扰民的电流在电力系统中的质量。四,谐波治理谐波问题,抑制辐射干扰和电源系统的干扰,可采取屏蔽,接地,隔离和滤波技术。控制高次谐波的主要措施是:增加系统容量,提高电源的电压电平增加的脉冲数转换器的移动设备的操作模式,以改善系统,设置交流滤波器可以减少系统中的谐波分量。AC滤波器由无源滤波器和有源电力滤波器2。有源滤波器是一种注入谐波电流补偿系统,有源滤波器来补偿非线性负载产生的谐波电流的。它可以是快速的动态跟踪补偿谐波发生变化,并通过系统的阻抗的补偿性能不会受到影响。它的结构是比较复杂的,损失大,设备成本高,在补偿谐波同时,也将注入新的谐波。无源滤波器(LC滤波器)是使用LC共振原理,人为地引起的串联谐振电路具有极低的阻抗,信道作为主谐波以进行过滤,所以注入到电网。LC滤波器具有结构简单的优点,谐波吸收效果是显而易见的,但仅在的固有振动频率的谐波补偿效果好;及补偿特性受电网阻抗大时,在一个给定的频率,可能会发生在并联谐振或电网阻抗和LC滤波器之间的串联谐振。五,审查的无功功率补偿,谐波抑制技术,是当前和今后相当长的一段时间,以缓解电力供应和需求之间的矛盾,提高电源的质量,广泛使用的有效手段之一,可以带来巨大的经济效益和良好的社会效益,为国家和用户。谐波产生变频电源控制在最小的范围内,达到科学合理的利用,抑制电网的污染,改善电能质量。

第四篇:EMC整改 方案

传导干扰分析及抑制措施:

视频LED显示屏的电源电源对此项的测试影响较大、电源本身性能的好坏直接关系到本身指标是否合格。有时也存在电源单独做电磁兼容试验是合格的、一旦装到整机时,由于整机中其他部件在某个频点具有较强的干扰信号,电源的滤波单元无法完全滤除该干扰信号,从而导致测试结果的超标。

对于电源端子骚扰电压的超标,有以下途径可以解决:首先、排除电源因数的干扰,在条件允许的情况下可将电源取出,连接额定纯阻性负载进行试验。如果此时原超标频点没有了,说明该频点的骚扰来源于主控板。此时应把重点放在主控板的滤波上,主控板中主要的干扰是晶振,应该对晶振进行良好的滤波和接地;其次、晶振也是辐射发射测试项目超标的一个主要因素,检查主控板中晶振和信号线接地、电源接地是否良好,在保证这几点的情况下,如果传导测试仍不合格,说明干扰信号的确很强。此时可在电源的输入端加整件滤波器X、Y电容,加强电源的滤波作用。注意:滤波器选择时,应关注滤波器不同平率的插入损耗情况,还要根据阻抗和负载阻抗的高低。

滤波: 此类产品由于数字脉冲信号的存在,以至于辐射发射一般都比较强,可在晶振旁边接旁路滤波电容,且保证晶振接地良好、接地电阻尽可能小。如果条件允许,也可以使用经过扩频的晶振、且保证不影响时钟电路的条件下,使晶振在一个较小的频率范围内发生频偏,单频点的能量被分散,这样整体的辐射就会减小,还可以在显示屏的电源线和内部各个显示单元之间的信号线上使用铁氧体磁环对高频共模干扰电流进行滤波处理(共模电流的存在是导致辐射发射过大的主要因素)。当然铁氧体磁环的选择要结合其插入损耗随频率变化的曲线选择合适的规格,效果才会好。

屏蔽: 对于已经成型的显示屏来说,屏蔽是抑制辐射发射的一项重要措施。此类产品的前面板是由LED灯组成的显示阵列,因此,对前面板的屏蔽是整机屏蔽效果好坏的关键,建议整个箱体使用金属板材制成,用金属网格屏蔽前面板→即在LED灯的行与行之间、列与列之间使用导电性能较好的金属网格,这样会对整体的辐射发射能量有一定的衰减作用。也可以在箱体的前面板和控制板之间加一层金属屏蔽网格,效果会更好些。箱体里面的各个扫描板之间的信号线尽量使用屏蔽线,且保证其金属屏蔽层能和箱体等电位。接地: 要想使箱体具有较好的屏蔽功能,务必确保整个箱体屏蔽外壳和地等电位,箱体的金属接缝处应尽量保证搭接良好,使搭接电阻尽可能小,特别是箱体的后盖与箱体要尽可能的连接紧密,防止孔缝引起的二次发射。其次,主控板中晶振的地线也要尽可能独立,避免因共地引起的干扰,主控板和扫描板的地线应尽量宽,最好将地线布成网格状,这样能减小信号的回流面积,有效抑制辐射发射。

LED显示模组电磁辐射干扰源分析:

LED显示屏采用全数字化灰度形成方法,完全依靠电流脉冲驱动灯板LED发光,因而在形成高品质时,所使用的信号频率也被同步地大幅度提高,产生变频电脉冲,频谱延伸非常宽,已经落入对其他电子设备产生干扰的频段内,电磁干扰幅度大。

EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;信号传导则通过耦合到电源、信号线和控制线上离开外壳,在开放的空间中自由辐射从而产生干扰。

很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。

第五篇:EMC整改步骤

EMC整改步骤之一

■步骤一

将桌子转到待测(EUT)最大发射的位置﹐初步诊断可能的原因﹐并关掉EUT电源加以确认。(说明)

由于EMI测试上﹐EUT必须转360度而天线由 1m到4m变化﹐其目的是要记录辐射最大的情况。同样地﹐当我们发现无法通过测试时﹐首先我们先将天线位置移到噪声接收最大高度﹐然后将桌子转到最差角度﹐此时我们知道在EUT面对天线的这一面辐射最强﹐故可以初步推测可能的原因﹐如此处屏蔽不佳或靠近辐射源或有电线电缆经过等。

另外须注意的是要关掉EUT的电源﹐看噪声是否存在﹐以确定噪声确实是由EUT所产生。曾见测试Monitor一直无法解决某一点的干扰﹐结果其噪声是由PC所造成而非Monitor的问题﹐亦有在OPEN SITE测试Monitor发现某几点无法通过﹐由测试接收仪器的声音判断应是Monitor产生﹐结果关掉电源发现噪声依然存在﹐所以关掉EUT电源的步骤是必须的﹐而且通常容易被忽略。

■EMC整改之二

将连接EUT的周边电缆逐一取下﹐看干扰的噪声是否降低或消失。(说明)若取下某一电缆而干扰的频率减小或甚而消失﹐则可知此电缆已成为天线将机板内的噪声辐射出来。事实上﹐仔细分析造成EMI的关键﹐我们可以用一个很简单的模式来表示。

任何EMI的Source必须要有天线的存在﹐才能产生辐射的情形﹐若仅单独存在噪声源而没有天线的条件﹐此辐射量是很小的﹐若将其连接到天线则由于天线效应便把能量辐射到空间。所以EMI的对策除了针对噪声源(Source)做处理外﹐最重要的查破坏产生辐射的条件----天线。以往我们最常看到谈EMI对策离不开屏蔽(Shielding),滤波(Filter),接地(Grounding)﹐对于接地往往一块电路板多已固定﹐而无法再做处理﹐因为这一部份在电路板布线(Layout)时就须仔细考虑﹐若板子已完成则此时可变动的空间就非常小﹐一般方式仅能找出噪声小的接地处用较粗的地线连接﹐减低共模(Common mode)噪声。屏蔽所牵涉的材质与花费亦甚高﹐滤波的方式则是常可见Bead电感等﹐往往用了一大堆亦不甚见效﹐何以如此﹐许多时候是我们没有解决其辐射的天线效应。一般而言﹐噪声的能量并不会因加一些对策组件便消失﹐也就是能量不减﹐ 我们所要做的工作是如何避免噪声辐射到空间(辐射测试)或由电源传出(传导测试)。

在此我们整理了产生辐射常见的几种情形供读者参考。(1)机器外部连接之电缆成为辐射天线 由于机器本身外部所连接的电缆成为天线效应﹐将噪声辐射到空间﹐此时噪声的大小和电缆的长度有关﹐因电缆的天线效应相对于噪声半波长时共振情形会最大﹐也往往是造成EMI无法通过测试。在解决这个问题前必须要做一些判断﹐否则很容易疏忽而浪费时间。(a)噪声是由机器内部电路板或接地所产生

此情形为将电缆取下﹐或加一Core则噪声减低或消失。此时必须做的一个步骤是将线靠近机器(不须直接连接)看噪声是否会存在﹐若噪声并没有升高﹐则可确实判定由机器内部产生﹐若将电缆靠近而干扰噪声马上升高﹐由此时请参考(b)的说明。(b)噪声是由机器内部耦合到电缆线上﹐而使电缆成为辐射天线。

这一点是许多测试工程师容易忽略的。此情形如(a)中所提到的﹐只要将一条电缆靠近﹐则可从频谱上看到噪声立刻升高﹐此表示噪声已不单纯是由线上所辐射出﹐而是机器本身的噪声能量相当大﹐一旦有天线靠近则立刻会耦合至天线而辐射出来。在实际测试中﹐我们发现许多通讯产品有这类情形发生﹐此时若单纯用Core或Bead去处理﹐并不能真正的解决问题。

(2)机器内部的引线﹐连接线成为辐射天线

由于许多产品内部常有一些电线彼此连接工作厅﹐当这些线靠近噪声源很容易成为天线﹐将噪声辐射出去。针对此点的判断﹐在200MHz以下之噪声﹐我们可以在线上加一Core来判断噪声是否减低﹐而对于200MHz以上之高频噪声﹐我们可以将线的位置做前后左右的移动﹐看噪声是否会增大或减小。(3)电路板上的布线成为辐射天线

由于走线太长或靠近噪声源而本身被耦合成为发射天线﹐此种情形当外部电缆都取下﹐而仅剩电路板时﹐在频谱仪上可看见噪声依然存在﹐此时可用探棒测量电路板噪声最强的地方﹐找到辐射的问题加以解决。关于探测的工具及方法﹐将于后详细说明。

(4)电路板上的组件成为辐射来源

由于所使用的IC或CPU本身在运作时产生很大的辐射﹐使得EMI测试无法通过﹐这种情形往往在经过(1)﹑(2)﹑(3)的分析后噪声依然存在﹐通常解决的方法不外换一个类似的组件﹐看EMI特性是否会好一些。另外就是电路板重新布线时﹐将其摆放于影响最小的位置﹐也就是附近没有I/O Port及连接线等经过﹐当然若情况允许﹐将整个组件用金属外壳包覆(Shielding)也是一种快速有效的方法。

由以上的分析介绍我们可以了解﹐造成电磁干扰辐射最关键的地方就是电线的问题﹐当有了适当的天线条件存在很容易就产生干扰﹐另外电源线往往亦是造成天线效应的主因 ﹐这是在许EMI对策中最容易疏忽的。

■ 步骤三

电源线无法移去﹐可在其上夹Core或水平垂直摆动﹐看噪声是否有减小或变化。若产品有电池设备则可取下电源线判断﹐如Notebook PC等。(说明)

如前所述电源线往往是会成为辐射天线﹐尤其是Desktop PC类产品﹐往往300MHz以上的噪声会由空间耦合到电源线上﹐所以判断产品的电源线是否受到感染是必须的步骤。由于噪声频带的影响﹐对200MHz EMC整改之三

以下可用加Core的方式(可一次多加数个)判断﹐对于200MHz以上的噪声﹐由于此时Core的作用不大﹐可将电源线水平摆放和垂直摆放﹐看干扰噪声是否有差别﹐若水平和垂直有很明显的差别﹐则可一边摆动电源线一边看频谱仪(Spectrum)上噪声之大小有否变化﹐如此便可知道电源线有否干扰。

至于若发现电源线会产生辐射时如何解决﹐一般皆不好处理﹐通常先想办法使机器内的噪声减小﹐以避免电源线的二次辐射﹐而使用Shielded线一般对辐射的影响并不大﹐故换一条不同长度的电源线﹐有时也会有很好的效果。

由这一点我们可知道﹐除了要使可册产生辐射噪声的组件远离I/O Port外﹐其也须尽量远离电源线及Switching power supply的板子﹐以免耦合到电源线上使得辐射及传导皆无法通过测试。

■步骤四

检查电缆接头端的接地螺丝是否旋紧及外端接地是否良好。(说明)

依前三项方式大略找了一下问题后﹐我们必须再做一些检查﹐因为透过这些检查﹐也许不须做任何修改﹐便可通过EMI测试。例如检查电缆端的螺丝是否锁紧﹐有时将松掉的螺丝上紧﹐可加强电缆线的屏蔽效果。另外可检查看看机器外接的Connector的接地是否良好﹐若外壳为金属而有喷漆﹐则可考虑将Connector处的喷漆刮掉﹐使其接地效果较佳。另外若使用Shielded的电缆线﹐必须检查接头端处外覆的金属纲是否和其铁盖密合﹐许多不佳的屏蔽线(RS232)多因线接头的外覆屏蔽金属纲未册和连接端的地密合﹐以致无法充份达到屏蔽的效果。

各种接头如Keyboard及Power supply常常由于接头的插头与机器上的插座间的密合度不好﹐影响了干扰噪声的辐射。检查的方式可将接头拔掉看噪声是否减小﹐减小表示两种册可﹐一为线上本身辐射干扰﹐另一为接头间接触不好﹐此时插上接头﹐用手销微将接头端左右摇动﹐看噪声是否会减小或消失﹐若会减小可将Keyboard或Power supply的连接头﹐用铜箔胶带贴一圈﹐以增加其和机器接头的密合度﹐这一点也是实测上很容易被疏忽﹐而会误判机器的EMI为何每次测时好时坏﹐或花许多时间在其它的对策上面.EMC 整改常用对策

EMC 电源谐波整改(精选5篇)
TOP