首页 > 精品范文库 > 11号文库
BluePlains污水处理厂污泥热水解
编辑:雨雪飘飘 识别码:20-250934 11号文库 发布时间: 2023-03-30 05:34:41 来源:网络

第一篇:BluePlains污水处理厂污泥热水解

BluePlains污水处理厂污泥热水解

:污泥处理技术要求将原料加热到165摄氏度,并持续半个小时。然而,在一个能源成本受到极度关注的时代,发挥该技术的优势显然不太现实。然而,自九十年代晚期开始,热水解处理技术被运用到厌氧分解的前期过程中,逐渐受到一些欧洲国家的青睐,尤其是英国和斯堪纳维亚的部分地区,并呈现出往世界各地扩张的势头。

多年以前,人们曾试采用过热水解技术,但最终没有成功,主要问题是把溶液从高温反应器倒进设备前端,极大增加了主要污水净化厂的有机负荷。大约十五年以前,挪威公司Cambi引进了经过改良的工艺,溶液经过高温反应器出来处理以后进入到污泥消化器,明显提高了有机负荷的利用率。

热水解处理技术分为三个处理阶段:

(1)在碎浆机中加热经过初步脱水处理的原料和过剩活性污泥的混合物。(2)用蒸汽加热,使温度达到165摄氏度,热水解处理反应器的压力不断增加。(3)释放闪蒸罐中的气体到碎浆机中,压力骤然降低,温度降至105摄氏度左右。每座污泥处理厂一般都有两个、三个或四个大小相同的反应槽,批量处理污泥。每个反应槽都要经过如下步骤:加注污泥、加压加热30分钟使污泥丧失活性、消除病菌,然后送入闪蒸罐。这类似于内燃机的工作原理——加注、压缩、燃烧、排气。同时,该过程中的每个小部件都处于不断工作的状态。连续不断地往碎浆机中注入脱水的污泥,闪蒸罐不停地将处理好的污泥推送到蒸炼器,利用换热器对其降温。即便如此,蒸炼器的内部温度还是能够达到40摄氏度,略高于传统工艺中的35摄氏度。

闪蒸罐中的放压步骤起着至关重要的作用,它能使活性污泥的细胞壁破裂,从而使其易于蒸炼、脱水。有机负荷在蒸炼器中所释放的强大能量使得挥发性固体负荷和总蒸炼量提高两倍,沼气产量上升35%。

彻特西污水处理厂作为英国第一家应用该技术的工厂,也作为一个早期的例子,一边全力运营,一边对运营早期出现的问题进行评估和修正。最终于2005年,热水解处理技术被全面革新,在6.5千克有机固体负荷下,每吨干固体平均产出400立方米的沼气,其中甲烷含量68%,高出平均水平。

英国和爱尔兰有11家厂处在充分运营状态,还有五家目前处于在建或试运营状态。Panter公司与Cambi公司紧密合作,并估算出,截至2014年,公司将能够处理英国22%的污泥量。热水解处理这一整套工艺的重要性不仅于此,法国巨头威立雅,通过其专业的OTV部门,已将该工艺安装到英国哈佛和Esholt的两家处理厂。

设在美国华盛顿哥顿比亚特区的BluePlains污水处理厂,目前仍在建,预计2015年年初投入运营,其拥由六个热水解处理反应器。据说,该处理厂是世上最大的热水解处理厂,每年处理14.9万吨的总溶解性固体。

第二篇:污水处理厂污泥减量化

摘要:对剩余污泥的处理在污水处理中占用昂贵的费用,基于经济环境和其它因素的考虑,如何解决剩余污泥的问题正是我们面临的挑战。由于环境结和相关法律的要求不断增加,那么对剩余污泥处理方安的选择就越来越严格,而减少污泥总量又是迫切的目标,本文着重介绍了有关剩余污泥减量化的主要方法:解耦联,隐性生长,扑食细菌,热处理,臭氧法,OSA法等等。合适的物质环境和运行工艺将减少剩余污泥产量,但是,不管选用哪种方法他都将对微生物群产生一定影响,而且还会增加处理后的水含氮浓度。关键词:污泥减量 污水处理 活性污泥法

Abstract —— Excess biomass produced during the biological treatment of wastewaters requires costly disposal.Excess sludge treatment and disposal currently represents a rising challenge for wastewater treatment plants due to economic, environmental and regulation factors.As environmental and legislative constraints increase, thus limiting disposal options, there is considerable impetus for reducing the amount of biomass produced.This paper reviews current strategies for reducing sludge production based on these mechanisms: uncoupling metabolism, lysiscryptic growth, predation on bacteria, thermal treatment, activated sludge ozonation process, anoxic-settling-anaerobic(OSA),and so on..Suitable engineering of the physical conditions and strategic process operation may result in environments in which biomass production may be reduced.But employing any strategy for reducing sludge production may have an impact on microbial community in biological wastewater treatment processes and reduced biomass production may result in an increased nitrogen concentration in the effluent.Key word: sludge reduction, waste water treatment, activated sludge tereatment.1 前言 目前世界上80%以上的污水处理厂应用的是活性污泥法处理污水,它最大的弊端就是处理污水的同时产生惊人的大量剩余污泥。污泥中的固体有的是截留下来的悬浮物质,有的是由生物处理系统排出的生物污泥,有的则是因投加药剂而形成的化学泥,污水处理厂产生的污泥量约为处理水体积的0.15 % —1 %左右。污泥的处理和处置,就是要通过适当的技术措施,使污泥得到再利用或以某种不损害环境的形式重新返回到自然环境中。这些污泥一般富含有机物、病菌等,若不加处理随意堆放,将对周围环境产生新的污染。

对这些污泥处理方法主要有:农用、填海、焚烧、埋地。但这些方法都无一例外地存在弊端。如污泥中重金属的含量通常超过农用污泥重金属最高限量的规定。此外,污泥中还含有病原体、寄生虫卵等, 如农业利用不当,将对人类的健康造成严重的危害。填埋处置容易对地下水造成污染,同时大量占用土地。焚烧处置虽可使污泥体积大幅减小,且可灭菌,但焚烧设备的投资和运行费用都比较大。投放远洋虽可在短期内避免海岸线及近海受到污染,但其长期危害可能非常严重,因此,已被界上大多数国家所禁用。

一般每去除1kg的 就产生15~100L活性污泥,这些污泥含水率达到

。95%以上,剩余污泥处理的成本高昂,约占污水厂运行费用的

欧洲国家每年用于处理剩余污泥的费用就高达28亿人民币。显而易见,任何有利于减少剩余污泥的措施都将带来巨大的经济效益。污泥减量化的理论基础 2.1 维持代谢和内源代谢

1965 年Pirt 把微生物用于维持其生活功能的这部分能量称为维持代谢能量,一般认为,维持代谢包括细胞物质的周转、活性运输、运动等,这部分基质消耗不用来合成新的细胞物质,因此,污泥的产量和维持代谢的活性呈负相关。Herbert 在1956 年提出,维持能量可通过内源代谢来提供,部分细胞被氧化而产生维持能量。从环境工程角度看,内源呼吸通常指生物量的自我消化,在连续培养生长时可同时发生内源代谢。内源代谢的主要优势在于进入的基质最终被呼吸成为二氧化碳和水,使生物量下降

。因此,在废水处理工艺中,内源呼吸的控制比微生物生长控制和基质去除控制更为重要。

2.2 解偶联代谢

代谢是生物化学转化的总称,分为分解代谢和合成代谢。微生物学家认为,细胞产量和分解代谢产生的能量直接相关,但在某些条件下,如存在质子载体、重金属、异常温度和好氧—厌氧交替循环时,呼吸超过了ATP 产量,即分解代谢和合成代谢解偶联 Russell ,此时微生物能过量消耗底物,底物的消耗速率很高。Cook 和报道,在完全停止生长时细菌利用能源的速率比对数生长期的高三分之一,这表明细胞能通过消耗膜电势、ATP 水解和无效循环处置其胞内能量。在解偶联条件下,大部分底物被氧化为二氧化碳,产生的能量用于驱动无效循环,但对底物的去除率不会产生重大影响

。能量解偶联的特殊性在于它是微生物对底物的分解和再生,而没有细胞质量的相应变化。从环境工程意义上讲,能量解偶联可用于解释底物消耗速率高于生长和维持所需之现象。因此,在能量解偶联条件下活性污泥的产率下降,污泥产量也随之降低。通过控制微生物的代谢状态,最大程度地分离合成代谢和分解代谢,在剩余污泥减量化上将是一个很有发展前景的技术途径。目前污泥减量化的方法 3.1 解偶联

机理:三磷酸腺苷(ATP)是键能转移的主要途径,是能量转移反应的中心,微生物的合成代谢通过呼吸与底物的分解代谢进行偶联,当呼吸控制不存在,生物合成速率成为速率控制因素时,解偶联新陈代谢就会发生,并且在微生物新陈代谢过程中产生的剩余能量没有被用来合成生物体。在能量解偶联条件下活性污泥的产率下降,污泥产量也随之降低。微生物学家认为,细胞产量和分解代谢产生的能量直接相关,但在某些条件下,如存在质子载体、重金属、异常温度和好氧—厌氧交替循环时,呼吸超过了ATP 产量,即分解代谢和合成代谢解偶联 ,此时微生物能过量消耗底物,底物的消耗速率很高。在完全停止生长时细菌利用能源的速率比对数生长期的高1/3,这表明细胞能通过消耗膜电势、ATP 水解和无效循环处置其胞内能量。能量解偶联的特殊性在于它是微生物对底物的分解和再生,而没有细胞质量的相应变化。通过控制微生物的代谢状态,最大程度地分离合成代谢和分解代谢,在剩余污泥减量化上将是一个很有发展前景的技术途径。

3.1.1 投加解偶联剂

解偶联剂能起到解偶联氧化磷酸化作用,限制细胞捕获能量,从而抑制细胞的生长,故能减少污泥产量。解偶联剂其作用机理是该物质通过与H+ 的结合,降低细胞膜对H+ 的阻力,携带H+ 跨过细胞膜,使膜两侧的质子梯度降低,降低后的质子梯度不足以驱动ATP 合酶合成ATP ,从而减少了氧化磷酸化作用所合成的ATP 量。如: TCS解偶联剂(3 ,3′,4′,5-四氯水杨酰苯胺)能有效降低剩余污泥产量,只要在反应器中保持TCS 一定的浓度,就能降低剩余污泥的产率。TCS 能有效地降低活性污泥分批培养物中的污泥产率,随进水中TCS 浓度的提高,污泥产率迅速下降.但污泥的COD 去除能力并未受影响,出水中的NH+42N 和TN 含量也和对照相当,同时发现污泥的SOUR 值和DHA 提高,说明化学解耦联剂对微生物有激活作用,微生物的种群结构也发生了改变,经过40d 的运行后,添加TCS的反应器污泥中丝状菌很少,虽然污泥较疏松,但污泥的沉降性能未见有影响。上述结果表明,采用化学解耦联剂来降低活性污泥工艺中的剩余污泥产量,以降低污泥的处理与处置费用这种方法有发展前景,值得进一步地深入研究。

但是,解偶联剂的对现有污水处理应用中存在以下问题:(1)所投的药在较长时间后由于微生物的驯化而被降解,从而失去解偶联作用;(2)当加入解偶联剂后,需要更多的氧去氧化未能转化成污泥的有机物,从而使得供氧量增加;(3)对投加解偶联剂的费用还需要作比较,由于在污水中的浓度需要维持在4—80 mg/ L ,用量大;(4)解偶联剂在实际应用中的最大弊端是环境问题,解偶联剂通常是难降解的有毒物,可能发生二次污染。

3.1.2 高S0/X0(底物浓度/污泥浓度)条件下的解偶联 简单的说就是,细胞分解能量大于合成能量,从而细胞的分解数量就大于合成数量,最终降低微生物产率系数。解偶联机理有两种解释:一是积累的能量通过粒子(如质子、钾离子)在细胞膜两侧的传递削弱了跨膜电势,随后发氧化磷酸化解偶联;二是减少了生物体内部分新陈代谢的途径(如甲基乙二酸途径)而回避了糖酵解这一步。高S0/X0条件下解偶联还不能用于实际的污水处理, 微生物产生的不完全代谢的产物还可能对整个处理过程产生影响,而且要求相对高的S0/X0值(>8—10)远远大于实际活性污泥法处理污水时的情况(F/M=0.05—0.1)。

3.2 高浓度溶解氧

有很多研究表明,细胞表面的疏水性、微生物活性和胞外多聚物的产生都和反应器中的溶解氧水平有关,这预示着溶解氧对活性污泥的能量代谢有一定的影响,进而影响碳在分解代谢和合成代谢中的分布。高溶解氧活性污泥工艺能有效地抑制丝状菌的发展,纯氧活性污泥工艺即使在高污泥负荷率下,也可比传统的空气活性污泥工艺减少污泥量54 %。和传统空气曝气工艺相比, 纯氧工艺能使曝气池中维持高浓度MLSS ,污泥沉降和浓缩性能好、污泥产量低、氧气转移效率高、运行稳定。Abbassi等人 最近报道,当小试规模的传统活性污泥反应器的溶解氧从 1.8mg/L 增加到6.0mg/L时,剩余污泥量从0.28mgMLSS/mgBOD5下降为0.20mgMLSS/mgBOD5。

由此可见,高溶解氧工艺在剩余污泥减量化和工艺运行效能的提高方面有很大潜力。

3.3 好氧—沉淀—厌氧(OSA)工艺

在污泥的回流过程中插入一级厌氧生物反应器,这种工艺已经用来成功地抑制污泥的丝状膨胀的发生,可减少一半的剩余污泥产量,好氧—厌氧循环方法被用于活性污泥工艺中剩余污泥的减量化。其机理就是,好氧微生物从外源有机底物的氧化中获得ATP ,当这些微生物突然进入没有食物供应的厌氧环境时,就不能产生能量,不得不利用自身的ATP库作为能源,在厌氧饥饿阶段,没有一定量的细胞内ATP 就不能进行细胞合成,因而,微生物通过细胞的异化作用,消耗基质来满足自身对能量的需求,交替的好氧-厌氧处理引起的能量解偶联就为OSA 处理技术奠定了污泥减量化的理论基础。Chudoba 等人 比较了OSA工艺和传统活性污泥工艺的污泥产量,发OSA工艺的比污泥产率降低了20 %~65 % , S V I 值也比传统活性污泥工艺低。

例如:上海锦纶厂废水处理站的剩余污泥达到零排放是运用了朱振超和刘振鸿等人 的好氧—沉淀—兼氧活性污泥工艺使。还有张全等人 采用好氧—沉淀—微氧活性污泥工艺使污泥量由80 %减少为15 %~20 % ,系统基本上可做到无污泥排放。

所以,OSA工艺在污泥减量化上是相当可行的。3.4 溶解细胞法

在传统活性污泥法工艺流程中的污泥回流线上增加相关处理装置,通过溶胞强化细菌的自身氧化,增强细菌的隐性生长。所谓隐性生长是指细菌利用衰亡细菌所形成的二次基质生长,整个过程包含了溶胞和生长。利用各种溶胞技术,使细菌能够迅速死亡并分解成为基质再次被其他细菌所利用,是在污泥减量过程中广为应用的手段。

3.4.1 臭 氧

原理是:曝气池中部分活性污泥在臭氧反应器中被臭氧氧化,大部分活性污泥微生物在臭氧反应器中被杀灭或被氧化为有机质,而这些由污泥臭氧氧化而来的有机质在随后的生物处理中被降解,臭氧可破坏不容易被生物降解的细胞膜等,使细胞内物质能较快地溶于水中,同时氧化不容易水解的大分子物质,使其更容易为微生物所利用。Kamiya 和Hirotsuji 的研究表明,当曝气池中的臭氧剂量为10 mg/(gMLSS·d)时可使剩余污泥产量减少50 % ,而高至20 mg/(gMLSS·d)时则无剩余污泥产生。其中,间断式臭氧氧化要优于连续式,在间歇式反应器中,臭氧每天平均接触时间在3 h 左右就可以达到减量40 % —60 %。但是,臭氧浓度较高会使SVI(污泥体积指数)值迅速下降到开始的40 % ,影响污泥的沉降性能。在当前的活性污泥理论中,污泥停留时间(θc)被定义为单位生物量在处理系统中的平均滞留时间。许多研究表明,θc 在活性污泥工艺中是最重要的运行参数。对于稳态运行系统,θc 和比生长速率呈负相关,污泥产率(Yobs)和污泥停留时间的关系可用下式表示: 1/Yobs = 1/Ymax +θcKd /Ymax(1)式中 Ymax ———真正生长速率

Kd ———比内源代谢速率

式(1)表明,在稳态活性污泥工艺中污泥停留时间和内源代谢速率呈负相关,可以通过调节θc 来控制污泥产量。可见在相对长的θc下的纯氧曝气工艺有利于减少剩余污泥量。

臭氧联合活性污泥工艺将是一种能够减少剩余污泥产量且进一步改善污泥沉降性能的有效技术,今后的研究将着重于臭氧剂量和投加方式的最优化方面。

3.4.2 氯 气

和臭氧相同,利用其氧化性对细胞进行氧化,促进溶胞。虽然氯气比臭氧便宜,但氯气能够和污泥中的有机物产生反应,生成三氯甲烷(THMs)等氯代有机物,是不容忽视的问题。

3.4.3 酸、碱

酸碱可以使细胞壁溶解释放细胞内物质,相同pH 条件下, H SO4 的溶胞效果要优于HCl ,NaOH 的效果要优于KOH;在改变相同pH 条件下,碱的效果要好于酸,这可能是由于碱对细胞的磷脂双分子层的溶解要优于酸的缘故。

3.4.4 物理溶胞技术

加 热 不同温度下,细胞被破坏的部位不同。在45 —65 ℃时,细胞膜破裂, rRNA 被破坏;50 —70 ℃时DNA 被破坏;在65 —90 ℃时细胞壁被破坏;70 —95 ℃时蛋白质变性。不同的温度使细胞释放的物质也不同,在温度从80 ℃上升到100 ℃时, TOC和多糖释放的量增加,而蛋白质的量减少。

超声波

超声波处理(如240 W ,20 kHz ,800 s)只是从物理角度对细胞进行破碎,和投加碱相比,在短时间内有迅速释放细胞内物质的优势,但在促进细胞破碎后固体碎的水解却不如投加碱和加热。其机理就是:以微气泡的形成、扩张和破裂达到压碎细胞壁、释放细胞内含物的目的。

压力

利用压力使细菌的细胞壁在机械压力的作用下破碎,从而使细胞内含物溶于水中。

3.4.5 生物溶胞

投加能分泌胞外酶的细菌,酶制剂或抗菌素对细菌进行溶胞。酶一方面能够溶解细菌的细胞,同时还可以使不容易生物降解的大分子有机物分解为小分子物质,有利于细菌利用二次基质。但是在污水处理中投加酶制剂或是抗菌素在经费上不太现实。

3.5 微型动物减少剩余污泥量

微型动物削减剩余污泥量的机理就是生态学的理论,食物链越长,能量在传递过程中被消耗的比例就越大,最终在系统中存在的生物量就越少。细菌、原生动物、寡毛类、线虫等各种生物,它们之间组成一条食物链。利用微型动物对污泥进行减量可从以下三个方面着手研究,一是利用微型动物在食物链中的捕食作用;二是直接利用微型动物对污泥的摄食和消化,在减少污泥的容量的同时增加污泥的可溶性;三是利用微型动物来增强细菌的活性或增加有活性的细菌的数量,从而增强细菌的自身氧化和代谢能力。在曝气池这一水环境中由于不断地曝气、剧烈地搅拌,对于大型生物的生存极为不利,还有就是各种微生物都随着废水一起流动,有可能还没来得及增殖就从曝气池流失,所以活性污泥法不可能有较长的食物链。曝气池中的后生动物数量较少,不能大量消耗菌胶团,(菌胶团是构成活性污泥絮状体的主要成分,有很强的吸附、氧化有机物的能力),这使得在活性污泥生态系统中,物质和能量的传递并不顺畅,绝大部分物质和能量停留在初级消费者———细菌这个营养级上,而不能通过向更高营养级的传递使生物量减少,这是形成大量剩余活性污泥的根本原因。

基于上诉原因,,两段式生物反应器产生了。

这种反应器由第一阶段的分散培养反应器R1 和第二阶段的捕食反应器R2 组成。R1 中无污泥回流且泥龄较短,利用污水中丰富的有机食料刺激游离细菌快速增殖。R2 反应器则专为捕食者设计,此阶段泥龄较长,有着适合于微型动物增殖的环境条件。两段式生物反应器,第一阶段分散培养反应器的水力停留时间(HRT)是关键的运行参数。HRT 需要足够长,以免细菌随水流冲走,但又不能过长,否则会形成细菌聚集体以及出现大量微型动物。Lee 等 二阶段的捕食反应器,处理人工合成污水,获得的污泥产量为0.05—0.17gSS/gCOD, 比用传统方法减少约30 % —50 %的污泥量。Lee 认为相对原生动物而言,轮虫在削减剩余污泥量的过程中可能起着更大的作用,因为他发现当轮虫的数量占优势时,剩余污泥的产量最小。Ghyoot 发现,由于丝状菌和鞭毛虫的过量生长,两段式系统有时会发生污泥膨胀,导致出水水质下降。应用两段式生物反应器或者直接向曝气池中投加微型动物以削减剩余污泥量在理论上是可行的,在试验中也取得了较为理想的结果。但是,由于这些研究尚处于起步阶段,要将这些观念和方法应用于具体的工程实践,仍有很多问题需要解决,例如,投加微型动物的量和投加方式,由于微型动物的活动引起的出水中N、P 浓度的升高,以及为了维持微型动物的生长所需的较高溶解氧等。

人们发现伴随着一种仙女虫(Naiselinguis)大量发生,污泥的产量显著减少,用于曝气所需的能量也大大降低。Ratsak 发现,蚓类种群的大小与剩余污泥产量间有明显的关系。但由于这些蚓类在曝气池中的数量变动剧烈,且没有规律,用生物膜作为第无法人为控制,所以还不能直接应用于生产实践。Rensink等 向加有塑料载体的活性污泥系统中投入颤蚓(Tubif icidae),发现剩余污泥产量从0.4gMLSS/gCOD降至0.15gMLSS/gCOD,污泥体积指数(SVI)从90降至45 ,污泥的脱水能力提高了约27%。

另外,还有红斑螵体虫在活性污泥系统的曝气池中较为常见。根据已有文献报道 ,影响红斑螵体虫在曝气池中出现的操作因素有两方面:一是污泥龄(SRT),较短的SRT不能有效地保持红斑螵虫的存在;二是进水负荷,通常在负荷较低情况下容易出现原生动物和后生动物当每天排泥占反应器体积的36%左右时,可将每天新增的红斑螵体虫排出;而当反应器的排泥量>36%时,可能造成由于过量排泥使得虫体流失;当排泥量<36%时,则可以保证红斑螵体虫的生长。因此可以将36%作为增长率为0.45d-1时的排泥上限,即当红斑螵体虫的净增长率为0.45d-1时,SRT > 3d方可使红斑螵体虫保持在反应器中,而这在活性污泥处理系统中是容易做到的。在进水负荷<0.6mg2COD/(mgVSS·d)时,对红斑螵体虫的出现没有大的影响,而,可能会对红斑螵体虫的出现造成影响。当进水负荷>0.7 mgCOD/(mgVSS·d)后

无论是两段式生物反应器还是直接向活性污泥系统中投入后生动物,均可降低剩余污泥产量,但是矿化作用使得氮和磷释放是一个尚待解决的问题。

还有一种蚯蚓生态床处理剩余污泥。该过滤系统是一个具有多结构、多层次、各取所需、相互协同的生态网链,该生态网链中蚯蚓等微型动物和微生物对剩余污泥具有较强的广谱利用和分级利用功能,从而实现了剩余污泥较彻底的分解和转化利用由蚯蚓和微生物共同组成的人工生态系统对污水处理厂剩余污泥进行了为期半年的脱水和稳定处理,结果表明蚯蚓生态系统集浓缩、调理、脱水、稳定、处置和综合利用等多种功能于一身: ①蚯蚓和微生物将污泥作为生长营养源,对其进行分解和吸收;②蚓粪是高效农肥和土壤改良剂;③在生态床中增殖的蚯蚓具有重要的饲料和药用价值。剩余污泥经蚯蚓污泥稳定床处理后,可全部被生态系统吸收利用和转化,具有流程简单、管理方便、无二次污染、造价和运行费用低廉、副产物具有经济利用价值等特点。生态滤床构造十分简单,因此其工程造价将比常规的污泥处理和处置设施大幅度减少,其运行费用亦十分低廉。据估算,生态滤床处理剩余污泥的工程造价和运行费用可比常规方法大幅度节省,具有工程应用潜力。

是否还有其他微型动物可以应用,如轮虫、线虫或者别的寡毛蚓类,投放的微型动物与所处理的污水类型有没有关系,以及有没有更简单高效的微型动物哺育系统,这些都是将来需要深入研究的问题。由于这些研究尚处于起步阶段,要将这些观念和方法应用于具体的工程实践,仍有很多问题需要解决。无剩余污泥排放 4.1 臭氧处理法

部分回流污泥引入臭氧处理器中,进行臭氧连续循环处理。用臭氧对污泥进行处理,细菌被杀死,细胞壁被破坏,细胞质溶出,便于生物分解。臭氧的强氧化性,溶解、氧化污泥中的有机成分,再返回至曝气池,达到废水、污泥双重处理的功效,臭氧与细胞进行反应时并非使细菌成分无机化,主要是使菌体外的多糖类及细胞壁成分转化为特别容易生物降解的分子,该方法适合于可生化性较好,含磷量低于排放标准的废水,但设施负荷不易过大。有研究表示,臭氧处理污泥的循环率保持在0.3 左右是保证“零”污泥的条件,换句话说,由臭氧处理过的约1/ 3 的污泥在曝气槽内被生物分解而无机化(气体化),残余的2/ 3又变换为活性污泥。另外在pH 值保持在3 时,臭氧反应得到促进。

4.2 多级串联接触曝气法

把曝气池分隔成若干格,相互间具有一定的独立性,并在其中挂上填料,填料要选用易挂膜不易脱落的品种。其第一格可称为细菌生长区,浓度负荷较高,环境相对不稳定,第二格为原生动物生长区,浓度大致只有前面的+ 6 %,第三、第四格有机物浓度降至更低,环境更为稳定,适合后生动物生长繁殖。第三格、第四格内原生动物又被后生动物吞食,死后的后生动物被细菌分解。在污水处理工艺中成功地衔接该生物链,则必将使剩余污泥量大为减少。4.3 污泥机械破碎法

把机械浓缩之后的污泥用机械破碎(如一般的食品粉碎机),把破碎之后的污泥在汇流到暴气池,污泥破碎后,部分成为可溶性物质,因此破碎污泥的浓度下降而上清液浓度上升。总的看来,减量效果显著,只是处理水质较参照系有所下降,因而高负荷的设计值应予避免。

4.4 多级活性生化处理工艺

其实它也是生物法的一种,只是在运行设备上的改进,得以使剩余污泥为“零”排放。系统是一组从空间上分隔成串联的8~ 12 个单元的微生物菌群来净化水中的污染物质, 这些微生物菌群形成食物链, 模拟自然生态环境, 使每一种生物成为食物链上上一级微生物的“粮食”, 前段的微生物、自身氧化的微生物及剩余微生物的残体被后段的微生物吃掉, 从而使整个系统不产生剩余污泥。每个单元设有单独控制的曝气装置, 和单独的填料框架和填料。填料为经过特殊处理的合成纤维, 用以固定水中的微生物。菌种是经过驯化的, 能够构成食物链的一组微生物菌群, 以干污泥的形式作为接种污泥, 从而加快微生物的培养。

实例运用:北京某油脂厂, 废水间歇排放,平均水量100吨/天,进水 CODcr平均浓度1292m g/L,出水 CODcr平均浓度82mg/L , CODcr平均去除率93%。新的进展:湿式——氧化两相技术(WAO)

将溶解和悬浮在水中的有机物和还原性无机物,在液态下加压加温,并且利用空气中的氧气将其氧化分解的以达到减少污泥产量的目的。湿式氧化采用间歇式高压反应釜,厌氧采用两相厌氧反应器UASB。运行结果显示:对化工污泥和炼油污泥有良好的去除率,和良好的稳定性,经过处理之后的污泥中的水分被释放出来,从而有利于污泥的沉降,减少了污泥的体积。齐鲁石化公司在现实中已经应用了这种工艺,取得良好的效益,湿式氧化—两相厌氧消化—离心脱水对COD的去除率为86.6%~94.5 %,污泥消化率为63.1%~75.5%,可减少污泥体积 95%~98.5 %。6 小结

在将污水处理看成一个生产过程之后,根据“清洁生产”的原则,对污泥从源头进行控制。污泥减量化的研究,适应了污水处理系统实现良性运行、防止污水处理出现二次污染、使污水治理更具环境效益的需要。污泥减量是污水处理中研究的热点,人们提出了很多方法去除剩余污泥,有的是在试验中取得良好的效果,有的已经运用于生产实践。本文介绍了一些常用方法:解耦联法,高溶解氧法,OSA工艺法,臭氧法,微型生物法。人们根据上述的方法进一步改善提出的理想目标:无剩余污泥。目前剩余污泥减量化研究新技术就是:湿式——氧化两相技术(WAO)。以后将有更多剩余污泥减量化新工艺、新技术的开发和研究。只有做到减量化、资源化、无害化处置剩余污泥,才能从根本上达到环保,节省费用的目的。

摘要:介绍了污泥减量工艺的新进展,如基于代谢解耦联理论的投加解耦联剂工艺、好氧-沉淀-厌氧工艺以及基于隐性生长理论的回流溶胞工艺,这些工艺可以实现污泥的源减量,将来可能会得到广泛应用

关键词:污泥减量 解耦联剂 好氧 沉淀 厌氧工艺

活性污泥法是目前应用最广泛的污水生物处理工艺,但会产生大量剩余污泥“对普通活性污泥法来说,初沉池产生的污泥量约为污水处理量的0.2%~0.3%(污泥含水率为95%~97%),二沉池排出的剩余活性污泥量约为污水处理量的1%~2%(污泥含水率为99.4%~99.6%)”从20世纪90年代开始,各种污泥减量化技术得到了迅速发展,目前可能应用于实践的新型污泥减量工艺主要有两段式好氧生物反应器、投加解耦联剂、好氧-沉淀-厌氧工艺、回流污泥溶胞工艺等。

[1]投加解耦联剂

微生物正常情况下的分解代谢和合成代谢通过腺苷三磷酸(ATP)和腺苷二磷酸(ADP)之间的转化耦联在一起,即分解一定的底物,将有一定比例的生物体合成。但在特殊情况下,底物被氧化的同时,ATP不大量合成或者合成以后迅速由其他途径释放,这样细菌在正常分解底物的同时,自身合成速度减慢“投加解耦联剂是实现这种代谢解耦联的方法之一。解耦联剂通常为脂溶性小分子物质且一般含有酸性基团,其作用机理是通过与H+的结合降低细胞膜对H+的阻力,携带H+跨过细胞膜,使膜两侧的质子浓度梯度降低。降低后的质子浓度梯度不足以驱动ATP合成酶合成ATP,从而减少了氧化磷酸化作用所合成的量,氧化过程中所产生的能量最终以热的形式被释放掉,从而降低剩余污泥产生量。

Starand等比较了12种解耦联剂,试验结果表明三氯苯酚(TCP)最有效。在试验开始阶段,投加的传统活性污泥工艺中污泥产率是不投加的50%;但80d后随着反应器内TCP水平的降低,污泥产率增加。Chen等研究了3,3',4',5-四氯水杨酰苯胺(TCS)在活性污泥法中的减量效果。当TCS投加量为0.8/时污泥产率减少40%,而且没有影响底物的去除效率。当达到1.2mg/l时,没有影响到大肠杆菌个体大小和细胞分裂,但大肠杆菌的ATP含量和干密度有所减少。谢敏丽等比较了4种解耦联剂(对氯酚、间氯酚、间硝基酚和邻硝基酚),结果表明间氯酚在减少污泥产率方面是最有效的,同时对污水的处理效果影响较小,当间氯酚的浓度为20mg/l时污泥产率下降了86.9%,对的去除率下降了13.2%。

[4]

[3][2]

投加解耦联剂减量剩余污泥的最大优势是不需要对现有污水处理工艺做大的改进,只需增设投药装置即可。但有关氧化磷酸化解耦联的机理还有许多不明之处,需要结合生物化学、分子生物学以及毒理学方面的方法和理论作进一步研究。目前解耦联剂在实际应用中存在以下问题:①投加的解耦联剂在较长时间后由于微生物的驯化而被降解,从而失去解耦联作用;②加入解耦联剂后虽然污泥的产量降低了,但需要更多的氧去氧化未能转化成污泥的有机物,从而使供氧量增加;③目前试验中投加解耦联剂的量一般在1~100/,用量很大,需要对运行费用作深入分析;④解耦联剂通常是较难生物降解或对生物有较大毒性的化合物,微生物对解耦联剂的降解不完全有可能导致潜在的环境安全问题。好氧-沉淀-厌氧工艺

好氧-沉淀-厌氧工艺(OSA,Oxic-Settling-Anaerobic)也是基于代谢解耦联理论的污泥减量工艺。其基本原理是,在常规活性污泥法的污泥回流过程中设置一个厌氧段,使微生物交替进入好氧和厌氧环境,细菌在好氧阶段所获ATP不能立即用于合成新的细胞,而是在厌氧段作为维持细胞生命活动的能量被消耗。微生物分解和合成代谢相对分离,而不像通常条件下紧密耦联,从而达到污泥减量的效果。工艺示意图见图1。

图1 工艺示意图

Chudoba等发现OSA工艺比传统活性污泥工艺污泥产率降低20%~65%,SVI值(60ml/g)也比传统活性污泥工艺的(200ml/g)低,即OSA工艺可改善污泥的沉降性能。同时,由于OSA的流程和除磷工艺流程相似,有利于除磷菌的生长,对磷的去除优于传统活性污泥法。也有研究者认为OSA系统污泥减量的原因不仅仅是能量解耦联,Chen等发现在OSA系统中,当厌氧池中氧化还原电位(ORP)保持在-250mV时,剩余污泥减量50%,对出水没有影响且污泥的沉降性能更好;他通过试验比较了能量解耦联、捕食者生长、微生物促进有机质溶解和污泥腐化破解等因素的影响,认为厌氧池中污泥腐化破解是促进OSA系统污泥产生量减少的主要原因。国内朱振超等采用好氧-沉淀-兼氧活性污泥工艺使上海锦纶厂废水处理站的剩余污泥达到零排放。[7]

[6][5]

在传统活性污泥工艺中,污泥产量随着污泥负荷增加而增加,但在OSA工艺中污泥产量反而下降,而且OSA还可以改善污泥的脱水性能,增加除磷能力,因此OSA工艺可以应用在进水有机物浓度较高的条件下,具有较广阔的发展前景。OSA工艺的不足是水力停留时间较长(是常规活性污泥法的两倍),而且需要设置厌氧段,增加了基建费用和占地面积。回流污泥溶胞工艺

根据污水生物处理工艺中微生物的代谢特性污水中的有机物一部分被微生物分解提供其生命活动的能量,最终代谢为二氧化碳和水分等;另一部分用来增殖,将有机物转化为新的生物体。如果增长的生物体可以作为微生物的底物并重复上述代谢过程就可以减少污泥的产生量。微生物基于自身细胞溶解形成的二次基质的生长方式称之为隐性生长(Cryptic growth或Death-regeneration)。隐性生长过程包括溶胞和生长,其中污泥细胞自身的解体是污泥降解的限速步骤,可以利用各种物理、化学和生物方法加速这一步骤。这种方法在工程上便于实现,只要在回流污泥管路上增加溶胞系统即可。

物理溶胞方法主要包括加热!机械破碎、超声破解等,其能耗较高,而且需要专门的设备,此外污泥菌体破解后,细胞壁碎片等生物难降解物进入污水中会引起出水中COD、SS有所增加,同时由于系统排泥量减少,如果单位排泥中的氮磷含量保持不变,出水中的氮和磷会增加。[8]

化学溶胞方法包括臭氧溶胞、过氧乙酸溶胞、氯气溶胞等,其中臭氧研究最多。臭氧可以破坏细胞壁、细胞膜而使蛋白质、多聚糖、脂肪、核酸等从细胞中释放出来。Kamiya等

[9]发现间歇式臭氧氧化效果优于连续式,间歇式操作时臭氧投加量为9.0~11.0mg/(gSSd)即可使污泥减量50%,而要达到同样的减量效果,连续式操作所需的臭氧投加量为30 mg/(gSSd).金瑞洪等[10]利用SBR和污泥臭氧化及回流装置组成污水处理系统,在当臭氧投加量为0.0gO3/gSS且污泥回流量为0.4l/(l.d)时,污泥观测产率可接近零,而且系统COD去除率、污泥沉降性能无明显变化。利用氯气对污泥进行减量的原理和臭氧相同,Saby等在氯的投加量为133mg/gMLSS时,污泥产生量减少了65%,但是污泥沉降性能恶化,同时出水含量增加。过氧乙酸(PAA)具有和臭氧相似的强氧化效果,而且价格低廉,产物无毒,易被微生物代谢,0.01%PAA溶液和污泥反应6h后,基本上不残留PAA和H2O2,其处理后的污泥混合液具有较好的生物可降解性。化学溶胞方法的缺点是:①投药增加了系统的运行费用,而且对设备有一定的腐蚀作用;②系统去除氮磷的效果不好,出水SS浓度略高于传统活性污泥法,污泥沉降性能可能恶化;③长期无污泥排放时,污泥中重金属含量和传统活性污泥法相比有一定增加;④为了保证曝气池中生物对回流基质的利用,需要增加曝气量,相应的动力费用会增加;⑤溶胞过程有可能产生其他有机污染物,如氯气能够和污泥中的有机物产生反应,生成三氯甲烷(THMs)等氯代有机物,这是不容忽视的问题。

生物溶胞方法是通过投加能分泌胞外酶的细菌或酶制剂和抗菌素对细菌进行溶胞。酶一方面能够溶解细胞,同时还可以使不容易生物降解的大分子有机物分解为小分子物质,有利于细菌对二次基质的利用”投加的细菌可以从消化池中选取,也可以从溶菌酶方面考虑,甚至包括特殊的噬菌体和能分泌溶菌物质的真菌。虽然生物溶胞方法环境友好,但是酶制剂或抗菌素费用昂贵。结语

污泥产生量的不断增加给其后续处理处置带来了沉重压力,而且不恰当的处理还会造成二次污染,因此源削减是污泥处理的首要原则。新型污泥减量工艺的应用可以在保证污水处理效果的前提下大幅减少污泥的产生量,从而实现污水处理的可持续发展。然而这些工艺的机理和参数还有待于进一步研究,出水质量还有待于进一步提高,随着这些问题的逐步解决,污泥减量工艺将得到更广泛的应用。

第三篇:污水处理厂的污泥减量化

污水处理厂的污泥减量化

摘要:对剩余污泥的处理在污水处理中占用昂贵的费用,基于经济环境和其它因素的考虑,如何解决剩余污泥的问题正是我们面临的挑战。由于环境结和相关法律的要求不断增加,那么对剩余污泥处理方安的选择就越来越严格,而减少污泥总量又是迫切的目标,本文着重介绍了有关剩余污泥减量化的主要方法:解耦联,隐性生长,扑食细菌,热处理,臭氧法,OSA法等等。合适的物质环境和运行工艺将减少剩余污泥产量,但是,不管选用哪种方法他都将对微生物群产生一定影响,而且还会增加处理后的水含氮浓度。

关键词:污泥减量 污水处理 活性污泥法

Abstract —— Excess biomass produced during the biological treatment of wastewaters requires costly disposal.Excess sludge treatment and disposal currently represents a rising challenge for wastewater treatment plants due to economic, environmental and regulation factors.As environmental and legislative constraints increase, thus limiting disposal options, there is considerable impetus for reducing the amount of biomass produced.This paper reviews current strategies for reducing sludge production based on these mechanisms: uncoupling metabolism, lysiscryptic growth, predation on bacteria, thermal treatment, activated sludge ozonation process, anoxic-settling-anaerobic(OSA),and so on..Suitable engineering of the physical conditions and strategic process operation may result in environments in which biomass production may be reduced.But employing any strategy for reducing sludge production may have an impact on microbial community in biological wastewater treatment processes and reduced biomass production may result in an increased nitrogen concentration in the effluent.Key word: sludge reduction, waste water treatment, activated sludge tereatment.前言

目前世界上80%以上的污水处理厂应用的是活性污泥法处理污水,它最大的弊端就是处理污水的同时产生惊人的大量剩余污泥。污泥中的固体有的是截留下来的悬浮物质,有的是由生物处理系统排出的生物污泥,有的则是因投加药剂而形成的化学泥,污水处理厂产生的污泥量约为处理水体积的0.15 % —1 %左右。污泥的处理和处置,就是要通过适当的技术措施,使污泥得到再利用或以某种不损害环境的形式重新返回到自然环境中。这些污泥一般富含有机物、病菌等,若不加处理随意堆放,将对周围环境产生新的污染。

对这些污泥处理方法主要有:农用、填海、焚烧、埋地。但这些方法都无一例外地存在弊端。如污泥中重金属的含量通常超过农用污泥重金属最高限量的规定。此外,污泥中还含有病原体、寄生虫卵等, 如农业利用不当,将对人类的健康造成严重的危害。填埋处置容易对地下水造成污染,同时大量占用土地。焚烧处置虽可使污泥体积大幅减小,且可灭菌,但焚烧设备的投资和运行费用都比较大。投放远洋虽可在短期内避免海岸线及近海受到污染,但其长期危害可能非常严重,因此,已被界上大多数国家所禁用。

一般每去除1kg的就产生15~100L活性污泥,这些污泥含水率达到95%以上,剩余污泥处理的成本高昂,约占污水厂运行费用的。

欧洲国家每年用于处理剩余污泥的费用就高达28亿人民币。显而易见,任何有利于减少剩余污泥的措施都将带来巨大的经济效益。污泥减量化的理论基础

2.1 维持代谢和内源代谢

1965 年Pirt 把微生物用于维持其生活功能的这部分能量称为维持代谢能量,一般认为,维持代谢包括细胞物质的周转、活性运输、运动等,这部分基质消耗不用来合成新的细胞物质,因此,污泥的产量和维持代谢的活性呈负相关

。Herbert 在1956 年提出,维持能量可通过内源代谢来提供,部分细胞被氧化而产生维持能量。从环境工程角度看,内源呼吸通常指生物量的自我消化,在连续培养生长时可同时发生内源代谢。内源代谢的主要优势在于进入的基质最终被呼吸成为二氧化碳和水,使生物量下降

。因此,在废水处理工艺中,内源呼吸的控制比微生物生长控制和基质去除控制更为重要。

2.2 解偶联代谢

代谢是生物化学转化的总称,分为分解代谢和合成代谢。微生物学家认为,细胞产量和分解代谢产生的能量直接相关,但在某些条件下,如存在质子载体、重金属、异常温度和好氧—厌氧交替循环时,呼吸超过了ATP 产量,即分解代谢和合成代谢解偶联,此时微生物能过量消耗底物,底物的消耗速率很高。Cook 和Russell 报道,在完全停止生长时细菌利用能源的速率比对数生长期的高三分之一,这表明细胞能通过消耗膜电势、ATP 水解和无效循环处置其胞内能量。在解偶联条件下,大部分底物被氧化为二氧化碳,产生的能量用于驱动无效循环,但对底物的去除率不会产生重大影响

。能量解偶联的特殊性在于它是微生物对底物的分解和再生,而没有细胞质量的相应变化。从环境工程意义上讲,能量解偶联可用于解释底物消耗速率高于生长和维持所需之现象。因此,在能量解偶联条件下活性污泥的产率下降,污泥产量也随之降低。通过控制微生物的代谢状态,最大程度地分离合成代谢和分解代谢,在剩余污泥减量化上将是一个很有发展前景的技术途径。目前污泥减量化的方法

3.1 解偶联

机理:三磷酸腺苷(ATP)是键能转移的主要途径,是能量转移反应的中心,微生物的合成代谢通过呼吸与底物的分解代谢进行偶联,当呼吸控制不存在,生物合成速率成为速率控制因素时,解偶联新陈代谢就会发生,并且在微生物新陈代谢过程中产生的剩余能量没有被用来合成生物体。在能量解偶联条件下活性污泥的产率下降,污泥产量也随之降低。微生物学家认为,细胞产量和分解代谢产生的能量直接相关,但在某些条件下,如存在质子载体、重金属、异常温度和好氧—厌氧交替循环时,呼吸超过了ATP 产量,即分解代谢和合成代谢解偶联 ,此时微生物能过量消耗底物,底物的消耗速率很高。在完全停止生长时细菌利用能源的速率比对数生长期的高1/3,这表明细胞能通过消耗膜电势、ATP 水解和无效循环处置其胞内能量。能

量解偶联的特殊性在于它是微生物对底物的分解和再生,而没有细胞质量的相应变化。通过控制微生物的代谢状态,最大程度地分离合成代谢和分解代谢,在剩余污泥减量化上将是一个很有发展前景的技术途径。

3.1.1 投加解偶联剂

解偶联剂能起到解偶联氧化磷酸化作用,限制细胞捕获能量,从而抑制细胞的生长,故能减少污泥产量。解偶联剂其作用机理是该物质通过与H+ 的结合,降低细胞膜对H+ 的阻力,携带H+ 跨过细胞膜,使膜两侧的质子梯度降低,降低后的质子梯度不足以驱动ATP 合酶合成ATP ,从而减少了氧化磷酸化作用所合成的ATP 量。如: TCS解偶联剂(3 ,3′,4′,5-四氯水杨酰苯胺)能有效降低剩余污泥产量,只要在反应器中保持TCS 一定的浓度,就能降低剩余污泥的产率。TCS 能有效地降低活性污泥分批培养物中的污泥产率,随进水中TCS 浓度的提高,污泥产率迅速下降.但污泥的COD 去除能力并未受影响,出水中的NH+42N 和TN 含量也和对照相当,同时发现污泥的SOUR 值和DHA 提高,说明化学解耦联剂对微生物有激活作用,微生物的种群结构也发生了改变,经过40d 的运行后,添加TCS的反应器污泥中丝状菌很少,虽然污泥较疏松,但污泥的沉降性能未见有影响。上述结果表明,采用化学解耦联剂来降低活性污泥工艺中的剩余污泥产量,以降低污泥的处理与处置费用这种方法有发展前景,值得进一步地深入研究。

但是,解偶联剂的对现有污水处理应用中存在以下问题:(1)所投的药在较长时间后由于微生物的驯化而被降解,从而失去解偶联作用;(2)当加入解偶联剂后,需要更多的氧去氧化未能转化成污泥的有机物,从而使得供氧量增加

;(3)对投加解偶联剂的费用还需要作比较,由于在污水中的浓度需要维持在4—80 mg/ L ,用量大;(4)解偶联剂在实际应用中的最大弊端是环境问题,解偶联剂通常是难降解的有毒物,可能发生二次污染。

3.1.2

高S0/X0(底物浓度/污泥浓度)条件下的解偶联

简单的说就是,细胞分解能量大于合成能量,从而细胞的分解数量就大于合成数量,最终降低微生物产率系数。解偶联机理有两种解释:一是积累的能量通过粒子(如质子、钾离子)在细胞膜两侧的传递削弱了跨膜电势,随后发氧化磷酸化解偶联;二是减少了生物体内部分新陈代谢的途径(如甲基乙二酸途径)而回避了糖酵解这一步

。高S0/X0条件下解偶联还不能用于实际的污水处理, 微生物产生的不完全代谢的产物还可能对整个处理过程产生影响,而且要求相对高的S0/X0值(>8—10)远远大于实际活性污泥法处理污水时的情况(F/M=0.05—0.1)。

3.2

高浓度溶解氧

有很多研究表明,细胞表面的疏水性、微生物活性和胞外多聚物的产生都和反应器中的溶解氧水平有关,这预示着溶解氧对活性污泥的能量代谢有一定的影响,进而影响碳在分解代谢和合成代谢中的分布。高溶解氧活性污泥工艺能有效地抑制丝状菌的发展,纯氧活性污泥工艺即使在高污泥负荷率下,也可比传统的空气活性污泥工艺减少污泥量54 %。和传统空气曝气工艺相比, 纯氧工艺能使曝气池中维持高浓度MLSS ,污泥沉降和浓缩性能好、污泥产量低、氧气转移效率高、运行稳定。Abbassi等人

最近报道,当小试规模的传统活性污泥反应器的溶解氧从 1.8mg/L 增加到6.0mg/L时,剩余污泥量从0.28mgMLSS/mgBOD5下降为

0.20mgMLSS/mgBOD5。

由此可见,高溶解氧工艺在剩余污泥减量化和工艺运行效能的提高方面有很大潜力。

3.3

好氧—沉淀—厌氧(OSA)工艺

在污泥的回流过程中插入一级厌氧生物反应器,这种工艺已经用来成功地抑制污泥的丝状膨胀的发生,可减少一半的剩余污泥产量,好氧—厌氧循环方法被用于活性污泥工艺中剩余污泥的减量化。其机理就是,好氧微生物从外源有机底物的氧化中获得ATP ,当这些微生物突然进入没有食物供应的厌氧环境时,就不能产生能量,不得不利用自身的ATP库作为能源,在厌氧饥饿阶段,没有一定量的细胞内ATP 就不能进行细胞合成,因而,微生物通过细胞的异化作用,消耗基质来满足自身对能量的需求,交替的好氧-厌氧处理引起的能量解偶联就为OSA 处理技术奠定了污泥减量化的理论基础。Chudoba 等人

比较了OSA工艺和传统活性污泥工艺的污泥产量,发OSA工艺的比污泥产率降低了20 %~65 % , S V I 值也比传统活性污泥工艺低。

例如:上海锦纶厂废水处理站的剩余污泥达到零排放是运用了朱振超和刘振鸿等人的好氧—沉淀—兼氧活性污泥工艺使。还有张全等人

采用好氧—沉淀—微氧活性污泥工艺使污泥量由80 %减少为15 %~20 % ,系统基本上可做到无污泥排放。

所以,OSA工艺在污泥减量化上是相当可行的。

3.4

溶解细胞法

在传统活性污泥法工艺流程中的污泥回流线上增加相关处理装置,通过溶胞强化细菌的自身氧化,增强细菌的隐性生长。所谓隐性生长是指细菌利用衰亡细菌所形成的二次基质生长,整个过程包含了溶胞和生长

。利用各种溶胞技术,使细菌能够迅速死亡并分解成为基质再次被其他细菌所利用,是在污泥减量过程中广为应用的手段。

3.4.1 臭 氧

原理是:曝气池中部分活性污泥在臭氧反应器中被臭氧氧化,大部分活性污泥微生物在臭氧反应器中被杀灭或被氧化为有机质,而这些由污泥臭氧氧化而来的有机质在随后的生物处理中被降解,臭氧可破坏不容易被生物降解的细胞膜等,使细胞内物质能较快地溶于水中,同时氧化不容易水解的大分子物质,使其更容易为微生物所利用。Kamiya 和Hirotsuji 的研究表明,当曝气池中的臭氧剂量为10 mg/(gMLSS·d)时可使剩余污泥产量减少50 % ,而高至20 mg/(gMLSS·d)时则无剩余污泥产生。其中,间断式臭氧氧化要优于连续式,在间歇式反应器中,臭氧每天平均接触时间在3 h 左右就可以达到减量40 % —60 %。但是,臭氧浓度较高会使SVI(污泥体积指数)值迅速下降到开始的40 % ,影响污泥的沉降性能。

在当前的活性污泥理论中,污泥停留时间(θc)被定义为单位生物量在处理系统中的平均滞留时间。许多研究表明,θc 在活性污泥工艺中是最重要的运行参数。对于稳态运行系统,θc 和比生长速率呈负相关,污泥产率(Yobs)和污泥停留时间的关系可用下式表示:

1/Yobs = 1/Ymax +θcKd /Ymax(1)

式中 Ymax ———真正生长速率

Kd ———比内源代谢速率

式(1)表明,在稳态活性污泥工艺中污泥停留时间和内源代谢速率呈负相关,可以通过调节θc 来控制污泥产量。可见在相对长的θc下的纯氧曝气工艺有利于减少剩余污泥量。

臭氧联合活性污泥工艺将是一种能够减少剩余污泥产量且进一步改善污泥沉降性能的有效技术,今后的研究将着重于臭氧剂量和投加方式的最优化方面。

3.4.2 氯 气

和臭氧相同,利用其氧化性对细胞进行氧化,促进溶胞。虽然氯气比臭氧便宜,但氯气能够和污泥中的有机物产生反应,生成三氯甲烷(THMs)等氯代有机物,是不容忽视的问题。

3.4.3 酸、碱

酸碱可以使细胞壁溶解释放细胞内物质,相同pH 条件下, H SO4 的溶胞效果要优于HCl ,NaOH 的效果要优于KOH;在改变相同pH 条件下,碱的效果要好于酸,这可能是由于碱对细胞的磷脂双分子层的溶解要优于酸的缘故。

3.4.4 物理溶胞技术

加 热

不同温度下,细胞被破坏的部位不同。在45 —65 ℃时,细胞膜破裂, rRNA 被破坏;50 —70 ℃时DNA 被破坏;在65 —90 ℃时细胞壁被破坏;70 —95 ℃时蛋白质变性

。不同的温度使细胞释放的物质也不同,在温度从80 ℃上升到100 ℃时, TOC和多糖释放的量增加,而蛋白质的量减少。

超声波

超声波处理(如240 W ,20 kHz ,800 s)只是从物理角度对细胞进行破碎,和投加碱相比,在短时间内有迅速释放细胞内物质的优势,但在促进细胞破碎后固体碎的水解却不如投加碱和加热。其机理就是:以微气泡的形成、扩张和破裂达到压碎细胞壁、释放细胞内含物的目的。

压力

利用压力使细菌的细胞壁在机械压力的作用下破碎,从而使细胞内含物溶于水中。

3.4.5 生物溶胞

投加能分泌胞外酶的细菌,酶制剂或抗菌素对细菌进行溶胞。酶一方面能够溶解细菌的细胞,同时还可以使不容易生物降解的大分子有机物分解为小分子物质,有利于细菌利用二次基质。但是在污水处理中投加酶制剂或是抗菌素在经费上不太现实。

3.5 微型动物减少剩余污泥量

微型动物削减剩余污泥量的机理就是生态学的理论,食物链越长,能量在传递过程中被消耗的比例就越大,最终在系统中存在的生物量就越少。细菌、原生动物、寡毛类、线虫等各种生物,它们之间组成一条食物链。利用微型动物对污泥进行减量可从以下三个方面着手研究,一是利用微型动物在食物链中的捕食作用;二是直接利用微型动物对污泥的摄食和消化,在减少污泥的容量的同时增加污泥的可溶性;三是利用微型动物来增强细菌的活性或增加有活性的细菌的数量,从而增强细菌的自身氧化和代谢能力。在曝气池这一水环境中由于不断地曝气、剧烈地搅拌,对于大型生物的生存极为不利,还有就是各种微生物都随着废水一起流动,有可能还没来得及增殖就从曝气池流失,所以活性污泥法不可能有较长的食物链。曝气池中的后生动物数量较少,不能大量消耗菌胶团,(菌胶团是构成活性污泥絮状体的主要成分,有很强的吸附、氧化有机物的能力),这使得在活性污泥生态系统中,物质和能量的传递并不顺畅,绝大部分物质和能量停留在初级消费者———细菌这个营养级上,而不能通过向更高营养级的传递使生物量减少,这是形成大量剩余活性污泥的根本原因。

基于上诉原因,,两段式生物反应器产生了。

这种反应器由第一阶段的分散培养反应器R1 和第二阶段的捕食反应器R2 组成。R1 中无污泥回流且泥龄较短,利用污水中丰富的有机食料刺激游离细菌快速增殖。R2 反应器则专为捕食者设计,此阶段泥龄较长,有着适合于微型动物增殖的环境条件。两段式生物反应器,第一阶段分散培养反应器的水力停留时间(HRT)是关键的运行参数。HRT 需要足够长,以免细菌随水流冲走,但又不能过长,否则会形成细菌聚集体以及出现大量微型动物。Lee 等

用生物膜作为第二阶段的捕食反应器,处理人工合成污水,获得的污泥产量为0.05—0.17gSS/gCOD, 比用传统方法减少约30 % —50 %的污泥量。Lee 认为相对原生动物而言,轮虫在削减剩余污泥量的过程中可能起着更大的作用,因为他发现当轮虫的数量占优势时,剩余污泥的产量最小。Ghyoot 发现,由于丝状菌和鞭毛虫的过量生长,两段式系统有时会发生污泥膨胀,导致出水水质下降。应用两段式生物反应器或者直接向曝气池中投加微型动物以削减剩余污泥量在理论上是可行的,在试验中也取得了较为理想的结果。但是,由于这些研究尚处于起步阶段,要将这些观念和方法应用于具体的工程实践,仍有很多问题需要解决,例如,投加微型动物的量和投加方式,由于微型动物的活动引起的出水中N、P 浓度的升高,以及为了维持微型动物的生长所需的较高溶解氧等。

人们发现伴随着一种仙女虫(Naiselinguis)大量发生,污泥的产量显著减少,用于曝气所需的能量也大大降低。Ratsak 发现,蚓类种群的大小与剩余污泥产量间有明显的关系。但由于这些蚓类在曝气池中的数量变动剧烈,且没有规律,无法人为控制,所以还不能直接应用于生产实践。Rensink等

向加有塑料载体的活性污泥系统中投入颤蚓(Tubif icidae),发现剩余污泥产量从0.4gMLSS/gCOD降至0.15gMLSS/gCOD,污泥体积指数(SVI)从90降至45 ,污泥的脱水能力提高了约27%。

另外,还有红斑螵体虫在活性污泥系统的曝气池中较为常见。根据已有文献报道,影响红

斑螵体虫在曝气池中出现的操作因素有两方面:一是污泥龄(SRT),较短的SRT不能有效地保持红斑螵虫的存在;二是进水负荷,通常在负荷较低情况下容易出现原生动物和后生动物当每天排泥占反应器体积的36%左右时,可将每天新增的红斑螵体虫排出;而当反应器的排泥量>36%时,可能造成由于过量排泥使得虫体流失;当排泥量<36%时,则可以保证红斑螵体虫的生长。因此可以将36%作为增长率为0.45d-1时的排泥上限,即当红斑螵体虫的净增长率为0.45d-1时,SRT > 3d方可使红斑螵体虫保持在反应器中,而这在活性污泥处理系统中是容易做到的。在进水负荷<0.6mg2COD/(mgVSS·d)时,对红斑螵体虫的出现没有大的影响,而当进水负荷>0.7 mgCOD/(mgVSS·d)后,可能会对红斑螵体虫的出现造成影响。

无论是两段式生物反应器还是直接向活性污泥系统中投入后生动物,均可降低剩余污泥产量,但是矿化作用使得氮和磷释放是一个尚待解决的问题。

还有一种蚯蚓生态床处理剩余污泥。该过滤系统是一个具有多结构、多层次、各取所需、相互协同的生态网链,该生态网链中蚯蚓等微型动物和微生物对剩余污泥具有较强的广谱利用和分级利用功能,从而实现了剩余污泥较彻底的分解和转化利用由蚯蚓和微生物共同组成的人工生态系统对污水处理厂剩余污泥进行了为期半年的脱水和稳定处理,结果表明蚯蚓生态系统集浓缩、调理、脱水、稳定、处置和综合利用等多种功能于一身: ①蚯蚓和微生物将污泥作为生长营养源,对其进行分解和吸收;②蚓粪是高效农肥和土壤改良剂;③在生态床中增殖的蚯蚓具有重要的饲料和药用价值。剩余污泥经蚯蚓污泥稳定床处理后,可全部被生态系统吸收利用和转化,具有流程简单、管理方便、无二次污染、造价和运行费用低廉、副产物具有经济利用价值等特点。生态滤床构造十分简单,因此其工程造价将比常规的污泥处理和处置设施大幅度减少,其运行费用亦十分低廉。据估算,生态滤床处理剩余污泥的工程造价和运行费用可比常规方法大幅度节省,具有工程应用潜力。

是否还有其他微型动物可以应用,如轮虫、线虫或者别的寡毛蚓类,投放的微型动物与所处理的污水类型有没有关系,以及有没有更简单高效的微型动物哺育系统,这些都是将来需要深入研究的问题。由于这些研究尚处于起步阶段,要将这些观念和方法应用于具体的工程实践,仍有很多问题需要解决。无剩余污泥排放

4.1

臭氧处理法

部分回流污泥引入臭氧处理器中,进行臭氧连续循环处理。用臭氧对污泥进行处理,细菌被杀死,细胞壁被破坏,细胞质溶出,便于生物分解。臭氧的强氧化性,溶解、氧化污泥中的有机成分,再返回至曝气池,达到废水、污泥双重处理的功效,臭氧与细胞进行反应时并非使细菌成分无机化,主要是使菌体外的多糖类及细胞壁成分转化为特别容易生物降解的分子,该方法适合于可生化性较好,含磷量低于排放标准的废水,但设施负荷不易过大。有研究表示,臭氧处理污泥的循环率保持在0.3 左右是保证“零”污泥的条件,换句话说,由臭氧处理过的约1/ 3 的污泥在曝气槽内被生物分解而无机化(气体化),残余的2/ 3又变换为活性污泥。另外在pH 值保持在3 时,臭氧反应得到促进。

4.2

多级串联接触曝气法

把曝气池分隔成若干格,相互间具有一定的独立性,并在其中挂上填料,填料要选用易挂膜不易脱落的品种。其第一格可称为细菌生长区,浓度负荷较高,环境相对不稳定,第二格为原生动物生长区,浓度大致只有前面的+ 6 %,第三、第四格有机物浓度降至更低,环境更为稳定,适合后生动物生长繁殖。第三格、第四格内原生动物又被后生动物吞食,死后的后生动物被细菌分解。在污水处理工艺中成功地衔接该生物链,则必将使剩余污泥量大为减少。

4.3

污泥机械破碎法

把机械浓缩之后的污泥用机械破碎(如一般的食品粉碎机),把破碎之后的污泥在汇流到暴气池,污泥破碎后,部分成为可溶性物质,因此破碎污泥的浓度下降而上清液浓度上升。总的看来,减量效果显著,只是处理水质较参照系有所下降,因而高负荷的设计值应予避免。

4.4

多级活性生化处理工艺

其实它也是生物法的一种,只是在运行设备上的改进,得以使剩余污泥为“零”排放。系统是一组从空间上分隔成串联的8~ 12 个单元的微生物菌群来净化水中的污染物质, 这些微生物菌群形成食物链, 模拟自然生态环境, 使每一种生物成为食物链上上一级微生物的“粮食”, 前段的微生物、自身氧化的微生物及剩余微生物的残体被后段的微生物吃掉, 从而使整个系统不产生剩余污泥。每个单元设有单独控制的曝气装置, 和单独的填料框架和填料。填料为经过特殊处理的合成纤维, 用以固定水中的微生物。菌种是经过驯化的, 能够构成食物链的一组微生物菌群, 以干污泥的形式作为接种污泥, 从而加快微生物的培养。

实例运用:北京某油脂厂, 废水间歇排放,平均水量100吨/天,进水 CODcr平均浓度1292m g/L,出水 CODcr平均浓度82mg/L , CODcr平均去除率93%。

新的进展:湿式——氧化两相技术(WAO)

将溶解和悬浮在水中的有机物和还原性无机物,在液态下加压加温,并且利用空气中的氧气将其氧化分解的以达到减少污泥产量的目的。湿式氧化采用间歇式高压反应釜,厌氧采用两相厌氧反应器UASB。运行结果显示:对化工污泥和炼油污泥有良好的去除率,和良好的稳定性,经过处理之后的污泥中的水分被释放出来,从而有利于污泥的沉降,减少了污泥的体积。齐鲁石化公司在现实中已经应用了这种工艺,取得良好的效益,湿式氧化—两相厌氧消化—离心脱水对COD的去除率为86.6%~94.5 %,污泥消化率为63.1%~75.5%,可减少污泥体积 95%~98.5 %。小结

在将污水处理看成一个生产过程之后,根据“清洁生产”的原则,对污泥从源头进行控制。污泥减量化的研究,适应了污水处理系统实现良性运行、防止污水处理出现二次污染、使污水治理更具环境效益的需要。污泥减量是污水处理中研究的热点,人们提出了很多方法去除剩余污泥,有的是在试验中取得良好的效果,有的已经运用于生产实践。本文介绍了一些常

用方法:解耦联法,高溶解氧法,OSA工艺法,臭氧法,微型生物法。人们根据上述的方法进一步改善提出的理想目标:无剩余污泥。目前剩余污泥减量化研究新技术就是:湿式——氧化两相技术(WAO)。以后将有更多剩余污泥减量化新工艺、新技术的开发和研究。只有做到减量化、资源化、无害化处置剩余污泥,才能从根本上达到环保,节省费用的目的。

第四篇:高温热水解预处理污泥工艺探析

高温热水解预处理污泥工艺探析

国外将“高温热水解——厌氧消化”称之为“高级厌氧消化”,其中“高温热水解”作为一项污泥预处理技术可分解不可降解或者难降解的物质,如胞外聚合物(EPS),有效改善厌氧消化反应条件。该污泥处理技术是由挪威CAMBI公司发明。目前全球范围已有20多个项目使用了这项技术,据了解,该项技术每年可处理420000t污泥(以干重计),按照含水率80%计,相当于每天5800m3。

一、我国传统污泥厌氧消化处理工艺存在的主要问题:

1)消化效率低,5%进泥含固率,消化池体积庞大,时间长,污泥有机质含量低; 2)沼气产物中H2S含量高,除硫不容易,沼气利用难;

3)设计和运行考虑不周,污泥中高含砂量,磨损、沉积,高浮渣含量; 4)消化后的污泥产物无出路,处理后国内基本上还是填埋。

这是由于上述问题使这一在国外为主流的污泥处理技术,在国内并不受青睐。然而采用高温热水解预处理技术,可有效解决以上工艺系统问题。该预处理技术是利用高温和高压迫使污泥分子结构发生变化(俗称:破壁),以加快整个消化过程和脱水性能,并优化污泥转化为沼气的有机物质比例。

二、热水解处理流程

热水解预处理系统由一个浆化罐、四个到六个反应罐和一个卸压闪蒸罐组成。一般采用序批式方法工作,整个批次4~5小时,具体流程如下:

1、脱水污泥(含水率15~20%)进入混合预热罐(也称浆化罐),与从高温热水解污泥换热和闪蒸罐回收蒸汽混和,将污泥预加热至约100 ℃;

2、预热后的污泥进入高温热水解罐进行热水解反应,在0.6~0.7MPa和150~170℃情况下,反应30min,然后通过罐体准备、进料、反应、出料的四步轮换,实现连续运行;

3、热水解后的污泥会被急速送到闪蒸罐,由于压力的释放,在压力差的作用下,污泥细胞得到破坏;

4、经热水解和闪蒸罐释放压力后的污泥温度100~110℃,经热交换器进行冷却,换热后污泥温度在40~50℃,以满足后续厌氧消化的要求。

三、高温热水解的作用

提高可生化利用的物质;提高降解率,从而提高沼气产量;可改善脱水效果,实现污泥减量;可提高卫生化水平。具体如下:

1、提高了消化效率:消化池进泥含固率从传统的5%,可以提高的10~12%;消化温度40℃左右,消化时间从20~25天,可以缩短到15~20天。

2、改善了污泥性能。污泥粘滞性得到改善,经高温热水解处理后污泥含固率降至11%左右。其粘滞性与含固率5%的污泥粘滞性相近。正因为如此,原有输送和搅拌设备不用更换,就能够实现能力翻倍。

3、提高了沼气产量。水解后,有机成分中能够厌氧消化降解的成分增多,有机物降解更加充分,污泥稳定化

成度更好使沼气产量增加;处理1立方米污泥(含水率80%)传统厌氧消化沼气产量为:30~40立方米;高级厌氧消化沼气产量为:50~60立方米。

4、改善了消化环境。甲烷菌较水解和酸化微生物对环境条件十分敏感,极易受到破坏。一旦甲烷菌受到破坏,消化的中间产物有机酸就会富集。有机酸含量增加到2000毫克/升以上时,传统消化的pH值就会降低到7.0以下(与消化液碱度有关)。pH值降低,又会导致非离解性酸含量和CO2增加,而使沼气产量下降。而高温热水解后,消化液的高铵氮浓度,使得消化液为弱碱性,有利于甲烷菌生长。

5、降低了硫化氢含量。传统厌氧消化沼气的硫化氢含量数百,乃至数千ppm,而高温热水后,往往不足100ppm。消化池中H2S的含量与pH有关,pH越低对消化反应的抑制作用就越大。高温热水后,消化池内的pH值为7.5~8.0。pH值7.3意味着比pH值为7.8溶液的H+摩尔浓度高3倍多。氢离子浓度低了,也就降低了形成硫化氢的可能性。

6、降低了重金属的溶解性。由于氢离子浓度的降低,为硫与重金属离子的结合创造了条件,形成难溶解的硫化与重金属的化合物,而且是难溶解的。

7、提高稳定化水平。稳定化处理是指减少气味物质和有机物含量的处理,与此同时改善脱水性能,减少病原菌的污泥处理过程。稳定化的实质是:微生物不再具有发生作用条件。热水解厌氧消化后的污泥有机物降解率高,消化后的“污泥”不粘手,也没有令人作呕的气味。

下面介绍一种污泥厌氧消化工艺——Cambi高级厌氧消化工艺,该工艺可实现污泥处理的稳定化,降解有机物;减量化,尽量少添加物料;安全化,杀灭病原菌(生物安全);能源化,沼气或热能;资源化,有机质、磷和微量营养回归大地。

Cambi热水解原理

1)批次加热消毒:满足所有国际已知的安全标准,批次处理,无病原菌再生;

2)摧毁胞外聚合物ECP:污泥易于脱水,提高10%的含固浓度,降低粘稠度,易于搅拌(热水解的10%相当于传统的5%);

3)非溶解性COD的水解:30%到50%的溶解度促进快速消化,达到10天停留时间,60%的降解率; 4)颗粒物质通过蒸汽爆破解体:进一步提高消化和降低粘稠度。

Cambi热水解工艺

污泥经螺杆泵从储泥罐连续不断地送入浆化罐、再经过螺杆泵以批次方式送入各个反应罐、在批次加入蒸汽进行高压蒸煮后、在反应罐自身压力推动下污泥进入闪蒸罐卸压闪蒸。闪蒸后释放的蒸汽回到浆化罐,对污泥进行预热浆化。闪蒸后的热水解污泥在闪蒸罐停留一定时间,并通过螺杆泵连续不断地送出到下一步冷却工艺中。热水解预处理系统按照预定程序周而复始运行。

传统厌氧消化与Cambi高级厌氧消化的对比

值得一提的是Cambi高级厌氧消化工艺的消化稳定的产物(消化剩余污泥)是无菌的生物固体,因为污泥在155-170℃下处理了30min,所有的致病菌都被杀灭。无需进一步的干化来杀灭病原菌,最终产品无臭无味和土相似,满足巴氏消毒的A级产品需求,可以用于肥料和土壤改良。

四、结语

1)热水解高级厌氧消化以能源化资源利用为核心,可全面达到稳定化、减量化、安全卫生化、能量利用、资源利用的五大目标。

2)热水解高级厌氧消化可为传统消化的升级扩容改造提供了一条有效的途径。

3)热水解高级厌氧消化可为利用一个厂现有消化罐建设区域污泥及有机垃圾处理中心提供有效途径。4)热水解高级消化及高干度脱水可为结合焚烧的处理处置路线提供优化的能源平衡,降低焚烧量,并提供消化后脱水的生物固体的土地利用途径,形成污泥多途径处置战略。

5)在现有焚烧设备前端结合高级消化,全面优化项目的能耗、运行、投资、经济和环境效益,可为现有污泥焚烧项目转化为能量自持低碳提供更优化的解决方案。

第五篇:污水处理厂一期工程污泥处置承诺书

马鞍山市博望东区污水处理厂一期工程项目

污泥处理承诺书

马鞍山市环保局:

由我单位(马鞍山市博望新区管理委员会规划建设局)承建的马鞍山市博望东区污水处理厂一期工程规模为1.0万m3/d。建设地点位于规划纬十路(新S314省道)南侧,博望河东侧,许家村附近,规划控制用地约50亩。工程预计2012年开始建设,2013年投产。项目投产运营后会产生一定量的污泥。

根据《中华人民共和国固体废物污染环境防治法》以及《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》等环保法律法规的规定及相关文件的要求。

我单位承诺,本项目投产运营后,污泥交由有相关资质的部门妥善处置,保证做到污泥处理的减量化、无害化、资源化,防止污泥二次污染。如果因污泥的乱排或处理不当,导致对环境造成的影响。我单位承担全部责任。

建设单位:马鞍山市博望新区管理委员会规划建设局

2012年2月23日

BluePlains污水处理厂污泥热水解
TOP