首页 > 精品范文库 > 11号文库
ups逆变器控制系统设计开题报告
编辑:梦回江南 识别码:20-353602 11号文库 发布时间: 2023-04-08 22:31:37 来源:网络

第一篇:ups逆变器控制系统设计开题报告

青岛大学

毕业论文(设计)开题报告

题目:UPS逆变器控制系统设计 学院:自动化工程学院 专业: 电气工程及其自动化 姓名:张隆 指导教师: 王忻

2014年

月13日 课题研究意义

随着现代工业的发展,供电网络的负载越来越复杂,特别是大型用电负载的启动和停止,大型可控电力电子设备的应用以及网络内部噪声会使交流正弦波发生畸变。另外,自然界的雷电,电网的接地不良等因素均影响到电网的供电质量。由于以上因素的影响,可能会导致接在电网上的计算机设备,包括通信、医疗等精密的工业仪器设备发生失控、丢失数据、停机、损坏等严重后果,直接影响到用户的正常工作,造成经济损失或其他严重事故。如何解决这些市电问题,正是UPS(Uninterruptible Power System)不间断电源的责任。所以以单片机为控制核心的UPS电源可以为各种设备机器提供高质量的电源。

随着社会经济的发展,工业的各个领域对电源的可靠性,质量等有着越来越高的要求,一套好的UPS系统可以提高运行的稳定性,随着单片机的应用,UPS已经可以实现全数字化和智能化。同时,电力电子器件的飞速发展也为主功率部分的简化以及先进控制策略的应用提供了必要条件。IGBT作为MOSFET和GTR的复合器件已广泛地应用到逆变器中。它有MOSFET的工作速度快、输入阻抗高、驱动电路简单、热温度性好的优点,又有GTR的载流量大、阻断电压高等优点。

因此,以IGBT为代表组成的逆变器,以单片机为控制核心的UPS电源已普遍应用于我国的各行各业,本课题就是以此展开研究和设计的。

2发展前景

随着电子器件的发展,使UPS向小型化、高效率、高可靠性发展。而网络智能化UPS技术和全数字化UPS技术的出现,不仅提供完全可靠的网络电源管理,也为节能、环保提供了一种最佳的解决方案。所以UPS电源技术总的发展趋势是逐步向小型网络智能化和全数字方向发展。随着科学的进步,UPS电源技术在不久的将来会开辟一个更新的领域。

高频化:虽然传统在线式UPS的技术已经非常成熟,由于它本身带有许多无法突破的问题,使其发展前途受限。高频化概念的引入,给UPS的发展带来了许多新的思路和空间。随着高频技术和器件的发展,3KV及以下的高频在线式UPS的技术和产品已经成熟,其功能和可靠性均应高于传统UPS。高频化对于减小体积、降低成本以及对非线性负载有更好的响应上起着重要的作用。

智能化:微处理器在UPS上的应用,过去只在大、中型UPS上采用,但近年来已逐渐向小型、微型UPS方面发展,其带来的结果是UPS的智能化发展,包括控制、检测和通信。UPS逐渐由计算机来进行管理,并且计算机及外设能“自主”应付一些可能预见到的问题,能进行自动管理和调整,如自动关闭宿主计算机的操作系统并关闭其电源,定时 开关UPS本身等,并能将有关信息通过网络传递给操作系统或网络管理员,便于进行远程管理。

网络化:把UPS做为网络家庭一个成员的要求越来越迫切,因为它是网络能正常运行的基础。要求UPS拥有更大的蓄电量、可以同时为多台计算机或其它外设服务,并能够通过某种机制达成负载之间的动态配置。

大容量单机冗余化:由于网络对UPS可靠性的要求越来越高,而解决可靠性的途径除要求元器件本身高可靠外,就是用冗余的方法。小容量UPS的单机内冗余已出现。而大容量的UPS目前还必须通过并机的方法实现,但这样作又使用户投资太大。毫无疑问,使用Internet技术监控UPS系统将成为未来UPS技术的主流之一。

3各种方案的比较和课题所选用的方案

(1)预测控制:预测控制从七十年代中期提出至今,一直是控制界的一个研究热点,不断发展,先后出现了模型算法控制(MAC)、动态矩阵控制(DMC)和广义预测控制(GPC)等几十种,且在实际复杂工业过程控制中得到了成功应用。对于大滞后的被控过程,预测控制是一种非常有效的控制方法,因为预测控制不是根据被调量的当时值进行控制的,而是根据被调量在未来一段时间内的预测值进行控制的,因此,控制作用可以提前一段时间动作,这对大滞后被控过程的控制是至关重要的。

由于各类预测控制方法在预测模型假定或设计思想上存在某些差异,从而使相应的控制律各有不同的特点,但其主要思想仍是相似的,对于一个SISO系统可用图1来简单说明,其控制决策描述如下:

ˆ(t),yˆ(t1),,yˆ(tNp1)}1)在“当前”t时刻对过程的未来输出进行预测,预测值{y取决于过程t时刻的已知信息、动态预测模型以及所假定的未来控制序列{v(t), v(t+1), „, v(t+Nu-1)};

2)在所假设的不同的未来控制作用中,选择“最优”控制序列{v*(t),v*(t1),,v*(tNu1)},ˆ以“最好”的方式逼近参考轨迹yr。最优逼近可定义为使某一特定使过程的输出预测值y的目标函数最小。对输出误差和控制增量加权的二次型性能指标(1)是目前采用最多的目标函数。

Npˆ(tk)yr(tk))k(u(tk1))2(1.1)minJ(y2k1k1Nu3)将“最优”控制序列中t时刻的控制信号u(t)v*(t)作用于实际过程。在下一个采样时刻重复进行上面的计算步骤。

可以实现很小的电流畸变,抗噪音能力强。但是这种算法要求知道精确的附在模型和电流参数,而且有数值计算造成的延时在实际应用中也是一个问题。(2)滞环控制:也叫做bang-bang控制或纹波调节器控制,即将输出电压维持在内部参考电压为中心的滞环宽度内。具有快速的响应速度,较高的稳定性。但是,滞环控制的开关频率不稳定,使电路工作可靠性下降,输出电压的频谱变差,对系统性能不利。

(3)数字PID控制:就是把现场的控制变量的模拟信号和对现场受控变量的输出信号均转换成了数字信号,PID的实现也是通过数字信号的设定来完成的。现在大多在DCS、PLC系统内完成的。随着处理器芯片的运算速度不断提升,更多的PID采用数字控制。

可以方便的调整PID参数,具有很大的灵活性和很强的适应性。PID算法简单明了,控制过程快速,准确,平稳。

本课题设计方案为:基于单片机控制的全数字UPS逆变器。它大大改善了产品的一致性,增加了控制的柔性,提高了整个系统的稳定性和可靠性。

4课题拟采用的方案和技术路线

本课题设计方案为:基于单片机的在线式UPS逆变器控制系统设计 拟采用的技术路线:

(1)使用IGBT作为功率器件,设计三相逆变电路;

(2)以AT89C51单片机为控制核心,设计控制电路来控制三相PWM波产生控制信号;(3)用AT89C51单片机来实现UPS电源的过电压、过电流等监测;(4)设计的UPS电源能提供较好的交流电源,其输出电源电压:

220V/AC,频率:50Hz 5 各阶段时间安排

第1至2周 搜集资料,撰写开题报告 第3至4周 主电路设计 第5至6周 控制电路设计 第7至8周 软件设计 第9至10周 仿真调试 第11至12周 撰写论文

第13至14周 修改论文,准备答辩

参考文献:

[1] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000 [2] 李成章.中小型UPS不间断电源及直流稳压电源[M].北京:电子工业出版社,1990 [3] 张广明.UPS技术发展趋势与应用中的问题[J].UPS应用,2000 [4] 王朔.小功率UPS电源的电池智能管理研究[J].沈阳工业大学学报,2001 [5] 段善旭,雄健,康勇.一种UPS的数字化锁相及旁路开关检测和切换控制技术[J].电工电能新技术,2004 [6] 任红.UPS的选择及应用[J].建筑电气,2002 [7]王其英.UPS不间断电源剖析与应用[M].北京:科学出版社,1997

第二篇:开题报告-基于PLC的电梯控制系统设计

开题报告

电气工程及自动化

基于PLC的电梯控制系统设计

一、综述本课题国内外研究动态,说明选题的依据和意义

1.本课题的研究背景及意义

(1)题目背景:随着城市建设的不断发展,楼群建筑不断增多,电梯在当今社会的生活中有着广泛的应用。电梯作为楼群建筑中垂直运行的交通工具已与人们的日常生活密不可分。实际上电梯是根据外部呼叫信号以及自身控制规律等运行的,而呼叫是随机的,电梯实际上是一个人机交互式的控制系统,单纯用顺序控制或逻辑控制是不能满足控制要求的,因此,大部分电梯控制系统都采用随机逻辑方式控制。传统的电梯运行逻辑控制系统采用继电器逻辑控制线路。这种控制线路,存在易出故障、维护不便、运行寿命较短、占用空间大等缺点。从技术上发展来看,这种系统将逐渐被淘汰。如何解决电梯的可靠性、维护方便等问题已成为全社会关注的焦点和大众的迫切心声。

(2)题目研究的意义:目前,由可编程序控制器和微机组成的电梯运行逻辑控制系统,正以很快的速度发展着。采用PLC控制的电梯可靠性高、维护方便、开发周期短,这种电梯运行更加可靠,并具有很大的灵活性,可以完成更为复杂的控制任务,已成为电梯控制的发展方向,其许多功能是传统的继电器控制系统无法实现。

可编程控制系统是专门为在工业环境下应用而设计的数字运算操作电子系统。它采用一种可编程的存储器,在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,通过数字式或模拟式的输入输出控制各种类型的机械设备或生产过程。通过可编程控制器可以实现由继电器实现的逻辑控制功能,而且最主要的是可编程控制器的“可编程”功能,使得当改变电梯的控制功能时,只要更改程序即可,而不需要像继电器控制系统那样改变硬件和接线。

2.国内外电梯的情况

当今世界,电梯的生产情况与使用数量已经成为衡量一个国家工业现代化程度的标志之一。在一些发达的工业国家,电梯的使用相当普遍。

世界上有名的几家电梯公司,诸如:美国奥梯斯公司、瑞士讯达公司、日本三菱和日立公司、芬兰科恩等,其电梯的产量已占世界市场的51%。其中,奥梯斯公司和三菱公司是世界上最大的电梯生产企业。

目前,国外除了以交流电梯取代直流电梯以外,在低层楼房越来越多的使用液压电梯。此外,家用小型电梯将成为电梯家族中新的组成部分。

电梯是集机电一体的复杂系统,不仅涉及机械传动、电气控制和土建等工程领域,还要考虑可靠性、舒适感和美学等问题。而对现代电梯而言,应具有高度的安全性。事实上,在电梯上己经采用了多项安全保护措施。在设计电梯的时候,对机械零部件和电器元件都采取了很大的安全系数和保险系数。然而,只有电梯的制造,安装调试、售后服务和维修保养都达到高质量,才能全面保证电梯的最终高质量、在国外,己“法规”实行电梯制造、安装和维修一体化,实行由各制造企业认可的、法规认证的专业安装队和维修单位,承担安装调试、定期维修和检查试验,从而为电梯运行的可靠性和安全性提供了保证。因此,可以说乘坐电梯更安全。美国一家保险公司对电梯的安全性做过认真地调查和科学计算,其结论是:乘电梯比走楼梯安全5倍。据资料统计,在美国乘其他交通工具的人数每年约为80亿人次,而乘电梯的人数每年却有540亿人次之多。

解放前,我国只有2000台电梯,几乎没有电梯生产企业。解放后,随着我国经济建设的发展,电梯企业应运而生。我国的电梯企业由60年代开始起步,到了70年代己初具规模。

改革开放以来,我国电梯的需求量急剧上升。在我国通过引进国际电梯标准以及发达国家的先进产品和技术,产生了一支以中外合资企业为主体的外向型企业队伍。如中国迅达公司、天津奥梯斯公司、上海三菱公司、苏州迅达公司和广州电梯工业公司等企业,就是通过合资和补偿贸易方式,引进发达国家的先进管理和技术,不断改善现有产品结构和管理体制,使企业素质和产品质量都提高到了一个新水平,推出一代电梯新产品。

目前,交流调压调速电梯技术已趋成熟,一些企业都有成功的产品。微机控制电梯是电梯技术的方向,一些生产企业与科研单位相结合,相继推出了微机控制的电梯新机型,使控制功能得到增强,电梯的性能得到改善,明显提高了可靠性。除了合资企业外,也有其他厂家开发出了变频调速电梯新产品。另外,用可编程序控制器取代继电器控制系统的机型对单梯进行控制还是有前途的。有些生产企业开发了紧急供电装置、放火厅们、地震控制、自检测以及语言合成等电梯新功能;对机械系统采用了新结构、新材料、新技术和新工艺。总之,与国外先进技术水平相比,虽然还存在一定差距,但国内电梯技术正以迅猛的发展速度赶超世界先进水平。

近年来,为保证电梯最终质量,在建立全国性完整的电梯管理法规、落实检查机构、壮大安装调试队伍、组建维修保养网络和提高相关人员技术素质等方面,正在进行着一系列实质性的工作。我国电梯行业,正在走向法规化,加速步入世界先进行列。

二、研究的基本内容,拟解决的主要问题:

(1)查找相关资料,了解国内外电梯控制系统的发展状况,熟悉现有电梯控制系统的发展方向。

(2)

阐述电梯的结构和可编程控制器的结构,了解PLC在电梯领域应用的优势及其硬件组成。

(3)对电梯的硬件设计。

(4)对电梯PLC控制原理进行分析。

(5)对电梯的软件设计。

这里我主要应用PLC原理对电梯的指层控制模块、轿内指令和厅外召唤登记与消号模块、电梯的选层和定向模块、电梯运行控制模块等进行设计。

三、研究步骤、方法及措施:

步骤及方法:

(1)了解现行电梯的结构和可编程控制器的结构。

(2)分析相关的PLC改造。

(3)基于PLC的电梯控制系统的设计。

(4)分析效果。

(5)得出结论。

措施:图书馆查找相关的书籍、期刊、杂志等,通过上网寻找相关的一些资料,查看当代对该技术的研究成果和最新的动态。然后通过对这些资料的学习和研究进一步的熟悉和理解设计所需的相关知识。在设计过程中及时与指导老师探讨,对不了解的问题及时向老师请教。

四、参考文献:

[1]

台方.可编程控制器应用教程[M].北京:中国水利水电出版社,2001,9

[2]

武锋.可编程控制器PLC的基本原理及应用[J].电子世界,2002,(11)

[3]

张凤池.现代工厂电气控制[M].北京:机械工业出版社,2000

[4]

李世基.微机与可编程控制器[M].北京机械工业出版社,1994

[5]

西门子(中国)有限公司.SIMATIC

S-200可编程序控制器系统西门子手册.[6]

王永华.现代电气控制及可编程控制技术[M].北京航空航天出版社,2002

[7]

章丽芙.基于PLC的电梯控制系统

.电气开关!

(2006.No.2)文章编号:

1004

289X(2006)

02-

0021-

03

[8]

朱昌明,洪治育,张惠侨.电梯与自动扶梯--原理、设计、安装、测试[M].上海:

上海交通大学出版社,1995.[9]

周万珍.高鸿彬.PLC分析与设计应用[M].北京:电子工业出版社,2006.[10]

李杰.PLC技术在电梯控制系统中的应用.科技创新导报,2008年第19期

[11]

张汉杰.现代电梯控制技术[M]

.哈尔滨:哈尔滨工业大学出版社,1996.

第三篇:开题报告-开关磁阻电机数字控制系统设计

开题报告

电气工程及自动化

开关磁阻电机数字控制系统设计

一、前言

开关磁阻电机结构简单、成本低、容错性高、功率密度高能够高速运行,并且它能方便地实现起动和发电双功能,因此,目前越来越广泛的应用于航空和汽车上的起动/发电系统。开关磁阻电机具有很大的发展潜力。

二、主题

(一)、开关磁阻电机的发展概述

“开关磁阻电机”一词源于美国学者S.A.Nasar

1969年所撰论文,它描述了这种电机的两个基本特征:开关性和磁阻性。20世纪80年代以来,越来越多的学者开始关注开关磁阻电机,并对此进行了大量的研究。美国空军和GE公司联合开发了航空发动机用SRD电机系统,有30KW、270V、最大转速为52000r/min和250KW、270V最大转速为23000r/min两种规格。加拿大、前南斯拉夫在SR电机的运行理论电磁场分析上做了大量研究工作。一些学者还研究了盘式SRM/外转子式SRM、直线式SRM和无位置传感器SRM等新型结构的电机。

1984年开始,我国许多单位先后开展了SR

电机的研究工作且SRM被列入中小型电机“七五”科研规划项目。在借鉴国外经验技术的基础上,我国的SR电机研究技术进展很快。近年来,中国在开关磁阻电机的研发方面取得了很大的进步例如南京航空航天大学开发了

3KW、6KW

7.5KW

三套原理样机,电机采用的是风冷形式。但在大功率方面的研究还很少,仅有原理样机方面的仿真。

(二)、开关磁阻电机的优缺点

开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使得开关磁阻电机在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。

其结构简单,价格便宜,电机的转子没有绕阻和磁铁。

(1)转矩方向与电流方向无关,只需单方相绕阻电流,每相一个功率开关,功率电路简单可靠,可降低系统成本。

(2)易于实现各种再生制动能力。

(3)定子线圈嵌装容易,热耗大部分在定子,易于冷却,效率高,损耗小,允许有较大的温升。

(4)转子上没有电刷,结构坚固,适用于危险环境,控制灵活。

(5)调速范围宽,控制灵活并且输出效率很高。

(6)电机的绕组电流方向为单方向,控制电路简单,具有较高的经济性和可靠性,转子的转动惯量小,有较高转矩惯量比。

其主要缺点为转矩脉动大、需要根据转子与定子相对位置投励、必须与控制器一同使用才能稳速运行、主接线数随着相数的增多而大量增多。

(三)、基本内容

功率变化器在SRD中占的比重非常的大,因此合理的设计功率变换器是提高SRD性能跟价格的关键之一。从功率变换器与电动机结构匹配、效率高,控制方便,结构简单、成本低的要求出发,一个理想的功率变换器应该具备如下条件:

(1)最少数量的主开关器件;

(2)基数相和偶数相的SR电机都适合用;

(3)所有的电源电压都可以加到相绕阻上;

(4)主开关器件的额定电压接近电动机额定电压;

(5)相绕阻电流变化速度快;

(6)通过主开关器件调制,能够有效的控制相电流;

(7)绕阻磁链减少的同时能够将能量回馈给电源。

具备以上条件的电路有很多。主要有每相只有一个主开关管的电路,据有最少数量主开关器件的功率变换电路。

3.1每相只有一个主开关管的电路

每相只有一个主开关管的电路包括双绕阻功率变换器、采用分裂式直流电源的功率变换器、带储存电容的功率变换器和再生式SR电动机功率变换器。

双绕阻功率变换器要求SR电动机每相有一个二次绕阻与一次绕阻完全耦合器主开关器件装置的额定电压至少是电机绕阻额定值的两倍,因此未能用足主开关器件的额定电压,另一缺点是铜线的利用率低。但是就逆变电路而言它是经济的。

采用分裂式直流电源的功率变换器这种功率变换器中电容量和电源电压的定额将显著增加。为了保证三线电源两侧的负载相等,使上下臂各相工作电压相等,采用这种功率变换器方案只适用于偶数相的SR电机,这种方案对蓄电池供电系统是十分合适的。

带储存电容的功率变换器根据能量回馈电源的方法不同可以有如下几种方案:1、利用谐振回收能量2、利用阻尼回收能量3、利用斩波器回收能量。其各有优缺点。

3.2具有最少数量主开关器件的功率变换器

它是在不对称半桥电路的基础上发展起来的一种新的少主开关器件的功率变换电路它保留了桥式电路的所有优点但所用的每相主开关可以少于两个。但是主开关的工作状态必须根据与其连接的所有相绕阻的电流来决定,所以必须提出对所有相电流独立控制的主开关器件策略,同时SR电机相绕阻接至功率变换器的方式必须加以限定。

电流检测电路用来检测定子绕组的电流大小,将其反馈到控制器中。四相电机可以采取A/C、B/D共用一套电流传感器,SRM功率变化器输出的相电流是单向的,可以用电阻采样,直流电流互感器,霍尔元件采样,磁敏电阻采样。

位置检测的目的是确定转子定子的的相对位置,即要用绝对位置传感器检测定子的相对位置,然后将信号反馈到逻辑控制电路,以确定对应相绕阻。通过电机四相绕阻的不同位置可以判断出转子的相对位子,从而达到检测转子相对位置的目的。

数字控制电路完成象限控制软起动等其他控制功能。通过单片机能实现非常多的控制功能,灵活性好、智能性好,但它也是有缺点的,就是系统响应速度受到单片机速度的影响。

(四)、开关磁阻电动机的数学模型

开关磁阻电动机控制参数多,数学模型十分复杂。为了降低难度,对开关磁阻电动机采用简化、线性化或准线性化的分析方法,以便建立比较准确的开关磁阻电动机的数学模型。考虑了电动机的磁路饱和、涡流、磁滞效应等非线性的所有因素,可以列出一个很精确的数学模型,但是计算复杂很难用于仿真分析。因此,在建立开关磁阻电动机数学模型的时候,要在理论性和实用性上加以折中考虑。为了简化分析,做出如下的假设:

(1)主电路电源的直流电压Us恒定不变;

(2)主开关器件为理想开关,即导通压降为零,关断时流过的电流为零;

(3)忽略所有的功率消耗;

(4)电动机各相参数对称,忽略相间互感;

(5)在一个电流脉动周期内,认为转速恒定。

(五)、开关磁阻电机的应用

作为一种新型调速驱动系统,开关磁阻电机愈来愈得到人们的认可和应用。目前已成功应用于在电动车用驱动系统、家用电器、工业应用、伺服系统、高速驱动、航空航天等众多领域中。下面介绍开关磁阻电机的一些应用实例。

5.1在电动车中的应用

电动车是解决世界能源危机,环境污染等重大难题的理想交通工具,是21世纪的高科技产品之一。目前电动摩托车和电动自行车的驱动电机主要有永磁有刷及永磁无刷两种,然而采用开关磁阻电机驱动有其独特的优势。矩脉动大,噪声大,相对永磁电机而言,功率密度和效率偏低;要使用位置传感器,增加了结构复杂性,降低了可靠性这些是MRD的缺点。

5.2在食品加工机械中的应用

在食品加工机械中,开关磁阻电机显现出其独特的优势:体积小、不烧电机、没有或只有小的齿轮减速比、电机外形设计灵活,适应性好、能够安全停机、速度离散可选或者连续可调、易实现特殊要求的机械特性。开关磁阻电机结构、体积、特性上的优势非常明显,降低了电机成本,提高了产品的可靠性。

5.3在龙门刨床中的应用

龙门刨床是机械行业的一种重要加工机械,其主传动系统的作用是带动工作台实现往返运行。

实践证明,开关磁阻电机的特性特别适合于频繁起制动和换相运行,换相过程起动电流小,只有额定电流的0.5倍,起、制动转矩可调,因而工艺符合要求。轻型龙门刨床以往之所以取较低的速度是由于传动形式所限。当开关磁阻电机能满足提升速度的条件下,再加上主机也允许,提升速度和切削能力是绝对合理的。实验证明,将机床速度提高到40m/min以上,机床系统刚性满足,这样可以使刨床的生产效率提高一倍。

(六)、开关磁阻电机的发展趋势展望

1、数学模型的研究

数学模型是控制理论应用的基础。在以往的研过程中,人们已经提出了各种各样的开关磁阻电机的数学模。近年来,多维系统辨识、小波模型、神经网建模等各种建模理论发展迅速。SRM数学模型的研究也必定会得到快速发展。我们相信在不久的将来结合各种现代建模理论的SRM非线性数学模型将被提出。

2、非线性控制理论、智能控制理论的应用。近年来虽然些学者已将非线性控制理论和智能控制理论应用在SRM制系统中,由于控制理论所结合的控制策略还不完善,控制效果并不理想。可以预见,未来一段时间各非线性控制理论、智能控制理论,将与控制策略的究同步进行,它们将以更加有效的途径应用于SRM系统中。

3、高性能SRM驱动系统的研究

SRM具有体积小、重量轻、转矩/惯量比小等优点。但是,SRM的线性特性和转矩脉动难以抑制,使得以往SRM伺服驱动系统的研究进展较为缓慢。随着转矩脉动抑制研究的进一步发展以及人们对SRM非线性本质认识的加深SRM在伺服驱动系统中应用的研究必定会得到空前的发展。

三、小结

目前,人们已经提出线性、准线性、非线性等多SRM数学模型,在此基础上结合各种各样的消转矩脉动的控制策略,将线性控制理论、非线性控理论和智能控制理论应用于SRM的控制器设计,已经取得了丰硕的成果。但是,在SRM控制领域研究还远未到完善的程度,未来一段时间,SRM制技术将在数学模型、控制策略、控制理论应用以高性能驱动系统开发等方面,继续得到发展。

四、参考文献:

[1]唐小洁,邓智泉,曹鑫,王晓琳.开关磁阻起动/发电机数字控制系统设计[J].南京航空航天大学,1993.[2]詹琼华.开关磁阻电动机[M].武汉:华中理工大学出版社,1992.[3]王宏华.开关型磁阻电动机调速控制技术.北京:机械工业出版社,1999.7:27-28,65-75

[4]彭志谨.电气传动与调速系统[M].北京:北京理工大学出版社,1988.[5]陆道政等.自动控制原理及设计.上海:上海科学技术出版社,1978.[6]曹家勇,陈幼平,詹琼华,周祖德等[J].开关磁阻电动机控制技术的研究现状和发展趋势.湖北武汉:华中科技大学出版社,2005.[7]张全柱,郝荣泰.单片微机控制的开关磁阻电机调速系统[D],北方交通大学学报 ,2001.[8]李俊卿,李和明.开关阻电机发展综述[D].华北电力大学电力工程系,河北保定071003.[9]慈艳柯.MCS一51单片机芯片反向解剖以及正向设计的研究[D].厦门大学,2002.[10]章明明.开关磁阻电机起动/发电系统数字平台研发[D].京航空航天大学, 电力电子与电力传动, 2009.[11]王兆安,黄俊.电力电子技术,第四版[M].北京:机械工业出版社,2000.[12]吴建华.开关磁阻电机设计与应用[M].北京:机械工业出版社,2000.6.[13]郑治同.电机试验.第二版[M].北京:机械工业出版社,1992:23-40.[14]李强.半桥逆变弧焊电源系统建模和仿真技术研究[D].青岛大学,2007.[15]王志升.大功率电磁炉电控系统设计与实现[D].武汉理工大学,2008.

第四篇:开题报告-船用小型UPS电源系统设计

开题报告

电气工程及自动化

船用小型UPS电源系统设计

一、综述本课题国内外研究动态,说明选题的依据和意义

有些小型船用应急电源一般采用冲放电板带蓄电池来组成,当蓄电池处在浮充状态时,能够提供不间断电源,但有一些缺点:

(1)

受电源的限制功率小,承担的负荷太小,满足不了要求

(2)

不能提供交流电源

(3)

电源品质不能保证,如波动问题、频率问题等

因此,船上一些重要设备的备用电源不能直接由充放电板提供,需要更加稳定

UPS(Uninterrupted

Power

Supply)系统。

当船舶主电源发生故障时,在应急发电机启动并正常运行前,为了确保通讯导航设备、无线电设备、检测报警设备及维系生命安全的重要设备供电的连续性,应当采用更为保险的UPS系统。应急发电机正常运行后,所有的UPS负载均可转移到应急配电板上。

那么到底什么是UPS呢?不间断电源,从名称上看,即保证一些重要负载供电的连续性,如报警设备、监控设备等。这些设备一旦出现供电间断,可能会引起重大事故。UPS主要构成包括整流器、充电部分、蓄电池(组)、直流汇流排、逆变器。UPS的基本工作原理:外部电源经过整流后通过充电回路对蓄电池进行充电,旁通电路给负载供电;当外部电源因发生故障而停止供电时,由蓄电池作为电源,经逆变器逆变后对负载供电。好的UPS系统应满足一下要求:输出正弦电压波形、电源波形畸变小、输出频率稳定、电压波动小、效率高、损耗小、噪音低、操作简单、维修方便。

陆用UPS技术相对成熟,主要是陆地稳定,干扰小,满足以上要求更为简单。但是,船舶交流电网的线路及供电质量远不及陆上电网,且由于多种设备集中在船舱狭小的空间内,这对船用UPS电源的抗电磁干扰及可靠性提出了严格的要求,因此,作为船舶供电网络的关键设备,船用UPS技术的研究具有重要的理论意义和实际意义。

我国在船用UPS的设计和制造方面已经取得了出不成绩,但与陆用UPS产品相比还存在着一定的差距,目前我国船用UPS技术存在诸多局限性。

目前UPS主要向两个方向发展,一是网络智能化控制控制,二是全数字化技术。智能化,即采用并联技术将多台小功率UPS设备连接后实现并联运行,这样不但可以方便灵活地配置整个电源系统的容量,而且可以实现电源系统的冗余,大大提高系统的稳定性、可用性、可靠性,因此船用UPS的控制技术相应地向网络智能化方向发展是势在必行。采用微处理器、数字信号处理DSP构成的全数字式控制UPS有很明显的优点:可以大大减少控制元件的数量,提高系统抗干扰能力,降低故障率及对工作温度的要求;制作设计灵活,并联的多台UPS一致性好;可改进性好,一旦有更好的控制方法,只要修改程序即可,无需变动硬件电路,即硬件电路软件化,大大缩短了设计周期;输出电能质量好,可靠性高,便于实现网络智能化管理;并联多台UPS,控制方法灵活,更有利于发挥冗余优势。

船上使用UPS具有重要的作用和意义:一,应急作用,当船舶因为意外故障而断电,比如电线老化、气候影响等等,UPS可以防止突然断电而影响船上重要仪器的工作,给船上各个供电系统造成损害;二,消除电源上的电涌、瞬间高电压、瞬间低电压、电线噪声和频率偏移等“电源污染”,可以极大的改善电源质量,为船舶供电系统提供高质量、不间断的稳定电源。因此,在当前的形势下,船用UPS电源的使用越来越广泛,而对UPS的研究也是非常有必要的。

二、研究的基本内容,拟解决的主要问题:

设计一个为船舶中通讯设备,照明设备、控制设备、辅助机械设备等提供性能可靠的后备UPS电源系统。此UPS系统主电路结构如下框图所示,三相逆变电路

LC滤波

负载

蓄电池组

要求选蓄电池组的电压为168V,能独立提供的线电压为66V,最大输出电流为20A,供电时间为30min,当输出由空载变为满载时输出电压下降不超过2.5%。

设计的基本内容:

(1)

根据要求设计出主电路的结构形式,画出主电路的原理框图。

(2)

主电路各个元件的参数计算和型号选择。

(3)

研究UPS与常用电源的合理切换。

(4)

设计蓄电池组的充电回路。

(5)

对系统进行仿真和研究。

(6)

整理设计数据资料,设计总结,撰写论文。

电路的基本框架图已经给出如上图,各元件的参数选择需经过计算后才能得出。所谓合理切换,即船电正常时UPS系统不工作,当船电不正常时启用UPS系统,保证供电的连续性。充电电路的设计是本文的一个重点,蓄电池电压较高,有一定的设计难度。充电要求电压必须大于蓄电池组电压,还得保证不能过冲,即应该有电压反馈、锁定环节。当然,UPS中有一个很重要的环节----逆变,逆变技术的先进与否直接反映电源的质量。本次设计采用三相桥式电压型逆变电路,原理图如下:

开关器件采用全控型电力MOSFET,主要特点是驱动电路简单,需要的驱动功率小。第二个特点是开关速度快,工作频率高,热稳定性能好。MOS管的驱动使用特定的驱动电路完成。直流电输入,电路正常工作时,每个瞬时有三个桥臂导通,同一相的上下两个桥臂要通断互补。为了防止短路直通现象,可采取先断后通策略。

MOS管的通断控制采用PWM控制方法,PWM波由芯产生,输出PWM波形的占空比由软件控制。有电压闭环反馈环节,从输出端进行电压采样,采样值与设定值比较,形成偏差,再通过PI调节器自动调整,把调整信号输入单片机,单片机控制PWM芯片波改变其输出PWM的占空比。

三、研究步骤、方法及措施:

(1)查找相关资料,总体方案设计论证,作好开题报告。

(2)根据方案,设计所需要的逆变电路。

(3)计算所需电力电子器件的参数,挑选合适的型号。

(4)挑选合适的主芯片,设计控制电路。

(5)挑选适合的芯片,设计蓄电池好充电回路

(6)对所需的电路进行仿真。

(7)完成报告,总结设计过程。

四、参考文献

[1]

王兆安,黄俊.电力电子技术[M].第4版.北京:机械工业出版社,2000.[2]

陈建业.电力电子电路的计算机仿真[M].北京:清华大学出版社,2003.[3]

阎石.数字电子技术基础[M].第4版.北京:高等教育出版社,2005.[4]

康华光.陈大钦.电子技术基础(模拟部分)[M].第4版.北京:高等教育出版社,2004.[5]

杨旭,裴云庆,王兆安.开关电源技术[M].北京:机械工业出版社,2003.[6]

顾绳谷.电机及拖动基础[M].第3版.北京:机械工业出版社,2003.[7]

张颖超等.高精度三相PWM波形产生器SA4828在逆变器中的应用[J].国外电子元器件,2000,36(9):3~5.[8]

张春来,赵殿礼,文元全.船舶电气[M].北京:人民交通出版社,2008.[9]

康华光.电子技术基础(模拟部分)[M].第四版.北京:高等教育出版社,1999.[10]王兆安.电力电子变流技术[M].北京:机械工业出版社,2003.[11]夏德钤,翁贻方.自动控制理论[M].第三版.北京:机械工业出版社,2007.

第五篇:直流逆变器设计

武汉理工大学《能力拓展训练》说明书

3KVA三相逆变器设计 概述

现代工业、交通运输、军事装备、尖端科学的进步以及人类生活质量和生存环境的改善,都依赖于高品质的电能,据统计70%的电能都是经过变换后才使用,而随着科技的发展,需要变换的比例将会进一步提高。电力电子技术为电力工业的发展和电力应用的改善提供了先进技术,它的核心是电能形式的变换和控制,并通过电力电子装置实现其应用。电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。逆变器和直流斩波电路是应用很广的一种电力电子装置或技术。

直流斩波电路(DC Chopper)的功能是将直流电变为另一种固定的或可调的直流电,也称为直流-直流变换器(DC/DC Converter)直流斩波电路(DC Chopper)一般是指直接将直流变成直流的情况,不包括直流-交流-直流的情况;直流斩波电路的种类很多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路,Zeta斩波电路,前两种是最基本电路。

逆变器也称逆变电源,是将直流电能转变成交流电能的变流装置,是太阳能、风力发电中的一个重要部件。随着微电子技术与电力电子技术的迅速发展,逆变技术也从通过直流电动机—交流发电机的旋转方式,发展到晶闸管逆变技术,而今的逆变技术多采用了MOSFET、IGBT、GTO、IGCT、MCT 等多种先进且易于控制的功率器件,控制电路也从模 拟集成电路发展到单片机控制甚至采用数字信号处理器(DSP)控制。各种现代控制理论如自适应控制、自学习控制、模糊逻辑控制、神经网络控制等先进控制理论和算法也大量应用于逆变领域。其应用领域也达到了前所未有的广阔,从毫瓦级的液晶背光板逆变电路到百兆瓦级的高压直流输电换流站;从日常生活的变频空调、变频冰箱到航空领域的机载设备;从使用常规化石能源的火力发电设备到使用可再生能源发电的太阳能风力发电设备,都少不了逆变电源。毋庸置疑,随着计算机技术和各种新型功率器件的发展,逆变装置也将向着体积更小、效率更高、性能指标更优越的方向发展。

PWM控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值);面积等效原理是 PWM技术的重要基础理论。一种典型的PWM控制波形SPWM脉冲的宽度按正弦规律变化而和正弦波等效

武汉理工大学《能力拓展训练》说明书 的PWM波形称为SPWM波。SPWM法是一种比较成熟的也是目前使用较广泛的PWM法。在采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM 法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的 PWM 波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电 路输出电压的频率和幅值。

本文通过详细讲述每个部分的工作原理、元件选择、电路构造和参数选择,设计出三相逆变器所需的升压电路、主电路、反馈与控制电路、PWM生成电路、触发电路和滤波电路,完整的阐述了一个三相逆变器的设计方法和过程。

武汉理工大学《能力拓展训练》说明书 方案论证

2.1 设计任务与要求

条件:输入直流电压:110V。要求完成的主要任务:

设计容量为3KVA的三相逆变器,要求达到: 1)输出380V,频率50Hz三相交流电 2)完成总电路设计

3)完成电路中各元件的参数计算

2.2 设计任务分析

由于输入直流电压只有110V,而输出交流电压要求有效值为380V,所以必须通过升压电路将直流电压升到到一定值才能作为逆变器的输入电压。逆变器的核心是半导体开关器件,不同拓扑的逆变电路有不同的优缺点和应用领域。半导体开关器件需要触发信号才能导通,要使逆变器输出正弦波形,则需要特殊的触发电路对开关器件进行调制。逆变器输出带有高次谐波,需要滤波电路对谐波进行。在进行仿真前,需对上述电路模块进行比较论证和选择。

2.3各模块方案选择

2.3.1 升压电路选择

1)方案1:采用变压器直接对直流电压进行升压。

2)方案2:采用boost直流斩波升压电路通过改变占空比对直流电压进行调节升压。

考虑到实际变压器变比不可调或者调节范围很小,不利于逆变器输出的调节,而boost电路通过调节开关器件的导通占空比可以灵活方便的调节输出电压的大小,从实际出发和从方便性出发,最终选择了boost电路作为升压电路。

2.3.2 逆变电路选择

逆变器按照输出的相数分,有单相、三相两种;按电路拓扑分,有半桥式、全桥式和推挽式。鉴于全桥结构的控制方式比较灵活,所以选择三相全桥电路作为逆变器主电路。

2.3.3逆变器触发电路选择

目前,逆变器广泛采用PWM脉宽调制技术实现对输出电压的控制。PWM技术主要体现在两个方面,一是控制策略,二是实现的手段。调制方式主要有直流脉宽调制和正弦波脉宽调制两种方式。直流脉宽输出的是方波,波形畸变严重,所以不适合;正弦波脉宽

武汉理工大学《能力拓展训练》说明书

调制输出波形只含高次谐波,可以大大减小滤波器的体积。所以最终选择正弦波脉宽调制,即SPWM技术。

2.3.4滤波电路选择

由于设计任务对波形畸变率没有特殊的要求,可以采用最普通的LC滤波电路作为逆变输出的滤波电路。

2.3.5总电路的控制方式

为了使输出电压波形稳定且可调,采用闭环控制方式,检查输出电压反馈到输入作为比较控制。

武汉理工大学《能力拓展训练》说明书 电路原理及设计

3.1 升压斩波电路

升压斩波电路如下图3.1所示。假设L值、C值很大,V通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压uo为恒值,记为Uo。设V通的时间为ton,此阶段L上积蓄的能量为EI1ton。V断时,E和L共同向C充电并向负载R供电。设V断的时间为toff,则此期间电感L释放能量为(U0E)I1toff,稳态时,一个周期T中L积蓄能量与释放能量相等,即

EI1ton(U0E)I1tof f

化简得

U0TtoffE

输出电压高于电源电压,故称升压斩波电路,也称之为boost变换器。

T与toff的比值为升压比,将升压比的倒数记作β,则

1

U011aE

升压斩波电路能使输出电压高于电源电压的原因 :L储能之后具有使电压泵升的作用,并且电容C可将输出电压保持住。

图3.1 升压斩波电路原理图

3.2 主电路原理图

武汉理工大学《能力拓展训练》说明书

逆变电源采用图3.2所示主电路。首先采用升压斩波电路将110KV直流电压升高到400KV,因为对输出波形的要求不是很高,与负载并联的电容C取很大就可以达到滤波的目的。开关管T1~T6是IGBT,构成三相逆变桥。关断缓冲由电阻R、电容C和二极管D并联网络组成;C0折算到变压器TM的原边后与L2一起构成交流输出滤波电路;变压器用作电路隔离和升压。

图3.2三相逆变器主电路原理图

3.3 SPWM控制系统

图3.3 三相SPWM控制系统框图

三相脉冲形成可采用上述介绍的SPWM控制方法,控制系统框图如3.2所示。下面介绍SPWM生成的各电路部分。

武汉理工大学《能力拓展训练》说明书

3.3.1数字分频电路

图2-3是数字分频电路,Y是石英晶体振荡器,它有稳定的震荡频率,频率稳定度可以达到万分之一。该电路选用震荡频率1.8432MHz的晶振,它和R1、C1、C2组成频率信号产生的电路,得到1.8432MHz频率信号,再经过数字电路CD4017、CD4040处理,输出两路频率信号。CD4017是十进制计数器,第7脚的Q3计数端引至第15脚的复位端可以实现3分频。CD4040是串行二进制计数器,9脚Q1可以得到2分频,2脚的Q6可以得到2的6次方既64分频。1.8432MHz的频率,分频后三角波频率为9.6kHz,标准正弦的扫描频率为102.3kHz。

图3.4 数字分频电路

3.3.2 标准正弦波形成电路

标准正弦波的长生是利用数字电路实现的,电路原理如图3.5所示。

在EPROM中存放的数据(十六进制)是这样得到的;将一个周期的单位正弦波分成N等份,每一点的数据在计算机上事先离散计算好在存放进去。由于写入的数据只能是正值,单位正弦波是和图中Uref的波形一致,幅值为1的正弦波。本例中将一个周期的正弦波分成N=2048份。

正弦扫描频率引入数字电路CD4040,CD4040的输出是一组地址扫描信号送到EPROM的地址线上,EPROM2732中存放的数据便依次送到D/A转换器DAC0832,DAC0832将

武汉理工大学《能力拓展训练》说明书

这些数据转换成断续的模拟信号,经过一个小电容C1(0.1uf以内)滤波,得到连续模拟信号Uref,峰峰值由IO1端引入的给定电压Uc决定,电路中Uc来自调节器的输出。经运放LF365处理,可以获得正负对称、幅值为Uc的标准正弦波SINE。

图3.5 标准正弦波形成电路

要产生的标准正弦波的频率f1=50Hz,那么扫描频率应该为:fhf1N502048Hz102.4kH,和前面分频电路得到的频率一致。正弦波的频率由z

武汉理工大学《能力拓展训练》说明书

稳定度相当高的晶振分频得到,故正弦波的波形畸变率很低;正弦波的幅值受控于给定电压。因此,该电路是一个高精度的正弦发生器。

上述电路具有通用性,对一个已经写好数据的EPROM,若改变正弦扫描频率,可以改变标准正弦波频率;若改变EPROM中的数据,可实现不同的PWM调制策略,如梯形波调制,注入特定次谐波;若再增加两套电路,在3个EPROM中存放相位互差120°的数据,就可实现三相SPWM控制。

3.3.3三角波形成电路

分频电路提供了三角波频率信号,即为9.6kHz的脉冲信号,应用隔直、比例和积分电路即可得到幅值适当,正负对称的三角波,其频率为9.6kHz。

3.3.4 SPWM形成电路

本装置SPWM形成电路如图3.6所示,正弦波信号SINE和三角载波信号TR来自前级电路;TL084是运算放大器,一TR由它接成的反向器得到。电路中大量使用了芯片LM311,它是DIP8封装的快速电压比较器,不仅可以作为比较器,还可以利用他的特点做脉冲封锁。下面介绍它的应用:8脚、4脚分别接芯片电源的正、负端;2脚、3脚分别是同向、反向输入;1脚是低电平设定(可接电源负或地),它的电压值决定了LM311输出的低电平值;7脚为输出端,逻辑判断为“高电平”时,集电极开路(OC门特性),因此,7脚必须有上拉电阻同正电源连接,否则,没有高电平输出,图中的R1、R2、R3、R4等都是上拉电阻;

5、6脚用来调节输入平衡(可不用),6脚还可以用作选通,如果LM311的6脚接低电平。其输出恒为高电平,这个特点往往用来设置脉冲封锁。

该系统设置PWM信号低电平有效,即PWM信号为低电平时,驱动电路产生驱动脉冲,IGBT导通。Lock为保护电路输出的脉冲封锁信号;在电路出现故障时,lock的低电平送到后级各个LM311的6脚,使所有PWM为高电平封锁驱动脉冲。如果不利用LM311封锁驱动,也可以设置PWM高电平有效,取消后级的LM311。

武汉理工大学《能力拓展训练》说明书

图3.6 SPWM波形成电路

图3.6中R1~R4,C1~C4和Rp还组成了死区形成电路,参数大小决定死区时间,Rp可以调节死区大小;IGBT的开关时间为2us左右,死区时间设为4us。

该装置采用了一种数模结合的SPWM控制电路,其框图如图2所示,它由数字分频电路、三角波形成电路、调节器、标准正弦波控制电路及PWM形成电路等组成。系统的电压调节是为了稳定电压,电流调节是为了限制输出电流。电源的正弦输出畸变率小于5%,要求不是太高,逆变器的输出功率1kW也不大。因此,系统仅采用电压平均值闭环控制,稳定输出电压,对输出波形采用开环控制,即直接将幅值受控的标准正弦波和三角波比较。

在3片EPROM内写入3个相差120°的正弦波数据,经过数模转换后,形成3个互差120°的正弦波。它们同一三角载波比较,便可得到三相SPWM控制脉冲分别驱动3个桥臂。

3.4 驱动电路

IGBT的驱动电路型号很多,IR21系列是国际整流器公司退出的高压驱动器,一片

武汉理工大学《能力拓展训练》说明书

IR2013课直接驱动中小容量的6支场控开关管,并且只需要一路控制电源。IR2013是28引脚双列直插式集成电路,应用方法如图3.15.HIN1、HIN2、HIN3为3个高侧输入端,LIN1、LIN2、LIN3为3路低侧输入端,HO1、VS1、HO2、VS2、HO3、VS3为3路高侧输出端,LO1、LO2、LO3为3路低侧输出端,Vss为电源地,VSD为驱动地,VB1、VB2、VB3为3路高侧电源端,FALUT为故障输出端,ITRIP为电流比较器输入端,CAO为电流放大器输出端,CA为电流放大器反向输入端。

图3.7

IR2130结构及应用电路

采用IR2130作为驱动电路时,外围元件少,性价比明显提高。它的高压侧的3路驱动电源有Ucc采用自举电路得到。3支快速二极管的阴极电位是浮动的,因此,它的反向耐压值必须大于主电路的母线电压 峰值。IR2130最大正向驱动电流 250mA,反向峰值驱动电流 500mA;内部设有过流、过呀、欠压、逻辑识别保护;它的浮动电压做大不超过400V。

3.5 控制器设计

当采用瞬时值内环反馈双环控制时,内环为瞬时值环,用来控制输出电压波形的正弦波,外环采用平均值控制,以保证电压的平均值与参考值一致。如果波形正弦度好,平均值和有效值一一对应关系。

平均值外环的PI调节器输出控制正弦波幅值,幅值乘以单位正弦波后的信号为内环给定,与输出电压瞬时值比较经内环PI调节器输出正弦波调制信号,与三角载波比较后产生的

武汉理工大学《能力拓展训练》说明书

PWM信号经过驱动电路控制逆变器的开关器件。

图3.8瞬时值内环反馈双环控制

3.6辅助电源

在桥式逆变电路中,一个桥臂上下两管驱动电路的电源应各自独立,两个桥臂上的管无共地点下管可以共地。因此,驱动6管时,至少要有3路独立电源。采用单端反激式开关电源作为辅助电源提供3组20V电源和±12V电源。3组20V电源分别作为6个IGBT的驱动模块电源,±12V电源给控制系统的芯片供电。只要有直流输入,辅助电源就供电,控制系统就具备控制和保护能力。

3.7总电路

由此得到电路图如3.9。

图3.9 总电路图

武汉理工大学《能力拓展训练》说明书 系统元件有关参数的计算

在电路中输入为110KV DC,输出为380V AC 50 Hz,输出功率为P3000W,功率因数设为cos1。调节升压电路的占空比1EU011103800.71使输出为400V,调制比为1,求得逆变器输出的基波电压有效值为Ub400/2282.84V。初步计算变压器的变压比为k380/4000.95。则电路各元件选取如下:

4.1 开关管和二极管的选择

(1)开关管的选择

最大输出情况下,电流有效值为

ImaxPVcos300038017.895A

开关管额定电流ICE

ICE2Imax27.89515.79A

开关管额定电压VCER

VCER2VM2380760V

(2)二极管的选择

额定电压VRR

VRRM380V

最大允许的均方根正向电流

Ifrms2IFR1.57IFR

二极管的额定电流为

IFRImax1.577.8951.575.03A

4.2 L、C 滤波器的设计

输出滤波器的作用是减小输出电压中的谐波,并保证基波电压输出。因滤波电容和负

武汉理工大学《能力拓展训练》说明书

载并联,它可以补偿感性电流,但是,滤波电容过大,反而会增加变压器的负担。因此,在设计滤波电路的时候,首先确定滤波电容的值。设计基本原则就是在额定负载时,使容性电流补偿一半的感性电流。

ICPsin2U0cosICU030000.623800.82.96380250A2.96A

CF24.79F

取C=25F,选择500Hz、500V的交流电容。开关管的工作频率取7.2kHz 逆变桥输出电压除基波外,还含有高次谐波,最低次谐波为2p1次,而pfsf720050144,得到

f(22001)5019950Hz

考虑到死区的影响,一般选取输出滤波器的谐振频率为最低谐振频率的1/5~1/10。取谐振频率为2kHz,算出

L1C(1220001k)10.952124.7910261184.961060.256mH

折算到原边,L1()2L()0.2560.284mH

4.3 输出变压器选择

电源的输出功率为3KVA,cos1,频率f50Hz。根据变压器选择手册可选择SD40*80*220mm的50Hz铁芯,查得变压器视在功率为3529VA。本设计采用SD型铁芯,用冷轧取向硅钢薄板 DQ151-35材料,占空系数Kc0.92。求得磁芯截面积ScKP/KC1.23529/0.9277.49cm,若选取最大磁密Bm12000Gs.1)副边绕组

逆变桥输出的SPWM波经过电感滤波后还是有一定的高频分量,一般取Br80%Bm0.812000Gs9600Gs。根据

-8变

380V压器电压关系式U04.44fN2BrSc4.4450N2960077.4910可求得N2230。取230匝。

2)原边绕组

逆变器输出的基波电压理想值为282.84V。两只开关管的压降为4V左右,开关频率

武汉理工大学《能力拓展训练》说明书

fs7.2kHz,死区设为td4s,则死区引起的最大电压损失为

UfstdUb7.21041036282.848.12V

基波电流在滤波电感上的压降为

UL2fLI12500.2841038.120.724V

漏感的阻抗压降一般为3%~5%的基波电压,按12V估算,则变压器的原边电压

U1(4008.120.72412)379.2V

变压器变比为kU2/U1380/379.21.00

N1N2/k229.5,取300匝。

武汉理工大学《能力拓展训练》说明书

小结

很难想象最终还是把这个拓展训练做下来了,因为中间过程是多么曲折。当我刚拿到设计任务的时候,乍一眼看我还觉得题目比较简单,就是一个DC-AC转换电路,然后我脑海中立马浮现出课本上学的逆变电路图,简单的六只开关管接成桥式电路然后接负载。后来当我真正开始付之行动时才发现实际做起来要比理论分析难很多。

做任何事都要先有计划。首先,我解决的第一个问题是方案问题,根据输入输出电压的差别,我决定先用一个升压电路将直流电压进行升压处理后才输入到逆变器,而逆变器主电路则采用我们学的最多的三相桥式电路。

然后,我对各种模块电路进行了理论复习,记下每个电路需要哪些器件,以及各自的作用,在纸上画出了大概的模型图,以便设计时参考。

感觉这次拓展训练最难的地方是选择元件和计算参数,每个元件都有它的额定工作条件或范围,适当选择和使用才可以发挥出该原件最大的效益和作用,否则可能是电路工作不可靠或损坏元件。在计算变压器的型号、尺寸、铁芯材料、变比匝数时,花了很大气力。因为之前从来没学过这么细,很多内容相对比较陌生,只能对着书上的例子,再仔细浏览设计手册,一步一步的计算与选择。

此次三相pwm逆变器的设计中也存在一定的问题,发现了自己的很多不足之处,自己知识的很多漏洞,看到了自己的实践经验还是比较缺乏,理论联系实际的能力还需要提高。专业设计是培养学生综合应用所学知识、发现、提出、分析和解决实际问题锻炼实际能力的主要环节,是对学生实际工作能力的具体训练和考察过程,随着科学技术发展的日新日异,电子技术已经成为当今世界空前活跃的领域,在生活中可以说得是无处不在。因此作为大学生来说,掌握电子的开发技术是十分重要的。

回顾此次拓展训练,至今我仍感慨颇多,在过去的一个星期里,可以说是苦多于甜,但是可以学到很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上没有学到过的知识。在设计的过程中遇到问题,可以说是困难重重,难免会遇到各种各样的问题,比如有时候被一些小的、细的问题挡住看前进的步伐,让我总是为解决它而花费很长的时间,最后还要查阅其他的书籍才能找到解决的办法。

当然最关键的还是要靠自己亲自去领会思考如何解决问题,掌握独自面对问题分析问题的方法。不少人抱怨在大学学不到东西,我并不这样认为。我想无论是在学习还是在生

武汉理工大学《能力拓展训练》说明书

活上只有自己真正用心去学习和参与才可能有收获,这也算是本次三相pwm逆变器拓展训练给我知识之外的一点小小的感悟。总之本次拓展训练的收获确实很多,很珍惜这样的机会,因为可以锻炼自己提升自己。

这次的拓展训练终于顺利完成了,在设计中遇到了很多问题,最后在努力下终于迎刃而解。同时发现了还有很多工具及理论以后待学习。此次拓展训练培养了我严谨科学的思维,通过它架起理论与实际的桥梁。

武汉理工大学《能力拓展训练》说明书

参考文献

[1] 杨荫福.电力电子装置及系统.北京:清华大学出版社,2006 [2] 刘力.PWM技术在电源中的应用.武汉:武汉大学出版社,2000 [3] 王兆安.电力电子技术.北京:机械工业出版社,2009 [4] 杨泽民.电力电子技术原理与应用.沈阳:东北工学院出版社,1999 [5] Robert H.Bishop.Modern Contorl Systems Analysis and Design-Using MATLAB and Simulation[M].影印版.北京:清华大学出版社,2008

ups逆变器控制系统设计开题报告
TOP