首页 > 精品范文库 > 12号文库
雷达原理与对抗技术 复习资料
编辑:逝水流年 识别码:21-315146 12号文库 发布时间: 2023-04-05 04:32:21 来源:网络

第一篇:雷达原理与对抗技术 复习资料

一、1震荡电压和定时器的触发脉冲均由同一基准信、如果雷达系统的发射信号,本振电压,相参号提供,那么所有这些信号之间均保持相位相参性。通常把这种系统称为全相参系统。2其他相关信息。、雷达是利用电磁波来测定并发现其他位置及3作用距离取决于、雷达的距离分辨力取决于 信噪比,雷达平均发射功率与脉冲宽度,雷达的占空比有关。4改变雷达波相位来改变波束方向的雷达、相控阵雷达又称作相位阵列雷达,是,一种以 故有称为电子扫描雷达。5频率为、某雷达的发射频率为2000HZ,发射脉冲宽度为10GHZ,发射脉冲重复2us,发射峰值功率为650KW,则该雷达的PRT=0.5ms,发射机平均功率=2600W。6用。、描述收发开关在发射状态和接收状态下的作 发射状态时发射功率很大,很容易将接收机烧毁。在发射状态时,收发开关削弱功率保护接收机。在接收状态时,收发开关恢复正常状态,使回波信号及时进入接收机。7根据雷达发射信号的不同,、目标距离测量就是要精确测定收发延迟时间。测定延迟时间通常采用脉冲法,频率法,相位法。8提高雷达距离的分辨力。采用、脉冲压缩雷达兼顾了扩大雷达的作用距离跟调制宽脉冲发射,以提高发射机平均功率,保证足够的最大作用距离,用脉冲压缩法获得窄脉冲,提高距离分辨力。9有应用,有哪两种实现方法。、波束形成方法在雷达、声呐及通信系统中均数字波速形成(DBF)、自适应数字波速形成(ADBF)1011、合成孔径雷达是对抗、声学、电子对抗从频域上可分为高分辨率成像三段。射频对抗,光电的雷达。12源干扰、复合干扰、干扰按照能量的来源分类为。P12 有源干扰、无13盖性干扰、、按照干扰信号的作用原理分类。欺骗性干扰。P12 干扰分为遮14资源主要分为、根据干扰信号的产生原理,引导式、转发式、合成式雷达干扰的基本。P14 15(、雷达对抗的主要技术特点是什么。1)宽频带、大视场、复杂电磁信号环境;P4(2)瞬时信号检测、测量和快速、非匹配信号处理。16索频率窗、毗邻频率窗、一类测频技术是直接在频域进行的。P19 包括搜17调变换到相位、时间、空间等其他物理域,再、变换法测频技术如何实现。将信号频率单通过对变换域信号的测量得到原信号频率。P19 18和、比想法测频技术的信号处理有19AD极性量化法差接收机中,常以、镜像信道干扰会引起频率测量错误,量化法。P25 镜像抑制比d在超外ms来衡量系统对镜像信道干扰的抑制能力。P22 13关器并用,其中采用、实际使用的比想法测频技术往往采用多路相最短迟延时间T的相关器保证无模糊测频范围,采用最长迟延时间nk-1T的相关器保证频率测量的精度。P26 14为哪两种定位方式。、定位技术分类按照参与定位的接收站数量分15多站定位与单站定位为、测向交汇定位法、测向多站定位按照定位采用的测量信息,/时差定位法、测时差主要分 定位法。P79、P52 10以特定的地理环境或接收站的运动为辅助定位、单站定位只用一个接收站的定位。一般需要条件。主要有飞越目标定位法、方位/仰角定位法、测向/方向变化率定位法、测向/相位差变化率定位法。P75、P52 16基带滤波测频、模拟信道化测频技术分为。P29 直接滤波测频和17线的波束宽度、搜索法测向的角度分辨力主要取决于,而波束宽度又主要取决于测向天天线口径d。18对幅度大小、振幅法测向是依据确定信号的到达方向。测向天线接收信号的相主要的侧向方法有最大信号法,比较信号法,等信号法。P52 19函数的时间变化率,、窄带信号,其频率的物理定义为其相位调制相位调制函数的二阶导数称为调制斜率。P17-18 20为、频率非搜索或瞬时宽开的测频如果频率测量范围等于瞬时带宽,系统。则系统称P18 21因此它适合于、时差法测向,由于时间差与信号频率无关,宽带测向。P52 22就能够达到侦查测向灵敏度,、如果在雷达天线任意旁瓣指向侦察机方向时则称为雷达侦察的旁瓣侦收。P56 23如信号的振幅、频率(或相位)、信号的稳定度的定义。指信号的各项参数,、脉冲宽度及脉冲重复频率等是否随时间作不应有的变化。24波器组、PD或雷达主要滤波方法是采用窄带跟踪滤波器,把所关心的运动目邻接的窄带滤标过滤出来。

二、1察的技术特点。、简述现代雷达对抗信号环境的特点和雷达侦P9,P11(1)辐射源数量多,分布密度大,脉冲重频高,信号交叠严重。(2)信号调制复杂,参数变化范围大,且多变、快变。(3)低截获概率雷达信号以及诱饵雷达和虚假雷达信号日益增多。技术特点:

1、作用距离远,安全隐蔽性好,获取信息多而准

2、简述tTOA测量。P92 3技术特点。、简述雷达对抗的基本条件、基本方法及主要P3 基本条件:雷达发射电磁波;侦察机接收到足够强的雷达信号;雷达信号的调制方式和参数位于侦察机处理能力之内;侦察机能够适应其当前所在的电磁信号环境。基本方法:破坏雷达探测目标的电磁波传播空间特性;产生干扰信号进入雷达接收机,破坏其检测目标和测量目标信息;减小目标的雷达截面积。技术特点:宽频带、大视场、复杂电磁信号环 境;瞬时信号检测、测量和快速、非匹配信号处理。4优点:、简述脉冲压缩雷达的优缺点。

1、通过匹配压缩处理获得高的距离分辨率。

2、脉冲宽度与有效频谱宽度这两个参数可以独立选取,增加了雷达波形设计的灵活性。

3、宽带信号有利于提高系统的抗干扰能力。缺点:

1、存在距离和速度耦合,影响测量。

2、存在距离旁瓣,通过加权处理抑制旁瓣。

3、收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。5信号分选和识别;引导干扰方向;引导武器系、简述测向定位的作用。P51 统攻击;提供告警信息;提供辐射源,方向和位置情报。

三、12、RCS3、UWB;雷达反射截面积;超宽带 4、5、DBF;数字波束形成

6、PDWELINT;脉冲描述字;电子情报侦查

7、STFT;短时傅里叶变换、ESM;电子支援侦查

四、120MW、某雷达用的发射机,要求输出脉冲功率为体微波源),现已知主振放大式发射机的主振器(固的输入功率为20mW,则此微波放大链的功率增益为多少才能满足要求? G=10lg(20*10^6)/(20*10^(-3))=90db 2[2GHz,4GHz]、一比向法测频接路相关器,n=4,最短延迟线时间为收机,测,一输入信号频率为0.5ns频2.761GHz,采用范围为,3下表给出各相关器无模糊的相位估计值。分别采用最长延时线相关器输出和所有相关器输出求得到的频率估计值。P27 k fˆRFˆkk1fn1ˆi0fˆRFi1 2πnT2πTnk1f03示样脉冲、压缩测频接收机,t测频范围为f1~f2 =1~2GHz,号经过接收机的延时时间是多少。SA=Tc=1us,那么频率为1.45GHzP50 的信τ =(f-f1)×TC/△fC =0.45us △fc=f2-f1 12GHz]、某超外差搜索接收机测频范围为中放带宽,中频频率2MHz,试求:30MHz,频率搜索周期[1GHz,1ms,(1)本真的频率变换范围和调谐函数f(2)若有频率为1125MHz的连续波信号到达,L(t)求视频输出波形。(1)测频范围:[1000+30MHz,2000+30MHz] 2)在搜索过程中,输出信号有无时间:中频 fL(t)=1000+30+(2000-1000)t/10-3=1030+106(t 频率两边 ffL(t1)-1125=29(t2)-1125=31 t1=0.124 Lt2=0.126(还有画图)

第二篇:雷达对抗

随着科学技术的发展,军队的电子化程度也相应迅速提高,专门用于电子对抗的飞机、舰艇、卫星,以及用来摧毁雷达等装置的反辐射导弹相继出现,使电子对抗的地位和作用大大提高,电子对抗逐渐成为一种直接用于攻防的作战手段。

从近些年的几次战争中可以看出,传统的陆、海、空战已发展形成了“多维立体战”,电子对抗(ECM—Electronic countermeasures)以 “软杀伤”为主要特点贯穿于战争的全过程。在科索沃战争中,北约在空袭中使用了各类性能先进的预警飞机和专用电子战飞机,分别对南军的预警、火控雷达和指挥控制系统实施“致盲”、“致聋”。通过软硬兼施的电子攻击,北约始终掌握着作战地区的信息主动权,使南联盟的军队处于被动挨打的境地。在阿富汗战争中,美军实现了信息系统与作战系统的高度一体化。为实现在信息获取系统和空中打击系统的信息实时传输,美军专门在沙特的苏丹王子空军基地建立了一个新型联合空战中心。联合空战中心配备了最新型的C4 I S R系统,综合分析、处理由美军各种战场侦察系统所获取的战场信息数据,并将处理过的战场信息数据实时传输到轰炸机、战斗机等各种作战平台。

此次伊拉克战争,虽然出于战术上的种种考虑,美军没有以强大的电子战拉开帷幕,但是,随着战争的逐渐展开,美军还是出动了EA-6B“徘徊者”电子战飞机等对伊拉克的防空雷达进行干扰。相信美军为保证其军事打击顺利进行,还会陆续采用更多的电子对抗措施。

为了更好地了解、认识电子战,记者采访了我国信息与电子工程专家、中国工程院院士张履谦。张履谦院士指出,电子对抗技术主要是指以专用电子设备、仪器和电子打击武器系统破坏或降低敌方电子设备的工作效能,同时保护己方电子设备效能的正常发挥。电子对抗的基本手段是电子侦察与反侦察,电子干扰与反干扰,反辐射摧毁与反摧毁。电子对抗的主要内容包括:电子侦察、电子进攻和电子防御。电子对抗的实质就是敌我双方为争夺电磁频谱的控制权(即制电磁权)所展开的斗争。制电磁权,是指在一定的时空范围内对电磁频谱的控制权。掌握了制电磁权就意味着己方能自由使用电磁频谱,不受对方的电磁威胁;同时剥夺了对方自由使用电磁频谱的权利。电子对抗的范围,在频域上包括声学对抗、射频对抗和光学对抗(光电对抗)三个领域。从空间上可分地面、海上、空中、空间和水下。就使用的装备而言,可分为无线电通信对抗、雷达对抗、光电对抗和C3I系统电子对抗等技术。

在谈到常规战争中电子战的问题时,张履谦院士说,现代战争肯定要采用电子战,因为战前要做好战争准备,了解对方军事力量的部署情况以及通讯、联络情况,必须进行侦察。同时,战争开始时,准确的干扰对方的通信联络,干扰对方的雷达。使对方的指挥、控制、通信及防空等电子系统置于瘫痪状态。在此次伊拉克战争中我们可以了解到,有时,美军来轰炸,伊拉克方面并没有响起空袭警报,那很可能是伊方在通信中遇到了电子干扰。

为了避免美国的空中和空间的光电侦查,以及干扰激光制导的炸弹,伊拉克挖了很多战壕,往战壕里倒进石油后点燃,整个城市烟雾弥漫,使美方空中和空间照相侦察看不清地面的真实情况,导致对打击效果没法评估,无法确定哪里炸到了哪里没有炸到。同时还能使激光制导误导,炸不中真正的目标。反侦察与干扰的方法、手段有很多种,但是目的是一样的,就是使对方找不到目标,真假目标难分。这次战争中,伊拉克还很可能使用了干扰GPS技术,用GPS制导,能够使轰炸准确定位在几米范围内,命中精度大大提高。应用GPS干扰机,可以使对方的定位失灵,从而达到干扰的目的。

现代战争的格局正不可否认的发生着巨大的变化,信息化战争的序曲已经奏响,但是只论信息化战争的话包含的范围实在是太广大了,如果不分开说的话根本就是无从说起的,因为信息化战争所包含的东西实在是太多了,对于科技的要求也是史无前例的,在信息化战争的序列里面,电子信息技术的应用是最为广泛的,所以我今天浅谈一下电子信息对抗对战场的影响.电子技术在战场上主要是分为电子对抗技术,电子进攻,电子侦查技术等等.他标志着军队由机械化向信息化的转型,但是军队如果实现完全信息化,仅凭现在的技术与实力是远远不够的,就算是世界上信息化最早的美国军队,也只是计划在2015年实现部队的全面信息化,回顾20世纪末期的几次著名战役,无一例外的说明了部队信息化的必要性以及紧迫性,但是这些战争无法被称为是信息化战争的,1991年的海湾战争,以及之后的波黑战争,1999年的科索沃战争,2003年的海湾战争,信息化的全面覆盖并没有达到,对于这些战争而言,他们只不过算是孕育部队机械化向信息化转型的母体而已,现在的纯信息化战争是不存在的.打从摩尔斯发明了摩尔斯码的那一天起,电子对抗的技术就被推向了军事研究的第一领域,1904年在中国土地上面进行的日俄战争,就是电子对抗技术的第一次实战运用,而到了第二次世界大战的时候,电子对抗技术的应用更是到了一个新的顶点,当然,这个时段的对抗还只是局限于对于对方电台的侦听和密码的破译,与现在的操作还是有着本质上面的区别.所以,那些只不过是电子对抗领域的历史,而我们现在的东西可就远不止这些,对于电磁波段的探测进入到了一个全新的领域,根据探查到的电磁波段可以完整的分析出对手的发出此波段的各种相应参数以及位置情况从而达到精确打击的使命.现代的科学技术有六大技术领域群,其中尤以信息领域技术群以及新材料领域技术群在军事上面应用的最为广泛,我们的教官(也就是教我们的军官老师)说,对于今后影响最大的应该是新材料的技术领域,但是不可否认的是信息领域还是目前新军事变革的主导,说到电子对抗技术里面的电子干扰应用,在实战当中是使用的最多的,现在的实战部队如果没有一支良好的信息大队作为战略保障部队那无疑就是找死,我们在军事题材的电视剧里面经常可以听到这样的台词:“对敌方采取不间断的高频电子干扰XXX分钟!”这个敌方一般是红方或蓝方,在演习预案里面,红方一般代表进攻方,蓝方代表防守方.至于这个XXX分钟,是由部队的需要实施的,我记得我们有一次野外拉练足足对假想敌进行了长达两天整的电子干扰,但是你别以为这两天整就是让干扰机傻傻的开机那么简单,我们坐一边该干嘛干嘛!~我们得不断的改变波段以至于不被对方所侦听到从而规避干扰,很是累人的一件事情啊,当然我知道如果到了部队上面的实战演习就更没这么轻松了,干扰源几乎是不可以稳定存在的,需要不断的进行转移,出动干扰机无疑是最实用的方法,但是如果干扰机没有条件出动的话,那就只能用装甲指挥车和上面带着破天线的干扰吉普了,那样对于电子干扰人员的体力消耗,说实话,那是相当的大啊,我有亲身体会.这是我军的电子对抗分队在演练

对于电子干扰或者说是电子对抗的话,也不仅仅是对于对方的指挥系统进行干扰性杀伤那么简单,电子干扰只不过是电子对抗的一个简单的分支领域而以,还有不少的领域也是叫做电子对抗的,像是现代战机的自卫系统,像是金属箔条,红外干扰诱饵弹,角度欺骗器等等,这种应用还有很多,而这些东西可以人工操作,但是自动操作的可能性更大,我试过模拟飞行的系统,在被火控雷达锁定以后,敌机导弹发射警报响起的时候,红外诱饵弹和金属箔条干扰系统几乎就是同时自动开机的,因为飞行员还必须操纵战机进行规避,没有充分的时间对投放箔条弹和诱饵弹作出反应,我尝试的那套模拟系统是老毛子米格29A支点战斗机的,其实那套系统有点儿玩儿赖,我的火控雷达锁定对手的战机成功发射R-77或者R-73导弹一下就能把对手揍下来,一发就够.对手打我得两发,也不知道是米格29结实啊还是怎么的,要不然我难度系数没调也是有可能的,呵呵~但是挨上一发导弹不是没有影响的,我不怕打坏我的减速板什么的,航炮打不出来我也还不是太担心,就是怕打坏我的火控雷达,这样对手的情况我就全不知道,对于战场信息如果掌握不了那我就只有等死,就是调头就跑也是没用,对手不是傻子,现代空战视距内格斗会越来越少,所以他们肯定会在你脱离战场的时候尽可能的把你敲掉,当然这是在保全自己的情况下.从此看出,一旦我方的电子设备遭到破坏的话对我方的影响是多么的大.(有点儿跑了哈)当然“上有政策,下有对策”(这话用在这儿怎么觉着这么不得劲儿呢),战机对于导弹的跟踪干扰还有一招绝的,这是我从电影上面和美国海航学的,虽然电视上面看起来很假,但是我觉得美军的飞行员甚至我军的飞行员已经完全有能力作出这种规避,我不是指单纯的普加乔夫眼镜蛇规避这么简单的东西,这招算是非主流,电视上面演的是在红外导弹跟踪的时候扔掉副油箱,用自己的航炮打爆,从而产生的巨大热量掩盖自己喷气口的红外热量进而起到影响导弹跟踪的作用,够邪乎吧.美国C-141运输机投放红外诱饵弹

在对付电子侦察上面也并不是没有漏洞抓,这里面尤以假目标的应用为最甚,在1982年以色列袭击叙利亚的战斗为例,一天叙利亚的地空雷达侦测到以军大批的战机来袭,指挥官下令所有的萨姆导弹预备,当火控雷达锁定并发射直至击落叙利亚防空兵才大呼上当,他们没看见一个人跳伞,把揍下来的飞机拿起来看,竟然是遥控的无人机,上面加了雷达波增幅器而已才显得和真飞机一样,但是是用塑胶做的,省钱嘛,总比铁皮便宜吧.但是这个时候叙利亚部队已经输了,早等在一边的以空军E-2C鹰眼预警机恰到好处的捕获了叙利亚的雷达信号,传到了早整装待发的F-15C和F-16突击战斗机群,一夜之间叙利亚的萨姆2,萨姆3以及萨姆6共计19个地空导弹阵地全部被摧毁,第二天又来了一波进攻,在打掉最后的7个阵地以后,叙利亚人苦心经营的防空体系毁于一旦.预警机几乎是现代电子战不可或缺的

还有一个假目标的战例出现在2003年的伊拉克战争当中,伊拉克人的角反射器的充分运用使得美军侦察卫星抓了瞎,平常看似小巧的角反射器会在卫星的侦测下显示出来一个好几十吨的东西,而且伊拉克部队把他们的角反射器排成了战斗队形,美军指挥官一看就明白了,这么大的一群东西还是战斗队形,不是坦克还能是锅炉嘛?给我炸!结果白白浪费了不少弹药,事后美军检查战果的时候比战斗报告少了400多辆坦克,前指的将军当时就火了,这帮坦克你们给我炸哪儿去了!美国国防部长拉姆斯菲尔德的下台,有一部分原因也是因为这个,所以现代战场的电子技术也并不是无懈可击.角反射器的应用是对抗卫星侦察的一大绝招

现在的局部战争已经没有了或者很少有两军对冲打阵地战的场面了,特种兵的运用是现在战争的发阵趋势,我不说大家都知道,特种兵的全名是特种侦察兵,担负的就是战场的侦查任务以及对重要目标的突然袭击与渗透,现在关于特种兵题材的东西实在是太多了,我不多说因为比我明白的人大有人在,很多时候专业不对口的话就是我们这些穿军装的也未见得比你们军迷懂得多,这是实话,又跑了,回来继续说特战,对于特战小队而言,数字化的单兵装备必不可少,对于一个小队而言,以6人小队为例(因为6人小队几乎是最小编制了,2人狙击手小队除外),需要一名特战指挥官,一名狙击手,一名医务官,一名经过特种训练的尖兵(尽管小队人人都可以做尖兵,但是这样的经过特殊训练的人还是必要的),一名特种兵战士以及一个通讯员,这个通讯员的任务是十分繁重的,需要向前指翔实的汇报小队所侦查到的情况,通过特种兵的汇报部队才可以调动炮兵或者二炮进行精确打击.对于现在讲求信息化的战争时代,先于对手发现目标从而实施精确打击使对手丧失二次打击能力是取胜的关键.这就要求这名作为特战通讯员的士兵或军官可以做到高干扰情况下的流畅战场通信,要求是十分高的,对于电子技术的掌握也是十分的苛刻.从而看出电子技术在现代战场上面的应用是不可替代的.像是美国的游骑兵,三角洲,地狱火,海豹特种部队里面,通讯兵的能力都是十分高的,而且他们特种部队的选拔有一个好处是我们应该借鉴的,就是真正意义上的全军选拔,刷下来的并不是回到老部队或者干脆回家修理地球去,而是派遣到其他常规作战单位的侦查部队,从而发挥他们最大的效能,我们真的应该学一学这个,要不然会浪费很多人才,因为就算是从特战选训队刷下来的人,在老部队里面也应该是一等一的好!我军实现全军的信息化从而有资本和对手打全军电子战还不现实,一味的学习西方的先进技术也是不行的,就算美国也是,美国前国防部长承认他们的信息化也是有目的性的专项攻关,而不是滥投资.我们要是滥投资的话,少有的军费也会付诸东流.但是我们不能忽略电子战对未来战争的巨大影响,我军集中优势兵力打一场轰轰烈烈的电子对抗战的实力是没有问题的,电子网络对战的时代,其实已经渐渐来临.电子对抗的范畴还有很多,诸如电子防御或者是导弹破防我就先不说了,总之,电子对抗部队在今后战场上的应用会越来越广范.谢谢大家!~

第三篇:计算机网络原理与技术 复习资料

1.2.3.4.5.6.7.8.9.10.11.12.13.14.计算机网络:由单一技术连接起来的一群计算机 传输技术:广播方式,点到点方式

计算机网络按传输技术分类:广播网,点到电网 计算机网络按距离分类:局域网,城域网,广域网 无线网络大部分是广播网络

实体:系统上每一层都有若干活动元素,称为实体

对等实体:不同机器上位于同一层中实现同一种服务的实体称为对等实体

服务接口:相邻实体间的通信是通过相邻层间的接口进行的,这个接口称为服务接口 这些形式规范语句称为服务原语

网络的层次划分机械一同成为网络体系结构

多路复用:多个实体共用一个服务的方式成为多路复用 这个标识符成为解多路复用关键字

OSI参考模型:物理层,数据链路层,网络层,传输层,会话层,表示层,应用层

物理层:物理层的作用是在物理介质上传输原始的数据比特流(物理层协议主要用来控制物理介质,以及处理与物理介质的机械,电器,时序接口等)

15.数据链路层:数据链路层主要作用就是在物理层提供的比特服务基础上,为网络层在相邻节点间提供可靠的通信链路。

16.网络层:网络层的主要作用是将数据分成一定长度得分组,将分组从元借点传送到目的借点

17.传输层:传输层是第一个端到端的层次,他只运行在端系统上,为上层用户提供不依赖于具体网络的高效的端到端数据传输

18.会话层:会话层提供两个互相通信的应用进程之间的会话机制 19.表示层:表示层为上层用户提供数据或信息语法的表示变换 20.应用层:应用层直接为用户提供各种应用服务

21.TCP/IP参考模型是用来专门描述TCP/IP协议族的(应用层,传输层,网际层,网络接口层)22.网络有两类硬件组成:节点和链路

23.将端系统连接到边缘路由器的物理链路成为接入网 24.数据通信:信号速率(波特率),数据速率(比特率),信道容量,误码率 25.波特率与比特率之间的关系:S=B*log2N 26.最大波特率:Bmax=2H 27.波特率就是:B=1/T 28.误码率:假设传输总码元数为N,传输出错数为Ne,则误码率为Pe=Ne/N 29.物理介质:(引导型介质,非引导型介质)双绞线,同轴电缆,光纤,无线 30.双绞线:最便宜使用最为普遍的引导型传输介质 31.同轴电缆:(基带,宽带)屏蔽效果比双绞线好,同轴电缆可以在更长的距离上获得更高的速率,安装难度大,总体成本高,故障诊断难

32.光纤:频带宽,传输速率高,长途传输损耗小,误码率低,抗电子干扰能力好,保密性好。33.无线链路:微波,红外线,激光(视距传输)34.编码:NRZ(不归零编码),NRZI(不归零反转),曼切斯特编码,查分曼切斯特编码 35.调制:编码将欲发送的二进制数据表示成离散的数字信号 36.调制方式:幅移键控ASK,频移键控FSK,相移键控PSK 37.多路复用:频分多路复用,时分多路复用 38.电路交换:建立连接,传输数据,拆除连接 39.分组交换: 40.报分交换:

电路交换与分组交换,比较,特点:(1)电路交换:由于电路交换在通信之前要在通信双方之间建立一条被双方独占的物理通路(由通信双方之间的交换设备和链路逐段连接而成),因而有以下优缺点。优点:

①由于通信线路为通信双方用户专用,数据直达,所以传输数据的时延非常小。②通信双方之间的物理通路一旦建立,双方可以随时通信,实时性强。③双方通信时按发送顺序传送数据,不存在失序问题。

④电路交换既适用于传输模拟信号,也适用于传输数字信号。⑤电路交换的交换的交换设备(交换机等)及控制均较简单。缺点:

①电路交换的平均连接建立时间对计算机通信来说嫌长。②电路交换连接建立后,物理通路被通信双方独占,即使通信线路空闲,也不能供其他用户使用,因而信道利用低。③电路交换时,数据直达,不同类型、不同规格、不同速率的终端很难相互进行通信,也难以在通信过程中进行差错控制。

(2)分组交换:分组交换仍采用存储转发传输方式,但将一个长报文先分割为若干个较短的分组,然后把这些分组(携带源、目的地址和编号信息)逐个地发送出去,因此分组交换除了具有报文的优点外,与报文交换相比有以下优缺点: 优点:

①加速了数据在网络中的传输。因为分组是逐个传输,可以使后一个分组的存储操作与前一个分组的转发操作并行,这种流水线式传输方式减少了报文的传输时间。此外,传输一个分组所需的缓冲区比传输一份报文所需的缓冲区小得多,这样因缓冲区不足而等待发送的机率及等待的时间也必然少得多。

②简化了存储管理。因为分组的长度固定,相应的缓冲区的大小也固定,在交换结点中存储器的管理通常被简化为对缓冲区的管理,相对比较容易。

③减少了出错机率和重发数据量。因为分组较短,其出错机率必然减少,每次重发的数据量也就大大减少,这样不仅提高了可靠性,也减少了传输时延。

④由于分组短小,更适用于采用优先级策略,便于及时传送一些紧急数据,因此对于计算机之间的突发式的数据通信,分组交换显然更为合适些。缺点:

①尽管分组交换比报文交换的传输时延少,但仍存在存储转发时延,而且其结点交换机必须具有更强的处理能力。②分组交换与报文交换一样,每个分组都要加上源、目的地址和分组编号等信息,使传送的信息量大约增大5%~10%,一定程度上降低了通信效率,增加了处理的时间,使控制复杂,时延增加。

③当分组交换采用数据报服务时,可能出现失序、丢失或重复分组,分组到达目的结点时,要对分组按编号进行排序等工作,增加了麻烦。若采用虚电路服务,虽无失序问题,但有呼叫建立、数据传输和虚电路释放三个过程。总之,若要传送的数据量很大,且其传送时间远大于呼叫时间,则采用电路交换较为合适;当端到端的通路有很多段的链路组成时,采用分组交换传送数据较为合适。从提高整个网络的信道利用率上看,报文交换和分组交换优于电路交换,其中分组交换比报文交换的时延小,尤其适合于计算机之间的突发式的数据通信。41.拓扑结构:星型拓扑,总线拓扑,环型拓扑,树型拓扑,网状拓扑

42.星型拓扑:易于进行故障的诊断和隔离,但对中心节点要求很大,耗费大量电缆,是局域网中最常用的拓扑结构

43.总线型拓扑:结构简单,易于安装,信道利用率低,连接处容易故障,检测故障与隔离比较困难,现已经逐渐退出局域网组网

44.环型拓扑:抗干扰能力强,一个节点的故障会引起全网故障,故障检测比较困难 45.树型拓扑:对跟依赖性很大,对跟安全性要求很高,检测故障与隔离较容易

46.网状拓扑:传输数据时可以选择较为空闲的网络或绕开故障点,单个节点对网络或线路的影响比较小,网络可靠性高。协议复杂,成本较高,广域网用,局域网不用。47.数据链路层的主要任务:保证数据在物理链路上的可靠传输

48.数据链路层上的数据单元必须是有结构的,通常成为帧,如何行出地标记边界以保证接收端正确接受到完整的帧,成为组帧

49.数据链路层上有两种类型的信道:广播信道和点到点信道 50.数据链路层协议:HDLC,PPP 51.组帧:使用字符填充的起止标记法,使用比特填充的起止标记法,违法编码法 52.差错检测:二维奇偶校验,循环冗余检验

53.传输错误分类:单个错(随机的信道热噪声引起的,以一次只影响一个比特,且错误之间没有关联),突发错(通常由瞬间脉冲引起,连续影响多位比特)54.可靠交付:停等算法,滑动窗口 55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.滑动窗口:发送窗口,接受窗口,捎带确认,GoBackN,选择重传,有限序号与发送窗口大小 HDLC协议: PPP协议

信道分配策略

随机访问:纯ALOHA(效率18.4%),时分ALOHA(效率36.8%),CDMA/CD(效率接近1)令牌传递网络:

以太网:传统以太网,快速以太网,千兆位以太网和交换式以太网 传统以太网:总线结构,CSMA/CD 线卡的两种构造方法:线卡的所有端口连接在一起,形成一个冲突域;线卡上每个端口有一个输入缓存,每个端口是一个独立的冲突域

无线局域网:隐藏节点,暴露节点 局域网互联:透明桥,远程桥 连接局域网中最常见的设备是网桥

透明桥:不需要做任何硬件和软件上的设置,对用户完全透明,不会中断网络运行 远程桥: 虚拟局域网:

网络层的主要任务是将分组从源节点传送到目的节点。网络层的主要功能:转发,路由,控制拥塞,异构网络互联 数据报方式 虚电路方式: 路由:

距离适量算法:

链路状态路由算法:找出所有可达的邻居借点及他们的网络地址,确定到所有状态节点的代价,构造链路状态分组,利用收到的链路状态信息计算到到个目的节点的最短路径 层次路由算法

广播路由:源节点向每个节点单独发送一个分组拷贝用N次传播实现广播,扩散法,多目的路由算法,源节点为根的生成树,不需要道源节点生成树 拥塞控制:开环策略,闭环策略 虚电路网络中的拥塞控制:

流量整形和流量控制:漏统算法,令牌桶算法

数据包网络中的拥塞控制:随即及早检测,警告比特,抑制分组,逐条抑制分组,排队规则 TCP:可靠字节流服务,最大特点是:可靠,复杂,端到端,字节流

UDP:不可靠连接,最大特点是简单

第四篇:雷达原理

无源相控阵雷达介绍

普通雷达的波束扫描是靠雷达天线的转动而实现的,又称为机械扫描雷达。而相控阵雷达是用电的方式控制雷达波束的指向变化进行扫描的,这种方式被称为电扫描。相控阵雷达虽然不能像其他雷达那样依靠旋转天线来使雷达波束转动,但它自有自己的“绝招”,那就是使用“移相器”来实现雷达波束转动。相控阵雷达天线是由大量的辐射器(小天线)组成的阵列(正方形、三角形等),辐射器少则几百,多则数千,甚至上万,每个辐射器的后面都接有一个可控移相器,每个移相器都由电子计算机控制。当相控阵雷达搜索远距离目标时,虽然看不到天线转动,但上万个辐射器通过电子计算机控制集中向一个方向发射、偏转,即使是上万千米外的洲际导弹和几万千米远的卫星,也逃不过它的“眼睛”。如果是对付较近的目标,这些辐射器又可以分工负责,产生多个波束,有的搜索、有的跟踪、有的引导。正是由于这种雷达摒弃了一般雷达天线的工作原理,人们给它起了个与众不同的名字———相控阵雷达,表示“相位可以控制的天线阵”的含义。

相控阵雷达又分为有源(主动)和无源(被动)两类。其实,有源和无源相控阵雷达的天线阵相同,二者的主要区别在于发射/接收元素的多少。无源相控阵雷达仅有一个中央发射机和一个接收机,发射机产生的高频能量经计算机自动分配给天线阵的各个辐射器,目标反射信号经接收机统一放大(这一点与普通雷达区别不大)。有源相控阵雷达的每个辐射器都配装有一个发射/接收组件,每一个组件都能自己产生、接收电磁波,因此在频宽、信号处理和冗度设计上都比无源相控阵雷达具有较大的优势。正因为如此,也使得有源相控阵雷达的造价昂贵,工程化难度加大。但有源相控阵雷达在功能上有独特优点,大有取代无源相控阵雷达的趋势。

有源相控阵雷达最大的难点在于发射/接收组件的制造上,相对来说,无源相控阵雷达的技术难度要小得多。无源相控阵雷达在功率、效率、波束控制及可靠性等方面不如有源相控阵雷达,但是在功能上却明显优于普通机械扫描雷达,不失为一种较好的折中方案。因此在研制出实用的有源相控阵雷达之前,完全可以采用无源相控阵雷达作为过渡产品。而且,即使有源相控阵雷达研制成功以后,无源相控阵雷达作为相控阵雷达家族的一种低端产品,仍具有很大的实用价值。无源雷达的特性及沿革

无源雷达本身并不发射能量,而是被动地接收目标反射的非协同式辐射源的电磁信号,对目标进行跟踪和定位。所谓非协同式外部辐射源,是指辐射源和雷达“不搭界”,没有直接的协同作战关系。这样就使得探测设备和反辐射导弹不能利用电磁信号对无源雷达进行捕捉、跟踪和攻击。

无源雷达系统简单,尺寸小,可以安装在机动平台上、易于部署,订购与维护成本低。无源雷达不发射照射目标的信号,因此不易被对方感知,一般不存在被干扰的问题。它可以昼夜、全天候工作:可连续检测目标,一般为每秒一次,信号源是40—400兆赫的低频电磁波,有利于探测隐身目标和低空目标:不需频率分配,因此可部署在不能部署常规雷达的地区。

无源雷达自身不发射信号,既带来优点也带来缺点。由于依赖于第三方发射机,操作员对照射器无法主动控制,在被探测目标保持无线电静默、照射器又不工作的情况下,无源雷达就成了无源之水,不能发挥作用。此外,一些发射机的有效辐射功率较低,易受干扰和空射诱饵的影响而且要求发射机与目标、目标与接收机以及接收机与发射机之间信号不受阻挡,限制了无源雷达的使用。

其实无源雷达并不是新概念,它的历史几乎与雷达技术本身一样悠久。1935年,罗伯特•沃森•瓦特曾在单基地无源系统中利用英国广播公司发射的短波射频,照射10千米以外的“海福特”轰炸机。在第二次世界大战中也试验过预警无源雷达,如德国的“克莱思•海德堡”(Kleine Heidelberg)系统。但当时的系统缺乏足够的处理能力,不能计算出目标的精确坐标。

当前,有很多国家热衷于无源技术的应用研究。美国洛克希德•马丁公司是最先涉足该领域的公司之一,据称依靠电视和无线发射机,其无源系统的探测距离达到220千米以上。美国国防部国防高级研究计划局以及华盛顿大学、乔治亚技术大学等高校和雷声等公司,都开展了这一领域的研究。在欧洲,法国也进行了相应的技术研究工作、意大利演示了样机系统、英国正在研究无源相干雷达和“蜂窝’雷达(Celldar),俄罗斯和捷克也在进行类似研究。无源雷达的分类

无源雷达系统可以依据探测对象或配置方式来分类。依据配置方式,无源雷达分为固定式(地基)和机动式(安装在潜艇、舰船、飞机、地面车辆等平台上)两大类。无源雷达的探测对象可以是雷达、通信电台或其他无线辐射源,也可以是仅仅反射无线电信号的目标。无源雷达可以依据探测对象的不同,分为利用被探测目标的自身辐射进行探测和跟踪,以及利用外照射源发射的电磁波进行探测和跟踪两大类。利用被探测目标的自身辐射,在被探测目标本身就是辐射源或携带了辐射源的情况下,无源雷达利用探测目标自身辐射的电磁波进行探测和跟踪。可能的辐射源包括雷达、通信电台、应答机、有源干扰机、导航仪等电子设备。捷克研制的“维拉”系列无源雷达就属于这类无源雷达。几款典型的无源雷达

美国的“沉默哨兵”霄达

美国洛克希德•马丁公司从1983年开始研究非协同式双基地无源雷达,于1998年研制出新型的“沉默哨兵”被动探测系统。这种无源雷达利用商业调频无线电台和电视台发射的50~80兆赫连续波信号,检测、跟踪、监视区内的运动目标。该系统由大动态范围数字接收机、相控阵接收天线、每秒千兆次浮点运算的高性能并行处理器及其软件组成。试验证明,它对雷达反射面积10米2目标的跟踪距离可达180千米,改进后可达220千米,能同时跟踪200个以上目标,分辨间隔为15米。

英国的“蜂窝”霄达

英国的“蜂窝”雷达系统可探测、跟踪和识别陆上、海上和空中的移动目标,包括在树丛中运动的车辆,它理论上能够探测野外环境中10~15千米的地面目标和100千米的大型飞机。当目标进入探测区域后,引起蜂窝电话辐射波的反射,这些反射被一部或多部蜂窝电话雷达探测到。检测数据通过通信网络实时传送到中央控制系统,数据在这里进行处理,从而确定目标的位置和速度。该雷达系统除了反射蜂窝电话基站的辐射信号外,还可利用声传感器探测到目标辐射出的噪声,有助于确定目标位置。

“维拉-E”雷达

“维拉”系列无源雷达由捷克研制。“维拉-E”是该系列的最新型号,可探测定位、识别和跟踪空中、地面和海上目标,对空探测的最大距离为450千米,并可识别目标、生成空中目标图像。

“维拉-E”系统由4部分组成:分析处理中心居中,3个信号接收站呈圆弧线状分布在周围,站与站之间距离在50千米以上。分析处理中心部署在方舱车内,有完整的计算机系统以及通信、指挥和控制系统。信号接收站用重型汽车运载,可灵活部署。接收天线支架竖起时高17米,占地面积9×12米,3个人在1小时内即可竖起天线、进入监视状态。天线外形为圆柱体结构,功耗低、可靠性极高,平均无故障间隔时间达2000小时,可抵御30米/秒的大风。无源雷达的未来发展

无源雷达系统(尤其是利用外部非协同辐射源的无源雷达),可能是今后10~20年的一个重要的发展方向。随着几大国际通信卫星计划的实施,未来将有1000多颗通信卫星在轨。其中将有许多能发射出足够高的射频能量,地面上大多数地点均会同时受到几个星载辐射源的照射,无源雷达系统可充分利用这些照射源进行目标探测和跟踪。总的来看,无源雷达将会在以下几个方面得到发展:

(1)扩展可用外辐射源的种类。外部的非协同辐射源从最早的电视信号、调频信号,到现在的移动通信信号、全球定位系统卫星信号,以及将来多种卫星信号和其他各种可能的辐射源,可供选择利用的外辐射源种类将日渐增多。

(2)雷达目标的傅立叶成像。伊利诺斯州大学的研究人员已证实,可用无源多基地雷达产生飞机目标的合成孔径图像。利用不同频率和不同位置的多部发射机,就可为某个目标建立一个傅立叶域的稠密数据集合,通过逆傅立叶变换就可以重构该目标的图像。

(3)不同平台无源雷达的组网。由于可供使用的外辐射源信号种类繁多,不同的辐射源信号占据了不同的频段,同一目标在不同频段会有不同的雷达特性。因此,为尽可能地提高对目标的探测能力,可以将不同平台的无源雷达进行组网。

(4)无源雷达与有源雷达相结合。当外界电磁辐射设备关机或无法利用时,无源雷达就无法对目标进行探测定位。因此,可考虑将无源雷达与有源雷达结合使用。如以双/多基地方式合理布设无源和有源雷达,当外界电磁辐射不存在或无法利用时,利用无源雷达接收己方有源雷达的直射信号与目标的反射信号,对目标进行探测。这样既提高了无源雷达的利用率,又增强了有源雷达的隐蔽性和生存能力。

第五篇:西安电子科技大学雷达对抗原理第一次大作业

雷达对抗原理大作业

学校:西安电子科技大学 专业:信息对抗 指导老师:魏青 学号/学生:

雷达侦查中的测频介绍与仿真

如今,战争的现代水平空前提高,电子战渗透到战争的各个方面。军事高技术的发展,使电子对抗的范围不断扩大,并逐步突破了原有的战役战斗范畴,扩展到整个战争领域。海湾战争、科索沃战争、阿富汗战争、伊拉克战争和最近的利比亚战争都表明,电子对抗在现代战争中有着极其重要的作用。电子对抗不仅在战时大量使用,在和平时期侦察卫星、侦察飞机、侦察船和地面侦察站不停地监视着对方的电磁辐射,以探明阵地布置、军事集结和调动;也不断收集对方电磁设备的性能参数,以期在战前进行模拟的对抗试验,确保在战争中有效地压制对方的电子设备。

侦察是对抗的基础。电子侦察的基本任务是截获、分析对方的辐射信号,测量信号的到达方向、频率、信号调制特性,最终目的是识别辐射源的属性,以便有针对性的对抗。自电子对抗出现后的60多年来,电子技术的飞跃发展引起了雷达、通信、导航等技术的飞速发展。使对电子侦察设备同时处理多信号的能力、快速反映能力及信号特征处理能力的要求是越来越高。但是现在雷达参数的搜索变化,给信号的分选、识别带来很大困难。所幸大多数辐射源是慢运动或固定的,因此刹用到达角这一参数将来自很大空域内的辐射源进行分离,然后对各个辐射源分析,成了现代电子侦察的一个特点。1.概述

图1典型雷达接收机原理框图

对雷达信号测频的重要性

载波频率是雷达的基本、重要特征,具有相对稳定性,使信号分选、识别、干扰的基本依据。

对雷达信号测频的主要技术指标

a.测频时间

定义:从信号到达至测频输出所需时间,是确定或随机的。要求:瞬时测频,即在雷达脉冲持续时间内完成载波频率测量。重要性:直接影响侦察系统的截获概率和截获时间。

频域截获概率:即频率搜索概率,单个脉冲的频率搜索概率定义为

(Δfr测频接收机瞬时带宽,f2-f1是测频范围,即侦察频率范围)截获时间:达到给定的截获概率所需的时间,如果采用瞬时测频接收机,则单个脉冲的截获时间为

(其中Tr是脉冲重复周期,tth是侦察系统的通过时间)b.测频范围、瞬时带宽、频率分辨力和测频精度 测频范围:测频系统最大可测的雷达信号的频率范围;

瞬时带宽:测频系统在任一瞬间可以测量的雷达信号的频率范围; 频率分辨力:测频系统所能分开的两个同时到达信号的最小频率差; 测频精度:把测频误差的均方根误差称为测频精度 ;

晶体视频接收机:测频范围等于瞬时带宽,频率截获概率=1,但频率分辨率很低,等于瞬时带宽。

窄带搜索接收机:瞬时带宽很窄,频率截获概率很低,但频率分辨率很高。

最大测频误差为:

瞬时带宽越宽,测频误差越大。c.可测信号形式

现代雷达信号可以分成脉冲和连续波。

脉冲信号:低工作比脉冲信号、高工作比的脉冲多普勒信号、重频抖动和参差信号、编码信号、宽脉冲线性调频信号(其中宽脉冲线性调频信号的测频比较困难)测频系统允许的最窄脉宽尽可能窄、是否可以检测脉内频率调制等是其重要的指标。d.同时信号分离能力

同时到达信号按照两个脉冲前沿的时差分成两类:

第1类同时到达信号:<10ns 第2类同时到达信号:10ns<<120ns 要求测频接收机能够对同时到达信号的频率分别进行精确的测定,而且不丢失其中的弱信号。e.灵敏度和动态范围

灵敏度是保证正确的发现和测量信号的前提。它域接收机体制和接收机的噪声电平有关。动态范围是指保证测频接收机精确测频条件下信号功率的变化范围,它包括:

工作动态范围:保证测频精度条件下的强信号与弱信号的功率之比,也称为噪声限制动态范围。

瞬时动态范围: 保证测频精度条件下的强信号与寄生信号的功率之比。

现代测频技术分类

2.典型的几种测频技术 频率搜索测频技术

1.搜索式超外差测频技术的基本原理

图2 搜索式超外差接收机方框图

超外差接收机的工作原理是利用中放的高增益和优良的频率选择性特性,对本阵与输入信号变频后的中频进行检测和频率测量。由于变频后的中频信号可以保留窄带输入信号中的各种调制信息,消除了变频前输入信号载频的巨大差异,便于进行后续的各种信号处理,特别是数字信号处理,因此超外差接收机被广泛地应用于各种电子战接收机中,频率搜索主要是对变频本阵的调谐和控制。

2.寄生信道及其消除方法

如果在混频器输入同时加入信号fR和本振信号fL, 由于混频器的非线性作用,许多频率组合可以产生中频信号,其一般关系为:

m,n 为整数,其中当m=1, n=-1时为主信道,m=-1,n=-1为镜像干扰,主信道和镜像信道示意如图:

主信道:超外差 寄生信道: 主要寄生信道:镜像信道:

m=1,n=-1除外

镜像抑制比:

提高镜像抑制的方法:微波预选-本振统调、宽带滤波-高中频、镜像抑制混频器、零中频

3.几种典型超外差接收机

a.窄带超外差接收机

采用微波预选器与本振通调,对每个分辨单元顺序搜索。射频带宽:20~60MHz。优点:频率分辨率高、灵敏度高、抗干扰能力强、输出信号密度低、对信号处理要求低。缺点:截获时间长,截获概率低,不能检测频率捷变、线性调频、编码信号。

b.宽带超外差接收机

瞬时带宽:100~200MHz。优点:能检测频率捷变、线性调频、编码信号;截获时间缩短。

c.宽带预选超外差接收机

采用宽带预选器和高中频,扩展瞬时带宽。

比相法测频技术

比相法测频是一种宽带、快速的测频技术,也称瞬时测频技术(IFM)。

1.基本工作原理

比相法通过延迟频率变换成相位差,由宽带微波相关器将相位差换成电压,再经信号处理,输出信号频率测量值。

图3 比相法测频的基本电路图

2.极性量化法

极性量化法是根据鉴相输出信号的正负极性进行信号频率测量和编码输出的。

图4实用的微波鉴相器原理图

3.主要技术参数

不模糊带宽:F倍频程或者更高

频率分辨率:1~2MHz 测频精度:

1~2MHz 频率截获概率:1 频率截获时间:脉冲重复周期 灵敏度:-40dBm~ -50dBm 动态范围:50~60dB 信道化测频技术

信道化测频技术是利用毗邻的滤波器组对输入信号进行频域滤波和检测的测频技术。主要采用模拟滤波器组和数字滤波器组实现,分别称为模拟信道化测频技术和数字信道化测频技术。这里主要探讨数字信道化测频技术。1.数字信道化测频技术概述

信道化是将接收机带宽划分为若干个子信道,然后对每个子信道输出分别进行检测、分析,以确定信号是否存在和测量参数的方法,与其等效的关键处理就是滤波器组。因此,数字信道化可以看成一个数字滤波器组,它也可以看成有K个输出口的网络,通过测量滤波器组的输出,可以确定输入脉冲信号的部分参数,比如载频、到达时间TOA、脉宽、脉冲幅度以等。数字信道化原理框图,如下图5。

图5数字信道化原理方框图

所谓的数字滤波器组是指具有一个共同输入x(n),若干个输出端的一组滤波器,如图5虚线框所示。图中h(k),k=O,1,⋯,K—l为第k个滤波器的冲击响应,这K个滤波器的功能是把宽带信号s(n)分成K个子频带滤波输出,覆盖整个频带,因此,它们就构成了一个信道化滤波器组。该滤波器组将整个无模糊采样频带(复信号为[0,fs],实信号为[-fs/2,fs/2])划分为若干个并行的信道输出,使得信号无论何时在何信道出现,均能加以截获,并进行解调分析。所以这种滤波器组信道化方法具备了全概率截获能力。由此可见,实现数字信道化的关键技术是如何设计符合要求的滤波器组。

2.数字信道化测频原理

设各滤波器3dB带宽均为B,各信道中心频率为fo,m=0,l,⋯,M-1各信道带宽ΔF=fo,m-fo,m-1。其中ΔF保持不变,改变带通滤波器的带宽可以得到不同的信道划分,主要有两种不同的滤波器配置方法:无重叠的频带分配(图6)和有重叠的频带分配(图7)。a.B=ΔF频带无折叠

其滤波器的配置方法如图所示:

图6无重叠的频带分配方案

b.信道之间相互重叠

其滤波器的配置方法如图所示:

图7叠l/3带宽频带分配方案

无论上述哪种信道分配方式,当多个信号同时落入一个信道中时,将无法把它们区分开,因此信道化的频率分辨率取决于各子信道带宽。设计时,子信道的带宽越窄,频率分辨率和测频精度就越高,相反子信道的带宽越宽,频率分辨率和测频精度就越低。

频率搜索接收机MATLAB仿真

f=input f1=10.^9;%起始频率 f2=2*10.^9;%终止频率 u=150*10.^6;%带宽 Tf=1/30;%测频周期

Tr=0.005;%脉冲重复周期 N=round(Tf/Tr);%脉冲数 fi=zeros(1,N);n=1:1:N+1;fi(n)=f1+(n-1)*u;j=1;f=f*10^9;while j<=N if f>=fi(j)&f<=fi(j+1)disp(输出 frequency is(Hz)');f=(fi(j)+fi(j+1))/2 break;else j=j+1;end if j==N+1 disp(不在测频范围内');end end 仿真结果:

总结:

通过这次大作业让我知道并了解了在雷达侦察中的测频方法,以及其原理。但依然发现许多不足之处,在程序编写方面有所欠缺,以后应该多加练习,熟悉MATLAB的运用等等。

雷达原理与对抗技术 复习资料
TOP