首页 > 精品范文库 > 15号文库
有理数的乘法教案
编辑:梦里寻梅 识别码:24-1120251 15号文库 发布时间: 2024-08-28 13:38:32 来源:网络

第一篇:有理数的乘法教案

1.4.1有理数的乘法

教学目标:

1.知识目标:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

2.能力训练目标:能运用法则进行简单的有理数乘法运算.培养学生观察、归纳、概括及运算能力。

3.情感与价值目标:培养学生的语言表达能力,通过合作学习调动学生学习的积极性,增强学习数学的自信。教学重点:

有理数乘法的运算。教学难点:

有理数乘法中的符号法则。教学过程:

一、复习引入:

1.计算:(―2)+(―2)+(―2)。

2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、讲授新课:

1.师生共同研究有理数乘法法则:(1)思考:

观察下面的乘法算式,你能发现什么规律吗?

3×3=9

3×2=6

3×1=3

3×0=0 可以发现,上述算式有如下规律:随着后一乘数逐次递减1,积逐次递减3.照这个规律,那么应有:3×(―1)=―3,3×(―2)=,3×(―3)=,(2)思考:观察下面的乘法算式,你又能发现什么规律吗?

3×3=9

2×3=6

1×3=3

0×3=0 可以发现,上述算式有如下规律:随着前一乘数逐次递减1,积逐次递减3.照这个规律,那么应有:(―3)×3=―3,(―2)×3=,(―1)×3 =,归纳如下:正数乘正数,积为正数;正数乘负数,积是负数;负数乘正数,积也是负数。积的绝对值等于各乘数绝对值的积。

(3)思考:利用上面归纳的结论计算下面的算式,你发现什么规律?(―3)×3=,(―3)×2=,(―3)×1=,(―3)×0=,可以发现,上述算式有如下规律:随着后一乘数逐次递减1,积逐次增加3.照这个规律,那么应有:(―3)×(―1)=,(―3)×(―2)=,(―3)×(―3)=,可以归纳出如下结论:负数乘负数,积为正数,积的绝对值等于各乘数绝对值的积。

(4)综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0

(5)继而教师强调指出: “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。

因此,在进行有理数乘法时更需时时强调:先定符号后定值。 例如:再如:(-5)×(-3)···········同号两数相乘

(-6)×4··············异号两数相乘

(-5)×(-3)=+()··········得正

(-6)×4=-()············得负

5×3=15·············把绝对值相乘

6×4=24············把绝对值相乘

所以(-5)×(-3)=15。所以(-6)×4=-24。

2.例题:

例1:(教科书30 例1)

由例1,得出结论:一般地,在有理数中仍然有: 乘积是1的两个数互为倒数。

例如,2与

1、(3)与(2)分别互为倒数。

33.课堂练习:

课本:P30,1,2,3。

三、课堂小结:

今天主要学习了有理数乘法法则,要牢记两个负数相乘得正数,简单地说:“负负得正”。四.课外作业:

第二篇:有理数乘法教案

§2.7 有理数的乘法(1)

课时课题:第二章 第七节 有理数的乘法(1)课型:新授课

授课时间: 202_年 10月 15 日,星期 一,第 一 节课 教学目标:

(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:

有理数乘法法则及熟练运用有理数乘法法则进行运算

难点:

确定多个有理数乘法中的符号

教法及学法指导:

本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:

制作课件,学生课前进行相关调查及预习工作.教学过程:

一、回顾旧知

师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:

投影展示 5+5+5+5=

(-5)+(-5)+(-5)+(-5)=

学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?

生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?

(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?

生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。

生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:

正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;

生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;

生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。

整理一下,可以分为三大类:

一、同号的两个有理数相乘

二、异号的两个有理数相乘

三、0和有理数相乘

师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考

生1:同号的两个有理数相乘符号为正,并把绝对值相乘;

生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:

两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.

给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.

让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律

四、尝试做题,巩固新知

1、算一算:

(-7)×3

(-48)×(-3)(-6.5)×(-7.2)

(-3)×3 强调指出:

(1)法则只适用于两个有理数相乘;

(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。

2、典例讲析,规范做题

例1 计算:

(1)(-4)×5

(2)(-5)×(—7)

(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程

应用所学知识解决实际问题,规范解题格式,由知识上升为应用能力

第三篇:有理数乘法的教案

(一)学习与导学目标

1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛

2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相乘的方法和步骤。利用率100%。

3、智能的提高与训导:在练习等师生互动、生生互动的活动过程中,学会与老师及与其他同学交流,沟通和合作,准确表达自己的思维过程。互动率95%。

4、情感修炼与开导:通过练习中的沟通与合作,领悟有理数乘法与小学里数的乘法的联系、发展和进步。投入率95%。

5、观念确认与引导:通过导出、运用法则等活动,加深理解有理数乘法法则;通过与小学里数的乘法法则的比较及法则的导入,培养学生的观察、分析能力,渗透数形结合和转化的数学思想。

(二)学程与导程活动

把全班学生分成46人一组。

1、每组学生演示自己制作的蜗牛爬行的模型(模型制作事先完成),如课本P37的四种情况,讨论完成P37的五个填空。

2、全班集中交流以上结论,归纳引出有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。

问:法则(1)有没有把所有的有理数都包括在内?

指出:正数与0相乘得0,这里规定负数与0相乘也得0。

所以得法则(2)任何数同0相乘,都得0。

3、通过举例,理解法则

问题:由法则,如何计算(-5)(-3)的结果?

第四篇:有理数的乘法教案

有理数的乘法(2)教案

知识目标:有理数乘法运算

能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算;情感态度和价值观:体会用计算器给有理数运算带来的方便.[教学重点与难点] 重点: 有理数乘法运算

有理数的乘法运算

你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解] 计算并观察

下列各式的积是正的还是负的? 思考:几个不是0的数相乘,积的符号与负因数的个数是什么关系?

更多精彩推荐:初中gt;初一gt;数学gt;初一数学教案

第五篇:有理数乘法法则教案

有理数乘法法则教学探讨

由于引进了负数,七年级对数系的认识范围扩大到了有理数。有理数乘法法则的教学难点所在,就是运算的因式含有了负数,如何自然 由原来正数的乘法过渡到带有“负数”的乘法,如何体现这些运算法则的合理性和必要性,是困扰很多教师的问题。特别地,对“负负得正”的理解,是关键所在。下面提供一个教学教案,并做简要的评析,来探讨这一问题。

教学内容:华东师大版《数学》七年级上册,有理数的乘法法则 教学目标

1.知识与技能

经历探索有理数乘法法则的过程,熟练掌握有理数的乘法法则,并能正确地进行有理数的乘法运算.2.情感体验

让学生自主探索,形成有理数乘法法则,在数学学习活动中形成自主、自信、健康的心理.教学重点难点

1.重点:正确地进行有理数的乘法运算.2.难点:探索出有理数乘法的符合规律.教学设计

(一)情景导入

一只小虫沿一条东西向的路线,以每分钟3米的速度向东爬行2分钟,那么它现在位于原来位置的哪个方向,相距多少米?若小虫向西以每分钟3米的速度爬行2分钟,那么结果有何变化?

(二)合作探索

若我们规定向东为正,向西为负.(1)对于第一个问题,我们可以列出式子:3+3=6 根据乘法是加法的简便运算,同样可以得到:3×2=6 即小虫位于原来位置的东方6米处.用数轴表示这个过程为:

(2)对于后一问题,根据有理数相加的法则,可以列出算式为:(-3)+(—3)=-6.通过比较,同样可以得到另外一条算式:(-3)×2 【分小组讨论】求出算式(-3)×2的积.显然,其结果为—6,它的意义是两个-3相加。这是两种不同运算的求解过程。我们就此求得小虫位于原来位置的西方6米处.用数轴可以表示这个过程:

【试一试】求下列算式的积

1)3×3 3×4 5×7 2)(-3)×3(-3)×4(-5)×7 3)3×(-3)3×(-4)5×(-7)解:1)3×3=9 3×4=12 5×7=35

2)(-3)×3=-9(-3)×4=-12(-5)×7=-35

3)3×(-3)=-9 3×(-4)=-12 5×(-7)=-35

【比较】请同学对比观察上面三组算式,有什么发现? 提示:分别从因数和结果的角度看.【归纳】请和小组成员交流,写出发现的结论:

两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.【想一想】求下列算式的积

(-3)×(-2)=(-3)×(-4)=(-3)×(-5)=(-5)×(-7)= 提示:运用发现的规律,对比前面的2)、3)组算式来思考.再试一试计算:3×0=?(-3)×0=? 0×(-5)=?

【概括】综合以上各种情况,我们有有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.【巩固提高】 例:计算

11(-0.8)(1)0×(2)(2)512141(3)(1)()(4)(3)()0(0.7)

4531(5)(1)()(6)(6)(1)

411答案:(1)0(2)(3)1(4)0(5)(6)-6

415点评:按乘法法则先确定积的符号,再确定积的绝对值;

分数与分数相乘,带分数应先化为假分数,小数应化为分数;

在连乘运算中“有零快写零,无零先定号”;

一个数与(-1)相乘,积与这个数互为相反数,一个数与1相乘,积与这个数相同.练习:判断题,对的在括号内写T 错的写F.(1)同号两数相乘,符号不变.(F)

(2)异号两数相乘,取绝对值较大的因数的符号.(F)

(3)两数相乘,如果积为正数,则这两个因数都为正数.(F)(4)两数相乘,如果积为负数,则这两个因数异号.(T)(5)两数相乘,如果积为0,则这两个数全为0.(F)(6)两个数相乘,积比每一个因数都大.(F)(7)如果ab0,且ab0,则a0,b0.(T)(8)如果ab0,则a0,b0.(F)

(9)如果ab0,则a,b中至少有一个为0.(T)

【拓展】对于两个负数相乘的意义的理解,同学们可以通过代入实际背景,如路程,温度,水位等去帮助理解,还可以运用数轴进行操作帮助理解.可以看这样的一个问题:

水池的水位每小时下降2米,已知现在的水位是0,问:(1)2小时后,3小时后的水位分别是多少?(2)2小时前,3小时前的水位分别是多少?

分析:我们把水位上升记为正,下降记为负,那么下降2米的水位就为—2米,所以对问题(1),2小时后的水位容易计算,(—2)×2= —4米,同样3小时后的水位为(—2)×3= —6米。在掌握了负数的基础上,这是容易理解的。对于(2),我们记现在以后为正,现在以前为负,那么自然地,2小时前,3小时前的水位就分别为(—2)×(—2)= 4米,(—2)×(—3)= 6米。现在的水位,也就是0时刻的水位可以计算为(—2)×0=0米。通过类似这样的客观模型,可以帮助说明含负数相乘法则的现实意义。

从上面还可以得到这样的一个事实,要求几小时后的水位,就用“几”乘以—2,而每增加1小时,水位就随着减少2米,那么,每减少1小时,水位就随着增加了2米。所以,符号“-”的实质可以看作是相反的量或相反的操作.两个负数相乘可以通过这种方法来理解.例如(-2)×(-3)就是把(-2)相反的操作3次,(-2)相反就是(+2),操作3次就是把(+2)连加3次,得(+6).从而也可以得出乘法的符号法则.【小结】引导学生作知识总结,回顾法则的发现过程,熟记法则.有理数的乘法法则 实质上是符号法则,符号确定后,其余的绝对值相乘与小学乘法运算完全相同.以上的教学过程,可以从以下几个方面去分析:

1.前面的部分,从正整数的乘法过渡到“正负相乘”。正整数相乘是相同加数相加的简便运算,从这一基本定义出发,通过类比,在问题设计中,自然得出了“正负相乘”的相似定义,并且通过不完全归纳,得出一个重要事实——两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.2.后面的部分,由“正负相乘”过渡到“负负相乘”,这对于教学进程又是一个飞跃,通过上面得到的改变一个因式的符号就改变结果的事实,得到了两个负数运算的计算法则,这是在原来的抽象基础上再一次抽象提高,再经过不完全的归纳,就得出有理数相乘的一般法则。

3.在扩展部分,通过水位现实的模型说明“负负得正”的现实意义,这是非常必要的。负数的学习中,是通过方向问题,上下问题,盈亏问题等单一的实际模型引入的,而这里同时涉及到了水位变化,时间进程的一个“二维”变量问题,这既有和前面的对比,又是前面的再度提高。通过现实模型来说明学习对象,是将抽象和具体结合的过程,通过这一过程,加深学生对学习对象理解的深刻度,也培养了学生结合具体抽象的思维能力。4.整个教学过程,主要涉及了类比和不完全归纳两种重要的思想方法。利用类比,将具有相同特征的的事物进行比较,对学习和研究新事物具有积极的作用,也可以将两个毫不相关的事物进行类比,通过旧事物的某一特征来研究新问题,达到触类旁通的效果。另外,通过不完全归纳,可以得出一些容易得到而缺乏证明的事实。如“负负得正”,这在形式上是不能够证明的,这样,用不完全归纳去发现这一结果就非常的有意义了。

A.教学目标:

1.知识与技能: 掌握有理数的乘法法则;

2.过程与方法:经历有理数乘法法则的探索概括过程,学习观察、归纳、类比、概括的解决问题方法;

3.情感与态度:体验有理数乘法法则源于实际的需要,初步理解法则的实际意义.B.重点与难点

重点:有理数乘法法则的掌握。

难点:规则“两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.”的概括;“负负得正”的实际意义的理解。

C.没有突破由(-3)×2=-6到3×(-2)=-6的过渡。

建议利用学生脑中已有的规则——乘法交换律(abba)进行推广过渡。

D.注意文章是教学设计,对象是教师,不能窜位。

E.写上参考文献。

有理数的乘法教案
TOP