首页 > 精品范文库 > 11号文库
对高铁无砟轨道精调的几点感悟—秦伟
编辑:落霞与孤鹜齐 识别码:20-230279 11号文库 发布时间: 2023-03-28 10:33:13 来源:网络

第一篇:对高铁无砟轨道精调的几点感悟—秦伟

对高铁无砟轨道精调的几点感悟

在京沪高速铁路联调联试线路精调工作中,CRTSⅠ型、CRTSⅡ型板无砟轨道我均参与了调试。结构的差异、精度要求的严格使精调期间遇到了与有砟轨道整治方面很多不同的东西,主要有以下几点感悟:

一、绝对小车数据资料分析在固定线路位置方面作用突出。

无砟轨道绝对检查小车资料能准确直观地反映线路位置,它提供的高低、轨距、轨向、水平、扭曲等几何参数在固定线路绝对及相对位置方面是以往采用的定桩定线、定桩顺线等原始的传统整治方法所不能达到的。精调前半期的工作主要抓住这一优势,围绕资料分析、整治数据展开,采用了“三测三整”的方法进行。“一测”;是相对粗调阶段;根据绝对小车资料分析进行“一整”,主要围歼1㎜以上的数值。一整结束段穿插进行“二测二整”;主要修正“一测一整”时测具、量具、机械、作业及环境因素造成的误差,以上“两测”只做人为复核,尽量避免人为干扰。“三测三整”是在全面复测的同时加强前期作业质量复核,在极值限度内确保线路绝对位置的前提下。融入人为对正、参照动检车图纸及测后整治数据相结合的方法,针对0.5~1㎜处所进行综合治理,是对线路在0.5㎜范围精细对准,在允许范围内

压值确认,即绝对范围内的相对调整,参照动态的图纸波形目的是消灭线路隐性不良及分析资料中遗漏和过整处所,是保证静态优良的同时落实动态达标。实践证明此办法在确定线路位置及总体平顺上行之有效,在1月中旬的初调动态检查中左右线k409+200~k416+200全线消灭了所有振幅,优良率100%,TQI平均值2.63,最大值2.71,最小值2.47。

总之,绝对检查小车资料分析在排除环境因素和人员技能的前提下,控制线路位置方面的优势是经验作业和传统定桩调整无法比拟的,资料调整后的大高低、大方向顺平、顺直度及竖曲线递率比较均衡,是确定线路绝对位置的最佳选择。

二、充分认识到动态检查是判定线路精调优劣的最终结果。

应该这样讲线路是否满足高速运行条件下列车的安全平稳其主要检测手段就是轨道检查车的动态检查,它能直接反映线路某一速度下安全平稳指数,线路整修精调的主要目的也是服务于此,因此我们所有工作必须围绕其展开。

“三测三整”后在确定了线路位置的前提下,我们依据动态检查图纸资料,对波形突出点进行现场定位,对点复核整治,尤其重视了0.5㎜范围的两个以上连续短波(应该讲0.5㎜左右范围的调整对线路整体状况影响不大,不会造成中心位置幅度性的改变)。考虑到随着车速的不断提高,极

小的连续短波很容易造成横加、垂加的Ⅰ级超限和动力学超标。因此利用0.5㎜垫板进行小范围短波抽垫及0.5㎜以下方向、轨距调整,尤其是轨距变化率、水平递顺率必须在1/3000范围内控制,(CRTSⅡ型板地段视扣件与轨底密实程度确定是否更换扣件或采取松开扣件均匀内外密实程度的方法实现)。在对70m、120m长波地段处理上采取了如下两方面措施;一是利用白日远距离目测高低、轨向,对存在的问题采取“远大整、近小顺”的方法进行,近小顺时尽量考虑与大调整的方向统一。二是由于安伯格的使用,产生长波的原因也不尽可能是大范围问题,连续短波占极多数成分,整治时认真对照图纸波形中短波与长波关系,消灭大范围内的连续短波,也可实现,此方法尤其适用于夜间目测困难情况下的设备整修,以达到“省时、少动、不变”的目的。

竖曲线是高低长波振幅较为频的地段,整治中采取了“加载段忌高,减载段忌低,曲中递顺”的方法进行。平面曲线产生的长波横向加速度,主要是正矢不良所致,也是绝对检查小车存在的误区,这是因为小车60m采点转站时产生的误差,以及全站仪60m范围内是正弦运动,影响短波的同时,对70m、120m长波轨向也难以测准,直接影响方案调整的精度,是目前安伯格小车自身难以弥补的缺陷。解决方法;采取常用的20m弦绳2.5m密点细测按差之差不大于0.3,五点内不大于0.8的精度计算后使用电子道尺定点整

治,使曲线达到圆顺度,以消灭长波横向加速度。当然大范围的碎方向也可产生横加超限,那就需安常用的办法,结合轨向、轨距进行综合治理。

另外,在作业中认真了解CRTSⅠ型、CRTSⅡ型无砟轨道板的特性。一般看来CRTSI型板在调整钢轨水平位移方面,通过松开楔钉视调整量的大小来确定是否调转方向或用改换轨距补偿块的方法即可实现,但在调整钢轨垂直位移方面准确掌握T型螺栓的扣压力是关键,扣压力过大或过小都会影响调整量,造成与补偿轨垫规格不相符,加大作业难度。另外对0.3㎜范围的轨道不平顺,采取允许值范围内的调整T型螺栓扣压力的方法也可实现。CRTSⅡ型板在调整钢轨垂直位移时由于扣压结构的不同,一般调整量与补偿轨垫的规格相符,在水平位移的调整方面需认真调查轨距补偿挡块与轨底的密实程度及调整量的大小,以确定是否更换轨距补偿块。但实施中由于个别钢轨存在少量硬弯(尤其是1m范围内的)或焊接处的硬度不均作业时很不容易掌握。

轨道动态检查评定作为线路动态测评的唯一手段和行车安全的最后屏障,所有作业项目及方法必须以此为切入点,确保静动态的优良,达到“表里如一”。

三、科学对待绝对检查小车资料。

前面讲到了绝对检查小车数据分析后,整治线路大方向、大高低及控制线路位置占有相当的优势,但通过一段时

间的观察使用,也有一些其自身难以实现的东西,产生的数据与现场不甚相符,影响精调质量。主要由以下几方面原因造成:

1.全站仪转站造成误差的存在; 2.全站仪正弦运动时产生的误差;

3.小车和全站仪定位处的线路已有病害的存在; 4.钢轨踏面细小异物的影响;

5.受阳光直射及风力等自然条件的制约; 6.分析人员理论与现场结合的程度差异。

以上原因产生的数据都会影响现场整治质量。过度信任整治数据很难确保作业上不产生失误,如左线k400+200因冬季夜间踏面覆冰,依照数据进行的钢轨调高作业曾造成了动态检查2.62㎜的三角坑;虽然现场复核整治时15m范围只存在1.47㎜的扭曲差,但资料调整的曲下股5块板1㎜调高明显不平顺,抽出处理后此段落未发生类似问题。总结后采取了“一对照,一复核”的方法,“一对照”就是根据调整方案现场标识后对照动检图纸波形是否存在该病害;“一复核”人工配合电子道尺确定调整段是否存在异常,或采取什么方法更加简捷、高效。最后落实到调整方案,确实存在的,人工复核存在的必须整治;调整方案没有的,但动检资料及人工复核存在的必须整治;调整方案有的而动态资料未显示且人工复核不明显的可不做整治。以上方法在左右

线k399+760~k405+500消灭多处动态检查ⅠⅡ级超限、动力学超标及大幅消减TQI值方面效果十分明显,最终达到了消灭所有动态超限,TQI值短时间内下降了20%。

总之,对待绝对检查小车分析资料要有一个科学的态度,认识到它的最佳使用范围及它尚不能做到的地方,做到“信任它但不迷信它”。此方法建议在运营期间的设备整修中不妨一试。

四、有待观察的几个问题

线路精调已结束,满足了高速运行的条件,不过有以下问题需密切观察: 1.且不追究是否是施工质量或工艺本身存在的CRTSⅠ型轨道板与CA砂浆垫层间离缝问题,目前虽已做封胶处理,但填充是否均匀?填充密疏不等是否会造成弹性不均而致三角坑的隐形存在?

2.钢轨焊缝处因硬度不均,轨向、轨距改正时是用扣件或补偿块强力挤压完成的,是否随着列车密度的增加、震动的频繁会产生急剧变化?

3.钢轨内部应力是否均匀?据常温时段静态观察凸形档台前后端受力不甚均匀,高温时段轨(气温29℃,轨温51℃)道静态变化量以左线k400+900~401+100为例,高低变化1㎜、轨向变化1~1.5㎜、水平变化0.6~1.1㎜,且凸形档台受力端挤压较重,这些现象可以看出钢轨内部应力的变化

情况,加强观测的同时是否应该采取措施。

我认为高速铁路线路的整修应该在“精、细”上做文章,严格卡控高低、轨向短波,水平、高低的递顺,轨矩的千分比。作业中可否执行动态检查上的安伯格资料照准及人工复核。

秦 伟 高级技师

2011年6月7日

济南工务段

第二篇:高铁测量系列04——无砟轨道铺轨测量与精调技术

无砟轨道铺轨测量与精调技术

王建华

(中铁七局集团有限公司,郑州 4 5 0 0 1 6)概述

无砟轨道是以整体道床代替碎石道床的一种新型轨道,其平顺性、稳定性、精度和标准要求高,传统的施工技术和工艺已不能满足设计和运营的要求。这种新型的轨道结构,其静态几何状态中线为2mm,高程2mm,轨距±1mm,检测方法为全站仪配合轨道几何状态测量仪检测。

对于无砟轨道要求的高标准性,施工中一般是采用全站仪配合静态轨检小车对已铺设成型的线路轨道进行测量,人工配合进行线路调整。使用全站仪配合轨检小车进行轨道几何状态测量是一项费时细致的工作,再加上没有成熟的调整顺序和方法,会出现调整过一遍后,再进行复测时又出现线路的几何状态不能满足规范要求,需进行反复测量反复调整。不仅影响铺轨精调的整体进度,而且给钢轨和扣件带来一定的影响,最大的问题是不能保证联调联试的正常进行。在现有的施工技术条件下,如何在保证精调精度的同时提高铺轨精调的速度,本文对此进行探讨,寻求一种快速的精调作业方法,提高铺轨精调的速度。

合武铁路的大别山隧道位于墩义堂至麻城之间,采用双块式无砟轨道,全长13.256km。在隧道两端分别设置25m的过渡段,设计线间距4.6m。隧道终点有一半径7000m的曲线伸入隧道内,伸入长度799.93m。隧道内无砟轨道正线采用专用的双块式轨枕,按1600根/km布置。正线铺设60kg/m U75V无螺栓孔新耐腐蚀钢轨,隧道内正线采用pandrol直列式扣件。轨道几何尺寸要求

2.1 轨道动态几何尺寸要求

轨道动态几何尺寸的检测是通过大型轨检车进行的,利用轨检车试运营来检测轨道在负重情况下的几何状态参数,依列车运营时的平稳性和乘坐舒适度为标准来衡量。为此,在进行静态轨道调整时,也要以线路的平顺性和相对关系为重点对线路进行静态调整。轨检车在时速160km情况下的轨道动态检测指标如表1所示。

2.2 轨道静态几何尺寸要求

轨道静态几何尺寸是指在线路不受外力的作用下,通过检测手段得到的线路平面位置、高程与设计值之间的差值,静态测量值可以显示出建成结构物的绝对位置。由于各种原因,施工后的轨道结构物不一定完全达到设计线路平顺性的要求,规范要求的轨道实际位置与设计位置偏差允许值如表2所示。

轨道静态情况下要满足线路平顺性要求,就需要检测各点在某一线路方向或高程方向左右的游离,这个方向就是需要拟合的线路正确方向,轨道各检测点相对于拟合方向的线路偏差的限差,规范中做了规定如表3所示。

在进行轨道精调时着重控制的技术指标是轨道静态几何尺寸。轨道绝对位置的正确是线路符合设计要求的保证,而轨道的相对位置是行车安全和乘车舒适度的保证。在此基础上进行轨道静态相对位置的调整,才能保证列车运行时的安全与乘车舒适性。

2.3 现场实施控制的轨道静态几何尺寸要求

合武铁路大别山隧道无砟轨道设汁速度为250km/h,规范规定的静态检核尺寸的限差为:10m弦长的高低和轨向为2mm,水平为1mm,轨距为±1mm。精调后进行列车动态检核时又发现轨距、轨顶面的高低存在一定的误差。这说明进行列车动态检核更能体现出轨道的相对位置关系和轨道的几何尺寸的变化率。规范规定的10m弦长对轨道高低和轨向的控制实际上是对这2项指标的变化率的控制,故对轨道水平和轨距也应该用变化率来进行控制。大别山隧道无砟轨道每2根轨枕间距为0.625m,对于每根轨枕都作为静态几何尺寸的检查点,相邻2检查点的数据与设计值之差作为这2点的变化率。从现场的检测情况看:无论是轨向、高低,还是水平、轨距这个变化率都应控制在0.5mm以内,且这个变化率应该在某一个定值上游离。轨道精调

3.1确定基本轨

在轨道的2根钢轨中选择1条作为基本轨,一般在一段线路中选择没有曲线超高的一条钢轨作为高低基本轨;在曲线地段的外轨作为轨向基本轨。基本轨是轨道几何尺寸调整的基础轨,也是轨道调整的基本线,轨向基本轨的确定标志着线路中心线的确定,在合武铁路大别山隧道中选择左轨作为高低基本轨,右轨作为轨向基本轨。因为在隧道出口处有一左转曲线,右轨具有曲线超高。

3.2轨距的调整 轨距是轨道的重要几何尺寸之一,也是最基础的控制要素,在钢轨铺完后就应对轨距进行检测。轨距的检测方法采用带有毫米刻度的道尺,读数应读至0.1mm,并做好记录,为下一步调整做好准备。

调整按照1435.5mm的标准轨距进行,2根轨枕间的轨距变化不应超过0.5mm,对已经调整过的地段重新进行轨距检测,保证在1435~1436mm之间,其变化率不应大于0.5mm。

3.3精测与调整

轨距调整完成后即可用轨检小车进行轨道静态几何尺寸的测量,测量是进行轨向、轨顶面高程调整的基础和依据。静态测量数据的精确与否直接影响到线路的精调质量,测量时要严格按照轨道几何状态测量仪测量的顺序和步骤进行。在大别山隧道无砟轨道精调测量中采用德国的GEDO CE轨道几何状态测量仪和天宝全站仪以及配套的GEDO CE测量软件。

3.3.1 精测方法

3.3.1.1 CPⅢ控制网布设形式

大别山隧道无砟轨道CPⅢ平面控制测量采用后方交会法施测,其测量布网形式如图1所示。

CPⅢ控制测量完成后利用铁道第三勘察设计院集团有限公司编程的后处理软件进行平差,平差后的相邻点位中误差应小于1mm。

CPⅢ控制点水准测量按精密水准测量的要求施测,CPⅢ控制点高程测量在CPⅢ平面测量完成后进行,并起闭于二等水准基点,且一个测段不应少于3个水准点。

3.3.1.2 GEDO CE测量系统原理 采用全站仪自由设站,利用后方交会的测量方法和多对CPⅢ联测得到点位精度小于1mm的全站仪设点三维坐标;全站仪测量利用轨检小车上的棱镜得到高精度的棱镜坐标,通过小车的固定棱镜得到坐标值和高度值,计算得出线路的倾斜数据。将得到的测量数据结合小车传感器数据,计算得出线路中线数据、超高值(测量)和倾斜高(测量);再将计算出的中线数据、超高值、倾斜高和线路设计值进行比较得到差值并通过显示器显示出来。轨检小车计算原理如图2所示。

3.3.2 测量

大别山隧道无砟轨道铺轨精调采用6~8个CPⅢ控制点的后方交会法进行全站仪设站,设站所测点残值都应满足小于2mm的系统要求,站点的坐标中误差应小于1mm。

全站仪架设在4对CPⅢ(左右线各4个)中间并保持与小车棱镜在同一条钢轨上方;全站仪架设要最低,保持小车从小里程到大里程运动(也可以从大里程到小里程运动),小车棱镜安置方向应与固定端相对应,固定端安置在轨向参考轨上。设站时全站仪与小车的距离在80m以内,每次精调测设范围最好控制在10-80m。每测设完1站后移动1对CPⅢ,重新设站,全站仪倒退,每2次设站必须保持一定的重叠段(以10m为宜),测量布设如图3所示。

3.3.3 数据整理

《客运专线无砟轨道铁路工程测量暂行规定》要求轨道线路平顺性指标主要用10m弦控制,轨向和高低10m弦的最大偏差为2mm。10m弦的含义为:在线路上任意选取(或测量)3个点,组成一条弦最大偏差不应大于2mm。在大别山隧道无砟轨道测量中,GEDO CE测量系统的后处理软件也列出了这几项指标,该系统能自动生成一个包含这几项指标在内的实测数据文件表格,生成的数据文件中有10m弦和30m弦2种(可根据实际情况进行定义),大别山隧道主要以30m弦2mm这项指标控制。铁道部最新颁布的铁建函[2009]674号文件《高速铁路无砟轨道工程施工精调作业指南》中规定轨道静态平顺度高低、轨向30m弦均为2mm。

现场测量中根据实测形成的数据文件,对线路上的超限部分进行数据分析,并重新对线路轨向、高低进行拟合,形成一条满足线路平顺性要求的内业拟合方向线,再依据这条拟合的方向线对各实测点的轨向和高低确定调整量,对测量点的钢轨进行调整。下面以表4为例具体说明。

以表中60~53测量点来说明具体数据分析调整方法:首先看轨顶高低的30m弦数据(测量数据可以形成10m、30m弦,为保证数据的可靠性这里采用30m弦2mm的限值),在整个30m弦轨顶高低偏差值项没有大于2mm的检核点,这说明该段线路在轨顶高低平顺性中是平顺的,满足规范对线路高低平顺性的要求,所以对本段轨顶面高程不需要进行调整。而在本段的轨向(中心线)上可以看出对应的30弦偏差出现了不同程度的超限(表中的加黑方框部分),不难发现这几点的水平中线与前后相比有明显的偏离(前后的中线方向都在一1之上),调整时需要将这部分轨道中心线调整到相对平顺的位置上(表4中加黑方框内粗线数据即为具体调整数据),才能使弦差不超限,保证线路的平顺性。

3.3.4 轨道调整

轨道调整在轨距调整完成后的段落进行,减少因轨距调整对方向和高程的影响,有效避免反复测量和调整。

首先调整轨向:根据软件形成的资料,由专人复核,并到现场按里程将需要调整的数据标记在钢轨对应的轨枕上(注意调整方向)。调整时需有技术人员指导对钢轨进行调整,首先用道尺量出调整处的轨距,并做好记录;松开扣件按照要调整的方向和数据将基本轨调整到位;再用道尺按照记录好的轨距将另一根钢轨调整到位。

基本轨轨顶面高低的调整:根据整理的测量资料由技术人员到现场将调整数据标记在钢轨对应的轨枕处,并指导工作人员对钢轨进行抬升或降低。对于既存在超高又需调整基本轨的测量点,首先将高低基本轨调整到位,再根据超高调整另一根钢轨到位。

无论是曲线地段还是直线地段都应该按照里程前进方向进行测量调整(保证调整方向的一直性)。在进行轨顶面高程调整的同时对调整部分的前后进行空掉板项的检查,发现空掉板应即时进行处理,保证线路几何状态在重力作用下的稳定性。做完第一遍调整后,重新对轨道数据进行测量,作为第二遍轨道调整的依据,依次类推。

第三篇:高铁无砟轨道病害整治技术简介

高铁无砟轨道病害整治技

术简介

北京中铁瑞威基础工程有限公司

2012年5月

目 录

一、公司简介......................................................................................................................................................

第四篇:CRTSⅡ型无砟轨道板精调总结

中国水利水电第十三工程局 CRTSⅡ型板式无砟轨道施

CRTSⅡ型轨道板精调

前言

轨道板铺设的精度将直接影响轨道最终的平顺性,为满足高速列车运行时对轨道几何尺寸的特殊要求,在安装轨道板时必须进行精确定位,安装定位的最终精度与所设计的理论值偏差要求在亚毫米级的精度范围内。

整个精调系统由三大部分组成。

全站仪部分:全站仪是数据测量的主要实施者,为了确保CRTSⅡ型板的安装精度,要求全站仪达到一下精度。

测角精度:0.3mgon(1”);

测距精度:0.3-1 mm ;带有ATR自动目标跟踪功能。

因此,推荐选择的全站仪包括以下型号:徕卡TCA2003、TCA1800、TCA1201、Trimble S8。

图1 莱卡2003 图2松下CF-19便携电脑

工控机部分:采用工业用级别的电脑来运行轨道板精确测量定位软件,具备可靠的野外作业能力和数据处理速度。松下CF-19便携电脑:10.4英寸的XGA触摸屏幕;抗震、加固、防水,屏幕可翻转,适合于野外探测和勘探。工作时间: 4.6-8 小时,电源 100~240V 自适应。工作温度(℃)0-40℃,工作湿度 5%-95%,存储温度-20-60℃,存储湿度 5%-95%。

显示器:显示器共有6个,通过显示分屏器和主机连接,显示器被放置在测量标架对应

棱镜处,提供实时的偏差数据,方便调节CRTSII型轨道板。

倾斜传感器用于快速的获得同一标架上,全站仪测量的棱镜的另一端棱镜的偏差数据。一共有3个,分别安装在标架1号标架2标架和3号标架底部,通过超级蓝牙和主机连接。

标架部分:精密加工的检测标架,保证测量的精度和高速铁路全线测量的一致性。测量标架是本系统重要的组成部分。分为测量标架和标准标架2类,共5副。如下表:

序号 内容 1 测量标架1 2 测量标架2 3 测量标架3 4 测量标架4 5 测量标架5 数量 说明 安装有倾斜传感器,配置2个棱镜 1 安装有倾斜传感器,配置2个棱镜 1 安装有倾斜传感器,配置2个棱镜 1 配置2个棱镜,棱镜内偏10cm 1 作为标准标架,配置1个棱镜

轨道板精调测量定位软件的主要优点有:软件界面及设计流程实用简洁、更加贴近现场的实际情况,方便操作人员的操作。

1.全站仪的架设: 经过现场实测,全站仪的最佳测量距离在5~30之间,也就是说一次设站可精调2~3块轨道板(轨道板长6.45m、宽2.55m)。但考虑到测量标架上的棱镜密集,容易出现测量目标出错等问题,一般建议一次架站只精调2块轨道板。再加上全站仪的最短测距5m,因此全站仪应建设在中间隔开一块轨道板的GRP(轨道基准点)点上,如图1--5。先将GRP测丁凹槽清洁干净,再将测量三角架的强制对中杆杆尖放入测丁凹槽,调平测量三角架,再架上去掉底座的全站仪扣紧在三角架上,打开仪器电子气泡进行精平。也可先扣上仪器,直接调整气泡进行精平。原则是先要保证精准,再提高速度。

2.测量标架的摆放位置和作用:

一块轨道板一共有10对承轨台。1号和3号测量标架分别放在第1对和第10对轨枕上,2号测量标架放在从小里程方向数起的第5个轨枕上。1至3号测量标架用来时实监控轨道板的空间位置。4号测量标架用于定向和轨道板与轨道板的搭接,放置在紧挨着3号测量标架的上一块轨道板第1 个轨枕上。1至4号标架的触头统一贴紧左侧的轨枕边,所以轨道板和标架触头清洁要保持。因为仪器是顺时针转动,标架几何位置是以触头为基准点的。检查触头是否贴紧并用皮筋扣紧在扣件上,防止在调动轨道板是,测量标架晃动或滑动,导致测得非真实值,精调错误。

若是反方向精调,1号和3号标架调换位置,同时1至4号标架调转180°,依然按照1至4号的顺序摆放,标架的触点一定要贴紧轨枕边,检测并将皮筋扣紧在扣件上。3号和4号测量标架上分别是3#、6#与4#5#棱镜。定向后4号标架是绝对不能动的。

精调时,对1号标架的1#、8#棱镜、2号标架的2#、7#棱镜、3号标架的3#、6#棱镜对应轨枕下6处的精调爪进行平面和高程的反复精调,来控制这6个棱镜的三维坐标。实现与设计理论值的趋近,最终实现该轨道板的空间位置。对3号标架上的3#、6#棱镜的平面和高程三维坐标的控制,来实现该板的板头与与上块板板头的高精度搭接。

依次连贯下去,实现为京沪高铁线路的高平顺性、高稳定性、高安全性、高舒适性打下重要的基础

3.后视三角架的架设:

后视可架设在相隔仪器的第3或第4个GRP点上,同样GRP测丁页要事先清洁。建议后视架设在第4个GRP点,在能保证定向精度的前提下,能避免和4号测量标架的位置不发生冲突。如果是精调当前线路的第1块轨道板时,就不存在搭接问题,4号测量标架也就用不到了,所以这时后视可放置在第3个GRP点上。

若在精调时后视定向不过时,检查仪器和后视气泡是否居中;三角架的对中杆是否拧紧;后视棱镜杆是否对接严实;GRP点是否清洁干净或是否破坏及仪器内设置的棱镜常数和天气、其他参数改正值等。也可以将仪器或棱镜前后换一个GRP架设定向。一般在超高段GRP测丁不宜埋设规范;测量时会有一定误差(例如CPIII轨道控制网布平顺性;GRP测设时搭接的不平顺性)或后期测丁的破坏,这些都会导致定向出现问题。

待仪器设备架设好时,旁边不宜有震源,禁止人员在该板上走动,以免对仪器设备造成负面影响。

例图1-5 5.轨道板的精调:

一般配备6名人员,1人架设全站仪;1人架设后视和搬迁4个测量标架。迁站时,两人协作迁移全站仪。一人迁移4个标架是因为要尽量减少对已经调好的轨道板的扰动,所以在板上行走时动作一定要慢要轻。其余4人备好4个双向精调爪和2个单向的精调爪放好位置,准备顶起轨道板抽出粗铺时放置的6根木条,再进行精调轨道板。

要仔细检查精调爪是否完好,精调爪的底座摩擦齿内的干净,保持摩擦力合后坐力;爪勾内是否有杂质填满,确保能紧钩住轨道板预埋的钢板勾,这项工作非常重要,要是没放进去钩住、放偏或是用错精调爪,会导致精调爪脱钩,精调爪会从轨道板板底滑出。在轨道板的四个板角(1#、3#、6#、8#棱镜下方)各放置一个双向的经调爪,双向精调爪的平面位置螺栓是否归零。在板的两长边中间处放置各放置一个单向精调爪。轨道板的四个板角预埋有钢板,中间没有。检查板底预埋钢板的完好性,钢板底面和沟槽内有无多余水泥,水泥过多的话,精调爪没法钩住。如果有要用一字型钢凿子或相关工具将其去掉。

要检查钢板勾外侧的水泥不能过厚,一般不宜大于0.5cm。水泥过厚也会导致精调爪脱勾被挤出。若是过厚要用专业的工具例如打磨机进行打磨。检查预埋钢板可以安排在粗铺之前,板相对集中便于检查和处理,如果放在后期,不经费人、工和时间,而且存在潜在的危险。检查轨道板下面有无杂物,以免造成轨道板无法下降、平面的移动,不能实现精调的目的,同时也保证不了灌浆质量。

还要检查6处放精调爪的精调爪保护套是否粘贴到位,是否贴紧板底够厚,待精调完后压实不会存在缝隙,灌浆时不会发生漏浆,同时建议这项工 起到保护精调爪的作用。作在粗铺时严格把关,因为杂质过大需要重新吊起轨道板,会耽误大量的人、工、时。

精调爪脱钩被挤出,很大可能会对板造成破损,因为精调爪的受力面积小,一个精调爪的承重面积不足5平方厘米(一个精调爪两个爪勾面积之和)。一般破坏的位置是在爪勾上方,靠板边缘的混泥土。严重时双向精调爪会将钢板勾拉直或拉断,甚至板角破裂,需要进行一定处理。单向精调爪脱出时,若是也造成一定量的破坏,需要将爪和精调爪保护套往旁边挪动一点,以免影响受力或无法受力。同时爪的脱出会导致板角或板中间(单向精调爪的位置)落在支撑层或底座板上,这是需要从旁边板缝隙够大的地方用单向爪将板顶起,若距离远需要多用几个单向爪替换往前顶,直到落地的板角(板中间)能将双向爪(单向爪)放入,这是一个非常费时的过程,而且存在一定得危险。这个时候一定不要将手伸进板底。所以要尽量避免脱钩。

检查工作是减少或避免相关事故的发生,从而节省时间和不必要的损失。4人使用24号六棱快速扳手在板的四个板角处,调高精调爪将轨道板顶起,抽出旁边的粗铺木条。再调高中间2个单向精调爪,抽出2根木条。精调爪受力时,要注意观察精调爪的受力情况,是否歪斜,有无滑退的迹象,有没贴紧轨道板边缘。要是做出调整时,木条不要抽出,手不能伸入板底。如果前面有精调过的轨道板,可以目测将该板与上块板高出活平面多出的一部分大致的缩小。如此同时,架设仪器、后视和测量标架以及定向。这几项工作同时进行,充分的利用时间,弥补不必要的等待,单块板的精调速度直接影响单日精调量。

测量时,一般先进行四点测量(1#、3#、6#、8#棱镜)。测得的平面和高程一般选择较大值先进行粗调,再粗调后者。直线段一般先降高程至1至2 mm内,四角尽量同时下降、上升或挪动平面,这样板受力均匀不宜侧压力过大,板也不容易滑动,特别是到最后板的微调时,动作要慢,尽量减少对板的不利影响。熟练后,可高程和平面一起报出,精调人员依次一次调完,这样能减少测量的次数和等待时间。

扳手拧动90度,一般移动0.7mm,180度在1至1.4mm之间。一般定义转动90度为半圈,180度为一圈,精调爪的做工和转动定义会出在一定差异。

粗调量的大小直接是和粗铺挂钩的,粗铺的好坏直接影响后期精调量及精调速度的重要原因之一。一般1次到2次的粗调能将轨道板移动至1到2mm一下的范围内,再进行下一步的精调,将轨道板移至1mm的范围内,这是反复过成,熟练时不超过2次就能做到。

这时可以进行板中间(2#、7#棱镜)的精调了,这是两个单向的精调爪,只需抬高或降低轨道板,调整其高程到设计位置。两个精调爪的调整要同时进行,以免板向一边侧滑,影响板平面位置。侧压力大时,还会将爪挤出。所以求稳步不重求快。当一个或两个爪(2#、7#棱镜)高程还差1 mm时,可以单一进行慢慢精调至0.3mm。这也是个反复的过程,熟练时可1到2次完成。

这些操作可根据实际进行,会有所差异。

此时,轨道板6个点位置都到了1到2mm相对精确的三维空间,而且再次精调比较敏感、困难。因为整个板被腾空架起,动任何一个精调爪都有可能影响板的位置,所以进一步精调时动作要轻要稳,要做到心中有数。这是可进行2次四点测量和2#、7#棱镜测量,也能进行完整测量。有搭接时,4号标架的4#、5#棱镜会参入测量。根据测得的数据进一步的单个点进行精调,该板6个点(1至3号测量标架1#、2#、3#、6#、7#、8#棱镜)的平面和高程精调至0.3mm;板与板3和4号标架的3#与4#棱镜、5#与6#棱镜的平面和高程搭接应在0.2mm。这些需一般要反复精调才能满足精调标准,需要熟练和耐心。

一般精调完2#、7#棱镜下的精调爪时,会发现四个板角多少会有一定量的挪动,这也是正常的,再次精调即可。而板中间位置平面的精调,需要对板头的挪动来实现。将板精调至合格标准时,通常会发现极个别点(棱镜)或个别位置(1、2、3号标架)的平面位置或高程无法挪动、不受力或调补到设计位置,这是要考虑是否有棱镜测得的数据错误、标架没放好,要重新放好测量。或者是有个别爪受力过大将板架起,要考虑是否是测量错误或是底座板(支撑层)过高或过低造成的,这个比个复杂,需要对其做相关处理,比如打磨或填补。或者有些爪将板顶的太紧板挪动不了,一般是中间的精调爪,需轻轻松下待平面调好后,再轻轻顶到精调位置。或是检查板底有无东西,用工具掏出,勿用手直接伸入板底。若是之类等情况都不能解决问题的话,就得考虑是否轨道板变形了,这样的话,需要将板做一定处理,搁置一段时间或附加外力使其还原形状。

有时还会出现调一边板头平面,另一边会向反方向移动,这说明是中间精调爪将板架起,需先将其降下,待平面调好后在调至精调位置。双向精调爪平面螺栓注意归零,以免后期精调板的平面的、空间不够,如果这样的话,需要拿一单向精调爪将板再次顶起,将双向爪归零再放下入,这种比较浪费时间降低精调速度。

单块板的精度会影响到下一块板的搭接,若是搭接不过且后视检查无误的话,需对上块板进行校核。而轨道板的搭接也很重要,直接影响到后期线路线形的好坏和调整钢轨平顺性工作量的大小。所以当一块板精调完了以后要立即上好压紧装置并且再次完整测量进行核查。

精调完毕,确定无误后,可搬迁测量标架进行下一块板的测量精调,此时上轨道板迁仪器、后视和标架的人不宜过多,一般各安排1人即可。

对仪器的熟练操作和调板人员的熟练能有效的减少工作的重复,节约时间。碰的仪器设备故障要细心检查,擅于总结。仪器迁移要稳要准要快,精调人员反映要迅速且高质量,通常问题能独立解决,这样也能极大的提高速度。所以要求人员能相对固定。

在超高段,精调方法要适当变动下,于直线上有所不同。超高段:先调整高程,调至在1`~2mm左右就可以调板的平面了。因为轨道板超高导致中心偏移,一边重,板的平面容易滑动,若是先调好平面,再调整高程的话,板的平面位置会改变。一般在平面是,会有意的向超高边多调过0.3mm左右,在微调高程时,板会自然下滑。在超高段,低侧的精调爪一定要贴紧板边缘,放置板的侧滑或精调爪脱出。

作者:汪兵

庄国政

第五篇:无砟轨道工艺流程

无砟轨道精调工艺整理

一、无砟轨道精调工艺流程见图。

二、无砟轨道精调主要装备:轨道几何状态测量仪、全站仪、气象传感器、CPⅢ棱镜组件、调整部件等。

无砟轨道精调施工基本工艺流程

三、无砟轨道精调前应做好以下准备工作:

1检查轨道几何状态测量仪、全站仪等测量仪器的工作状态。2根据轨道结构类型和设备数量,提前配备相应数量调整件。

3按照连续贯通里程,连续两个CPⅢ控制点之间按扣件结点沿里程增加方向单独连续编号。4在轨道几何状态测量仪中输入线路平、纵断面资料及CPⅢ轨道控制网等资料。

四、轨道静态调整应符合下列规定: 1精调测量前轨道应具备下列条件:

1)钢轨应无污染、无低塌、无掉块、无硬弯等缺陷。

2)扣件应安装正确,无缺少、无损坏、无污染。扣件弹条与轨距挡板应密贴,扣件扭矩符合设计要求。

3)轨下垫板应安装正确,无缺少、无损坏、无偏斜、无污染、无空吊。4)钢轨焊接接头平直度应符合标准要求。2轨道精调测量应符合下列规定:

1)采用全站仪通过CPⅢ控制点进行自由设站,自由设站应符合高速铁路测量相关标准的规定。2)全站仪与轨道几何状态测量仪的观测距离宜为(5~80)m。

3)采用轨道几何状态测量仪对轨道进行逐个扣件节点连续测量。轨道几何状态测量仪应由远及近靠近全站仪方向进行测量。

4)区间轨道应连续测量,两次测量搭接长度不应少于20m。5)车站道岔应单独测量,与两端线路搭接长度不应少于35m。3调整量计算应符合下列规定:

1)根据测量数据,对轨道精度和线形进行综合分析评价,确定需要调整的区段。2)用软件进行调整量模拟试算,并对轨道线形进行优化,形成调整量表。

3)根据调整量表和扣件型号,选配合适的调整配件,并在表中详细记录安装位置、方向。4轨道调整应符合下列规定:

1)钢轨精调作业应先确定基准轨。曲线地段以外轨为基准轨,直线地段同前方曲线的基准轨。2)钢轨精调时,宜先调基准轨的轨向和另一轨的高低,再调两轨的轨距和水平。

3)现场根据调整量表,对计划调整地段进行标识,严格按照确定的原则和顺序进行轨向、轨距,高低、水平的调整。

4)轨距、轨向调整(轨道平面调整),区间轨道通过更换轨距块或移动铁垫板来实现;车站道岔通过更换偏心椎或缓冲调距块来实现。

5)高低、水平调整(轨面高程调整),区间轨道、车站道岔均通过更换轨底调高垫板来实现,板式轨道也可采用充填式垫板进行高低、水平调整,充填式垫板施工应符合《客运专线铁路无砟轨道充填式垫板暂行技术条件》(科技基[2008]74号)的规定。

6)对调整完毕的区段,用轨道几何状态测量仪进行检核测量,并对超限尺寸进行反复调整,直到确认轨道状态符合标准要求,并按相关规定提交检测成果资料。

五、轨道精调整理后应符合下列规定:

1无砟轨道静态平顺度允许偏差应符合下表的规定。

无砟轨道静态平顺度允许偏差

注:表中a为扣件节点间距,单位:m。2线间距允许偏差0,+10mm。3扣件的轨距块应顶严靠紧,离缝者不得大于6%,最大离缝不应大于0.5mm;扣件紧固,扣压力小于规定者不得大于8%;胶垫无缺损,偏斜量大于5mm者不得大于8%。

六、轨道动态调整应符合下列规定: 1分析动态检测数据,查找超限点。

2采用轨道几何状态测量仪、轨道尺、塞尺等工具,对超限点进行核对检查。现场核对检查应符合下列规定:

1)首先必须对区段范围内的扣件、垫板进行全面检查,确认无异常后,再开始轨道几何尺寸检查。检测调整方法同轨道静态调整方法。

2)局部短波不平顺应对轨道超限处前后各50m范围内进行全面检查,必要时扩大检查范围。3)长波不平顺应采用轨道几何状态测量仪在波峰或波谷里程前后各150m范围内进行测量。4)连续短波不平顺,可以采用轨道几何状态测量仪测量方法进行测量。3根据现场核对检查资料计算调整量,形成调整量表。

4轨道动态调整方法、精度要求等与轨道静态调整相同。调整完毕,应对轨道几何尺寸,扣件、垫板状态进行全面复检,并对超限尺寸进行反复调整,直到确认轨道状态符合标准要求,并按相关规定提交检测成果资料。

对高铁无砟轨道精调的几点感悟—秦伟
TOP